Abstract

We have improved significantly the brightness of cryogenic Ho:YAG, reporting up to 65 W output power with a beam quality of M2 <1.3 and a slope efficiency of 71%. The laser emission was ~2 nm wide and centered at 2097.5 nm. This result demonstrates the scalability of both the narrow-line thulium fibre pump laser and the cryogenic laser head.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient, low threshold, cryogenic Ho:YAG laser

Miftar Ganija, Nikita Simakov, Alexander Hemming, John Haub, Peter Veitch, and Jesper Munch
Opt. Express 24(11) 11569-11577 (2016)

High-power Ho:YAG laser wing-pumped by a Tm:fiber laser at 1933  nm

T. Zhao, F. Wang, and D. Y. Shen
Appl. Opt. 54(7) 1594-1597 (2015)

Resonantly pumped monolithic nonplanar Ho:YAG ring laser with high-power single-frequency laser output at 2122 nm

Lei Wang, Chunqing Gao, Mingwei Gao, and Yan Li
Opt. Express 21(8) 9541-9546 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express 18(25), 26475–26483 (2010).
    [Crossref] [PubMed]
  2. A. Hemming, J. Richards, A. Davidson, N. Carmody, S. Bennetts, N. Simakov, and J. Haub, “99 W mid-IR operation of a ZGP OPO at 25% duty cycle,” Opt. Express 21(8), 10062–10069 (2013).
    [Crossref] [PubMed]
  3. Y. J. Shen, B. Q. Yao, X. M. Duan, G. L. Zhu, W. Wang, Y. L. Ju, and Y. Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett. 37(17), 3558–3560 (2012).
    [Crossref] [PubMed]
  4. R. Beck and K. Gürs, “Ho laser with 50-W output and 6.5% slope efficiency,” J. Appl. Phys. 46(12), 5224–5225 (1975).
    [Crossref]
  5. J. I. Mackenzie, J. W. Kim, L. Pearson, W. O. S. Bailey, Y. Yang, and W. A. Clarkson, “Two-micron cryogenically-cooled solid-state lasers: recent progress and future prospects,” Proc. SPIE 7578, 75781F (2010).
    [Crossref]
  6. D. C. Brown, V. Envid, and J. Zembek, “Ho:YAG absorption cross sections from 1700 to 2200 nm at 83, 175, and 295 K,” Appl. Opt. 51(34), 8147–8158 (2012).
    [Crossref] [PubMed]
  7. M. Ganija, N. Simakov, A. Hemming, J. Haub, P. J. Veitch, and J. Munch, “High Resolution Spectroscopy For Cryogenic Ho:YAG Laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STu4M.3.
    [Crossref]
  8. A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun. 283(20), 4041–4045 (2010).
    [Crossref]
  9. S. Bennetts, A. Hemming, A. Davidson, and D. G. Lancaster, “110 W 790 nm pumped 1908 nm thulium fibre laser,” in Joint conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology. OECC/ACOFT 2008. (2008), pp. 1–2.
  10. I. Elder, “Thulium fibre laser pumped mid-IR source,” Proc. SPIE 7325, 73250I (2009).
    [Crossref]
  11. J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
    [Crossref]
  12. M. Ganija, N. Simakov, A. Hemming, J. Haub, P. Veitch, and J. Munch, “Efficient, low threshold, cryogenic Ho:YAG laser,” Opt. Express 24(11), 11569–11577 (2016).
    [Crossref] [PubMed]
  13. P. H. Klein and W. J. Croft, “Thermal Conductivity, Diffusivity, and Expansion of Y2O3, Y3Al5O12, and LaF3 in the Range 77–300 K,” J. Appl. Phys. 38(4), 1603–1607 (1967).
    [Crossref]
  14. G. A. Slack and D. W. Oliver, “Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions,” Phys. Rev. B 4(2), 592–609 (1971).
    [Crossref]
  15. R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38(15), 3282–3284 (1999).
    [Crossref] [PubMed]
  16. H. Fonnum, E. Lippert, and M. W. Haakestad, “550 mJ Q-switched cryogenic Ho:YLF oscillator pumped with a 100 W Tm:fiber laser,” Opt. Lett. 38(11), 1884–1886 (2013).
    [Crossref] [PubMed]
  17. G. A. Newburgh, Z. Fleischman, and M. Dubinskii, “Highly efficient dual-wavelength laser operation of cryo-cooled resonantly (in-band) pumped Ho3+:YVO4 laser,” Opt. Lett. 37(18), 3888–3890 (2012).
    [Crossref] [PubMed]
  18. D. J. Creeden, B. R. Johnson, and S. D. Setzler, “High Efficiency 1908 nm Tm-doped Fiber Laser Oscillator,” in Specialty Optical Fibers (Optical Society of America, 2012), p. SW2F.4.
  19. N. Simakov, A. Hemming, A. Carter, K. Farley, A. Davidson, N. Carmody, J. M. O. Daniel, M. Hughes, L. Corena, D. Stepanov, and J. Haub, “170 W Single-mode Large Pedestal Thulium-doped Fibre Laser,” in 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (Optical Society of America, Munich, 2015), p. CJ_13_2.
  20. M. Ganija, D. Ottaway, P. Veitch, and J. Munch, “Cryogenic, high power, near diffraction limited, Yb:YAG slab laser,” Opt. Express 21(6), 6973–6978 (2013).
    [Crossref] [PubMed]
  21. N. Simakov, A. V. Hemming, A. Carter, K. Farley, A. Davidson, N. Carmody, M. Hughes, J. M. O. Daniel, L. Corena, D. Stepanov, and J. Haub, “Design and experimental demonstration of a large pedestal thulium-doped fibre,” Opt. Express 23(3), 3126–3133 (2015).
    [Crossref] [PubMed]
  22. D. Y. Stepanov and L. Corena, “Bragg grating fabrication with wide range coarse and fine wavelength control,” Opt. Express 22(22), 27309–27320 (2014).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (1)

2013 (3)

2012 (3)

2010 (3)

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun. 283(20), 4041–4045 (2010).
[Crossref]

E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express 18(25), 26475–26483 (2010).
[Crossref] [PubMed]

J. I. Mackenzie, J. W. Kim, L. Pearson, W. O. S. Bailey, Y. Yang, and W. A. Clarkson, “Two-micron cryogenically-cooled solid-state lasers: recent progress and future prospects,” Proc. SPIE 7578, 75781F (2010).
[Crossref]

2009 (2)

I. Elder, “Thulium fibre laser pumped mid-IR source,” Proc. SPIE 7325, 73250I (2009).
[Crossref]

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[Crossref]

1999 (1)

1975 (1)

R. Beck and K. Gürs, “Ho laser with 50-W output and 6.5% slope efficiency,” J. Appl. Phys. 46(12), 5224–5225 (1975).
[Crossref]

1971 (1)

G. A. Slack and D. W. Oliver, “Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions,” Phys. Rev. B 4(2), 592–609 (1971).
[Crossref]

1967 (1)

P. H. Klein and W. J. Croft, “Thermal Conductivity, Diffusivity, and Expansion of Y2O3, Y3Al5O12, and LaF3 in the Range 77–300 K,” J. Appl. Phys. 38(4), 1603–1607 (1967).
[Crossref]

Arisholm, G.

Bailey, W. O. S.

J. I. Mackenzie, J. W. Kim, L. Pearson, W. O. S. Bailey, Y. Yang, and W. A. Clarkson, “Two-micron cryogenically-cooled solid-state lasers: recent progress and future prospects,” Proc. SPIE 7578, 75781F (2010).
[Crossref]

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[Crossref]

Beck, R.

R. Beck and K. Gürs, “Ho laser with 50-W output and 6.5% slope efficiency,” J. Appl. Phys. 46(12), 5224–5225 (1975).
[Crossref]

Bennetts, S.

A. Hemming, J. Richards, A. Davidson, N. Carmody, S. Bennetts, N. Simakov, and J. Haub, “99 W mid-IR operation of a ZGP OPO at 25% duty cycle,” Opt. Express 21(8), 10062–10069 (2013).
[Crossref] [PubMed]

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun. 283(20), 4041–4045 (2010).
[Crossref]

Brown, D. C.

Carmody, N.

Carter, A.

Clarkson, W. A.

J. I. Mackenzie, J. W. Kim, L. Pearson, W. O. S. Bailey, Y. Yang, and W. A. Clarkson, “Two-micron cryogenically-cooled solid-state lasers: recent progress and future prospects,” Proc. SPIE 7578, 75781F (2010).
[Crossref]

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[Crossref]

Corena, L.

Croft, W. J.

P. H. Klein and W. J. Croft, “Thermal Conductivity, Diffusivity, and Expansion of Y2O3, Y3Al5O12, and LaF3 in the Range 77–300 K,” J. Appl. Phys. 38(4), 1603–1607 (1967).
[Crossref]

Daneu, J. L.

Daniel, J. M. O.

Davidson, A.

Davies, P.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun. 283(20), 4041–4045 (2010).
[Crossref]

Duan, X. M.

Dubinskii, M.

Elder, I.

I. Elder, “Thulium fibre laser pumped mid-IR source,” Proc. SPIE 7325, 73250I (2009).
[Crossref]

Envid, V.

Fan, T. Y.

Farley, K.

Fleischman, Z.

Fonnum, H.

Ganija, M.

Gürs, K.

R. Beck and K. Gürs, “Ho laser with 50-W output and 6.5% slope efficiency,” J. Appl. Phys. 46(12), 5224–5225 (1975).
[Crossref]

Haakestad, M. W.

Haub, J.

Hemming, A.

Hemming, A. V.

Hughes, M.

Ju, Y. L.

Kim, J. W.

J. I. Mackenzie, J. W. Kim, L. Pearson, W. O. S. Bailey, Y. Yang, and W. A. Clarkson, “Two-micron cryogenically-cooled solid-state lasers: recent progress and future prospects,” Proc. SPIE 7578, 75781F (2010).
[Crossref]

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[Crossref]

Klein, P. H.

P. H. Klein and W. J. Croft, “Thermal Conductivity, Diffusivity, and Expansion of Y2O3, Y3Al5O12, and LaF3 in the Range 77–300 K,” J. Appl. Phys. 38(4), 1603–1607 (1967).
[Crossref]

Lancaster, D.

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun. 283(20), 4041–4045 (2010).
[Crossref]

Lippert, E.

Mackenzie, J. I.

J. I. Mackenzie, J. W. Kim, L. Pearson, W. O. S. Bailey, Y. Yang, and W. A. Clarkson, “Two-micron cryogenically-cooled solid-state lasers: recent progress and future prospects,” Proc. SPIE 7578, 75781F (2010).
[Crossref]

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[Crossref]

Munch, J.

Newburgh, G. A.

Oliver, D. W.

G. A. Slack and D. W. Oliver, “Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions,” Phys. Rev. B 4(2), 592–609 (1971).
[Crossref]

Ottaway, D.

Pearson, L.

J. I. Mackenzie, J. W. Kim, L. Pearson, W. O. S. Bailey, Y. Yang, and W. A. Clarkson, “Two-micron cryogenically-cooled solid-state lasers: recent progress and future prospects,” Proc. SPIE 7578, 75781F (2010).
[Crossref]

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[Crossref]

Richards, J.

A. Hemming, J. Richards, A. Davidson, N. Carmody, S. Bennetts, N. Simakov, and J. Haub, “99 W mid-IR operation of a ZGP OPO at 25% duty cycle,” Opt. Express 21(8), 10062–10069 (2013).
[Crossref] [PubMed]

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun. 283(20), 4041–4045 (2010).
[Crossref]

Shen, D. Y.

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[Crossref]

Shen, Y. J.

Simakov, N.

Slack, G. A.

G. A. Slack and D. W. Oliver, “Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions,” Phys. Rev. B 4(2), 592–609 (1971).
[Crossref]

Stenersen, K.

Stepanov, D.

Stepanov, D. Y.

Veitch, P.

Wang, W.

Wang, Y. Z.

Wynne, R.

Yang, Y.

J. I. Mackenzie, J. W. Kim, L. Pearson, W. O. S. Bailey, Y. Yang, and W. A. Clarkson, “Two-micron cryogenically-cooled solid-state lasers: recent progress and future prospects,” Proc. SPIE 7578, 75781F (2010).
[Crossref]

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[Crossref]

Yao, B. Q.

Zembek, J.

Zhu, G. L.

Appl. Opt. (2)

J. Appl. Phys. (2)

P. H. Klein and W. J. Croft, “Thermal Conductivity, Diffusivity, and Expansion of Y2O3, Y3Al5O12, and LaF3 in the Range 77–300 K,” J. Appl. Phys. 38(4), 1603–1607 (1967).
[Crossref]

R. Beck and K. Gürs, “Ho laser with 50-W output and 6.5% slope efficiency,” J. Appl. Phys. 46(12), 5224–5225 (1975).
[Crossref]

Opt. Commun. (1)

A. Hemming, J. Richards, S. Bennetts, A. Davidson, N. Carmody, P. Davies, L. Corena, and D. Lancaster, “A high power hybrid mid-IR laser source,” Opt. Commun. 283(20), 4041–4045 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. B (1)

G. A. Slack and D. W. Oliver, “Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions,” Phys. Rev. B 4(2), 592–609 (1971).
[Crossref]

Proc. SPIE (3)

I. Elder, “Thulium fibre laser pumped mid-IR source,” Proc. SPIE 7325, 73250I (2009).
[Crossref]

J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009).
[Crossref]

J. I. Mackenzie, J. W. Kim, L. Pearson, W. O. S. Bailey, Y. Yang, and W. A. Clarkson, “Two-micron cryogenically-cooled solid-state lasers: recent progress and future prospects,” Proc. SPIE 7578, 75781F (2010).
[Crossref]

Other (4)

S. Bennetts, A. Hemming, A. Davidson, and D. G. Lancaster, “110 W 790 nm pumped 1908 nm thulium fibre laser,” in Joint conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology. OECC/ACOFT 2008. (2008), pp. 1–2.

M. Ganija, N. Simakov, A. Hemming, J. Haub, P. J. Veitch, and J. Munch, “High Resolution Spectroscopy For Cryogenic Ho:YAG Laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STu4M.3.
[Crossref]

D. J. Creeden, B. R. Johnson, and S. D. Setzler, “High Efficiency 1908 nm Tm-doped Fiber Laser Oscillator,” in Specialty Optical Fibers (Optical Society of America, 2012), p. SW2F.4.

N. Simakov, A. Hemming, A. Carter, K. Farley, A. Davidson, N. Carmody, J. M. O. Daniel, M. Hughes, L. Corena, D. Stepanov, and J. Haub, “170 W Single-mode Large Pedestal Thulium-doped Fibre Laser,” in 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (Optical Society of America, Munich, 2015), p. CJ_13_2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Emission spectra of the 1907 nm thulium fibre pump laser, demonstrating narrow emission bandwidth (<0.1 nm) and wavelength stability (<0.07 nm) as a function of output power up to 110 W.
Fig. 2
Fig. 2 Interferograms of the full aperture of the Ho:YAG crystal at 77 K. Top row shows vertical, zero and horizontal carrier fringes at 0 W of pump power. The bottom row is similar, but with 80 W of pump power and no lasing. The exact origin of the bright red spot has not been determined. It occurs without the HeNe laser and is not related to the interferometry. It is presumed to be a non-linear emission at a wavelength shorter than the pump.
Fig. 3
Fig. 3 Schematic of the optical layout of the laser in the cryostat as described in the text, including the external pump laser optics and the diagnostics used. The green lines represent the pump beam path and the red lines the lasing beam path.
Fig. 4
Fig. 4 Output power of the Ho:YAG laser as a function of 1907 nm pump laser power for different output reflectivities and resonator configurations, resulting in slope efficiencies ranging from 60% to 74% as indicated. See text for further information. Inset: Slope efficiency vs. pump spot diameter for the 50% and 70% reflectivity mirrors.
Fig. 5
Fig. 5 The slope efficiency and output power of the laser configuration used for the measurements of beam quality in Fig. 5. The inset shows the spectrum of the laser emission at the maximum output power.
Fig. 6
Fig. 6 (a) Beam radius measurements through the focus of the laser beam at 65 W output and lines of best fit corresponding to an M2X, Y = 1.21, 1.28. (b) Near-field profile of the Ho:YAG output at 65 W. (c) Far-field profile of the Ho:YAG laser output at 65 W viewed with an imaging system with a magnification of 5.0X.

Metrics