Abstract

To suppress sensor noise with unknown statistical properties, a novel self-adaptive direct laser absorption spectroscopy (SA-DLAS) technique was proposed by incorporating a recursive, least square (RLS) self-adaptive denoising (SAD) algorithm and a 3291 nm interband cascade laser (ICL) for methane (CH4) detection. Background noise was suppressed by introducing an electrical-domain noise-channel and an expectation-known-based RLS SAD algorithm. Numerical simulations and measurements were carried out to validate the function of the SA-DLAS technique by imposing low-frequency, high-frequency, White-Gaussian and hybrid noise on the ICL scan signal. Sensor calibration, stability test and dynamic response measurement were performed for the SA-DLAS sensor using standard or diluted CH4 samples. With the intrinsic sensor noise considered only, an Allan deviation of ~43.9 ppbv with a ~6 s averaging time was obtained and it was further decreased to 6.3 ppbv with a ~240 s averaging time, through the use of self-adaptive filtering (SAF). The reported SA-DLAS technique shows enhanced sensitivity compared to a DLAS sensor using a traditional sensing architecture and filtering method. Indoor and outdoor atmospheric CH4 measurements were conducted to validate the normal operation of the reported SA-DLAS technique.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser

Weilin Ye, Chunguang Li, Chuantao Zheng, Nancy P. Sanchez, Aleksander K. Gluszek, Arkadiusz J. Hudzikowski, Lei Dong, Robert J. Griffin, and Frank K. Tittel
Opt. Express 24(15) 16973-16985 (2016)

Dual-feedback mid-infrared cavity-enhanced absorption spectroscopy for H2CO detection using a radio-frequency electrically-modulated interband cascade laser

Qixin He, Chuantao Zheng, Minhan Lou, Weilin Ye, Yiding Wang, and Frank K. Tittel
Opt. Express 26(12) 15436-15444 (2018)

Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing

Lei Dong, Frank K. Tittel, Chunguang Li, Nancy P. Sanchez, Hongpeng Wu, Chuantao Zheng, Yajun Yu, Angelo Sampaolo, and Robert J. Griffin
Opt. Express 24(6) A528-A535 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
    [Crossref]
  2. B. Heiko, G. F. France, G. T. Charles, R. S. Clare, J. E. Tim, M. Ian, S. Anatoly, N. Sten, S. Anatoly, O. Alexander, and S. Christiane, “Impact of the Arctic Oscillation pattern on inter-annual forest fire variability in Central Siberia,” Geophys. Res. Lett. 32, L14709 (2005).
  3. N. Lang, U. Macherius, M. Wiese, H. Zimmermann, J. Röpcke, and J. H. van Helden, “Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy,” Opt. Express 24(6), A536–A543 (2016).
    [Crossref] [PubMed]
  4. W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
    [Crossref] [PubMed]
  5. E. S. F. Berman, M. Fladeland, J. Liem, R. Kolyer, and M. Gupta, “Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle,” Sens. Actuators B Chem. 169(4), 128–135 (2012).
    [Crossref]
  6. A. Groth, C. Maurer, M. Reiser, and M. Kranert, “Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry,” Bioresour. Technol. 178, 359–361 (2015).
    [Crossref] [PubMed]
  7. C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
    [Crossref]
  8. R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4, and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
    [Crossref]
  9. J. Jiang, G. M. Ma, H. T. Song, C. R. Li, Y. T. Luo, and H. B. Wang, “Highly sensitive detection of methane based on tunable diode laser absorption spectrum,” in Instrumentation & Measurement Technology Conference (2016), pp. 1–5.
  10. G. J. Zhang and X. L. Wu, “A novel CO2 gas analyzer based on IR absorption,” Opt. Lasers Eng. 42(2), 219–231 (2004).
    [Crossref]
  11. C. T. Zheng, W. L. Ye, G. L. Li, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Performance enhancement of a mid-infrared CH4, detection sensor by optimizing an asymmetric ellipsoid gas-cell and reducing voltage-fluctuation: Theory, design and experiment,” Sens. Actuators B Chem. 160(1), 389–398 (2011).
    [Crossref]
  12. W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm,” Sens. Actuators B Chem. 221, 1062–1068 (2015).
    [Crossref]
  13. M. A. Bolshov, Y. A. Kuritsyn, and Y. V. Romanovskii, “Tunable diode laser spectroscopy as a technique for combustion diagnostics,” Spectrochim. Acta B At. Spectrosc. 106, 45–66 (2015).
    [Crossref]
  14. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54(2), 197–236 (1998).
    [Crossref]
  15. S. Schilt, L. Thévenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42(33), 6728–6738 (2003).
    [Crossref] [PubMed]
  16. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31(6), 707–717 (1992).
    [Crossref] [PubMed]
  17. L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
    [Crossref]
  18. L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23(15), 19821–19830 (2015).
    [Crossref] [PubMed]
  19. Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. E. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121–2132 (2015).
    [Crossref] [PubMed]
  20. J. Li, U. Parchatka, and H. Fischer, “Development of field-deployable QCL sensor for simultaneous detection of ambient N2O and CO,” Sens. Actuators B Chem. 182, 659–667 (2013).
    [Crossref]
  21. K. M. Manfred, G. A. D. Ritchie, N. Lang, J. Röpcke, and J. H. van Helden, “Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 m interband cascade laser,” Appl. Phys. Lett. 106(22), 221106 (2015).
    [Crossref]
  22. J. H. Northern, S. O’Hagan, B. Fletcher, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Mid-infrared multi-mode absorption spectroscopy using interband cascade lasers for multi-species sensing,” Opt. Lett. 40(17), 4186–4189 (2015).
    [Crossref] [PubMed]
  23. C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem. 232, 188–194 (2016).
    [Crossref]
  24. W. L. Ye, C. T. Zheng, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Design and performances of a mid-infrared CH4, detection device with novel three-channel-based LS-FTF self-adaptive denoising structure,” Sens. Actuators B Chem. 155(1), 37–45 (2011).
    [Crossref]
  25. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
    [Crossref]
  26. S. Haykin, Adaptive Filter Theory, 3rd ed. (Prentice Hall Inc., 1995).
  27. K. S. Bharath, A. Ara, N. Ramani, K. Bindu, and R. Hegde, “Adaptive Noise Cancellation Filter Using LMS Algorithm on an FPGA for Military Applications,” Int. J. Knowl. Eng. 3, 207–211 (2012).
  28. E. Szopos and H. Hedesiu, “LabVIEW FPGA Based Noise Cancelling Using the LMS Adaptive Algorithm,” Acta Tech. Napoc. Electron. Telecommun. 50(4), 5–8 (2009).
  29. D. T. M. Slock and T. Kailath, “A fast RLS transversal filter for adaptive linear phase filtering,” Int. J. Adapt. Control Signal Process. 2(3), 157–179 (1988).
    [Crossref]
  30. D. K. K. Saini, “Review of methods of adaptive noise cancellation using LMS and NLMS algorithms,” Int. J. Sci. Res. Publ. 2(6), 99–100 (2012).
  31. I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: Attributing atmospheric concentrations to emissions,” Environ. Pollut. 190(190C), 65–74 (2014).
    [Crossref] [PubMed]

2017 (1)

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

2016 (4)

N. Lang, U. Macherius, M. Wiese, H. Zimmermann, J. Röpcke, and J. H. van Helden, “Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy,” Opt. Express 24(6), A536–A543 (2016).
[Crossref] [PubMed]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem. 232, 188–194 (2016).
[Crossref]

2015 (8)

K. M. Manfred, G. A. D. Ritchie, N. Lang, J. Röpcke, and J. H. van Helden, “Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 m interband cascade laser,” Appl. Phys. Lett. 106(22), 221106 (2015).
[Crossref]

J. H. Northern, S. O’Hagan, B. Fletcher, B. Gras, P. Ewart, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Mid-infrared multi-mode absorption spectroscopy using interband cascade lasers for multi-species sensing,” Opt. Lett. 40(17), 4186–4189 (2015).
[Crossref] [PubMed]

L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23(15), 19821–19830 (2015).
[Crossref] [PubMed]

Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. E. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121–2132 (2015).
[Crossref] [PubMed]

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm,” Sens. Actuators B Chem. 221, 1062–1068 (2015).
[Crossref]

M. A. Bolshov, Y. A. Kuritsyn, and Y. V. Romanovskii, “Tunable diode laser spectroscopy as a technique for combustion diagnostics,” Spectrochim. Acta B At. Spectrosc. 106, 45–66 (2015).
[Crossref]

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4, and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
[Crossref]

A. Groth, C. Maurer, M. Reiser, and M. Kranert, “Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry,” Bioresour. Technol. 178, 359–361 (2015).
[Crossref] [PubMed]

2014 (1)

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: Attributing atmospheric concentrations to emissions,” Environ. Pollut. 190(190C), 65–74 (2014).
[Crossref] [PubMed]

2013 (1)

J. Li, U. Parchatka, and H. Fischer, “Development of field-deployable QCL sensor for simultaneous detection of ambient N2O and CO,” Sens. Actuators B Chem. 182, 659–667 (2013).
[Crossref]

2012 (3)

E. S. F. Berman, M. Fladeland, J. Liem, R. Kolyer, and M. Gupta, “Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle,” Sens. Actuators B Chem. 169(4), 128–135 (2012).
[Crossref]

D. K. K. Saini, “Review of methods of adaptive noise cancellation using LMS and NLMS algorithms,” Int. J. Sci. Res. Publ. 2(6), 99–100 (2012).

K. S. Bharath, A. Ara, N. Ramani, K. Bindu, and R. Hegde, “Adaptive Noise Cancellation Filter Using LMS Algorithm on an FPGA for Military Applications,” Int. J. Knowl. Eng. 3, 207–211 (2012).

2011 (2)

W. L. Ye, C. T. Zheng, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Design and performances of a mid-infrared CH4, detection device with novel three-channel-based LS-FTF self-adaptive denoising structure,” Sens. Actuators B Chem. 155(1), 37–45 (2011).
[Crossref]

C. T. Zheng, W. L. Ye, G. L. Li, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Performance enhancement of a mid-infrared CH4, detection sensor by optimizing an asymmetric ellipsoid gas-cell and reducing voltage-fluctuation: Theory, design and experiment,” Sens. Actuators B Chem. 160(1), 389–398 (2011).
[Crossref]

2009 (1)

E. Szopos and H. Hedesiu, “LabVIEW FPGA Based Noise Cancelling Using the LMS Adaptive Algorithm,” Acta Tech. Napoc. Electron. Telecommun. 50(4), 5–8 (2009).

2006 (1)

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

2005 (1)

B. Heiko, G. F. France, G. T. Charles, R. S. Clare, J. E. Tim, M. Ian, S. Anatoly, N. Sten, S. Anatoly, O. Alexander, and S. Christiane, “Impact of the Arctic Oscillation pattern on inter-annual forest fire variability in Central Siberia,” Geophys. Res. Lett. 32, L14709 (2005).

2004 (1)

G. J. Zhang and X. L. Wu, “A novel CO2 gas analyzer based on IR absorption,” Opt. Lasers Eng. 42(2), 219–231 (2004).
[Crossref]

2003 (1)

1998 (1)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54(2), 197–236 (1998).
[Crossref]

1992 (1)

1988 (1)

D. T. M. Slock and T. Kailath, “A fast RLS transversal filter for adaptive linear phase filtering,” Int. J. Adapt. Control Signal Process. 2(3), 157–179 (1988).
[Crossref]

1965 (1)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
[Crossref]

Abell, J.

Alexander, O.

B. Heiko, G. F. France, G. T. Charles, R. S. Clare, J. E. Tim, M. Ian, S. Anatoly, N. Sten, S. Anatoly, O. Alexander, and S. Christiane, “Impact of the Arctic Oscillation pattern on inter-annual forest fire variability in Central Siberia,” Geophys. Res. Lett. 32, L14709 (2005).

Anatoly, S.

B. Heiko, G. F. France, G. T. Charles, R. S. Clare, J. E. Tim, M. Ian, S. Anatoly, N. Sten, S. Anatoly, O. Alexander, and S. Christiane, “Impact of the Arctic Oscillation pattern on inter-annual forest fire variability in Central Siberia,” Geophys. Res. Lett. 32, L14709 (2005).

B. Heiko, G. F. France, G. T. Charles, R. S. Clare, J. E. Tim, M. Ian, S. Anatoly, N. Sten, S. Anatoly, O. Alexander, and S. Christiane, “Impact of the Arctic Oscillation pattern on inter-annual forest fire variability in Central Siberia,” Geophys. Res. Lett. 32, L14709 (2005).

Ara, A.

K. S. Bharath, A. Ara, N. Ramani, K. Bindu, and R. Hegde, “Adaptive Noise Cancellation Filter Using LMS Algorithm on an FPGA for Military Applications,” Int. J. Knowl. Eng. 3, 207–211 (2012).

Arndt, R.

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
[Crossref]

Bamberger, I.

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: Attributing atmospheric concentrations to emissions,” Environ. Pollut. 190(190C), 65–74 (2014).
[Crossref] [PubMed]

Berman, E. S. F.

E. S. F. Berman, M. Fladeland, J. Liem, R. Kolyer, and M. Gupta, “Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle,” Sens. Actuators B Chem. 169(4), 128–135 (2012).
[Crossref]

Bewley, W. W.

Bharath, K. S.

K. S. Bharath, A. Ara, N. Ramani, K. Bindu, and R. Hegde, “Adaptive Noise Cancellation Filter Using LMS Algorithm on an FPGA for Military Applications,” Int. J. Knowl. Eng. 3, 207–211 (2012).

Bindu, K.

K. S. Bharath, A. Ara, N. Ramani, K. Bindu, and R. Hegde, “Adaptive Noise Cancellation Filter Using LMS Algorithm on an FPGA for Military Applications,” Int. J. Knowl. Eng. 3, 207–211 (2012).

Blake, D. R.

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

Bolshov, M. A.

M. A. Bolshov, Y. A. Kuritsyn, and Y. V. Romanovskii, “Tunable diode laser spectroscopy as a technique for combustion diagnostics,” Spectrochim. Acta B At. Spectrosc. 106, 45–66 (2015).
[Crossref]

Buchmann, N.

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: Attributing atmospheric concentrations to emissions,” Environ. Pollut. 190(190C), 65–74 (2014).
[Crossref] [PubMed]

Canedy, C. L.

Cao, Y.

Charles, G. T.

B. Heiko, G. F. France, G. T. Charles, R. S. Clare, J. E. Tim, M. Ian, S. Anatoly, N. Sten, S. Anatoly, O. Alexander, and S. Christiane, “Impact of the Arctic Oscillation pattern on inter-annual forest fire variability in Central Siberia,” Geophys. Res. Lett. 32, L14709 (2005).

Christiane, S.

B. Heiko, G. F. France, G. T. Charles, R. S. Clare, J. E. Tim, M. Ian, S. Anatoly, N. Sten, S. Anatoly, O. Alexander, and S. Christiane, “Impact of the Arctic Oscillation pattern on inter-annual forest fire variability in Central Siberia,” Geophys. Res. Lett. 32, L14709 (2005).

Clare, R. S.

B. Heiko, G. F. France, G. T. Charles, R. S. Clare, J. E. Tim, M. Ian, S. Anatoly, N. Sten, S. Anatoly, O. Alexander, and S. Christiane, “Impact of the Arctic Oscillation pattern on inter-annual forest fire variability in Central Siberia,” Geophys. Res. Lett. 32, L14709 (2005).

Dong, L.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem. 232, 188–194 (2016).
[Crossref]

L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23(15), 19821–19830 (2015).
[Crossref] [PubMed]

Eugster, W.

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: Attributing atmospheric concentrations to emissions,” Environ. Pollut. 190(190C), 65–74 (2014).
[Crossref] [PubMed]

Ewart, P.

Fischer, H.

J. Li, U. Parchatka, and H. Fischer, “Development of field-deployable QCL sensor for simultaneous detection of ambient N2O and CO,” Sens. Actuators B Chem. 182, 659–667 (2013).
[Crossref]

Fladeland, M.

E. S. F. Berman, M. Fladeland, J. Liem, R. Kolyer, and M. Gupta, “Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle,” Sens. Actuators B Chem. 169(4), 128–135 (2012).
[Crossref]

Fletcher, B.

France, G. F.

B. Heiko, G. F. France, G. T. Charles, R. S. Clare, J. E. Tim, M. Ian, S. Anatoly, N. Sten, S. Anatoly, O. Alexander, and S. Christiane, “Impact of the Arctic Oscillation pattern on inter-annual forest fire variability in Central Siberia,” Geophys. Res. Lett. 32, L14709 (2005).

Gluszek, A. K.

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

Gras, B.

Griffin, R. J.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. E. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121–2132 (2015).
[Crossref] [PubMed]

Groth, A.

A. Groth, C. Maurer, M. Reiser, and M. Kranert, “Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry,” Bioresour. Technol. 178, 359–361 (2015).
[Crossref] [PubMed]

Gupta, M.

E. S. F. Berman, M. Fladeland, J. Liem, R. Kolyer, and M. Gupta, “Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle,” Sens. Actuators B Chem. 169(4), 128–135 (2012).
[Crossref]

Hanson, R. K.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4, and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
[Crossref]

Hedesiu, H.

E. Szopos and H. Hedesiu, “LabVIEW FPGA Based Noise Cancelling Using the LMS Adaptive Algorithm,” Acta Tech. Napoc. Electron. Telecommun. 50(4), 5–8 (2009).

Hegde, R.

K. S. Bharath, A. Ara, N. Ramani, K. Bindu, and R. Hegde, “Adaptive Noise Cancellation Filter Using LMS Algorithm on an FPGA for Military Applications,” Int. J. Knowl. Eng. 3, 207–211 (2012).

Heiko, B.

B. Heiko, G. F. France, G. T. Charles, R. S. Clare, J. E. Tim, M. Ian, S. Anatoly, N. Sten, S. Anatoly, O. Alexander, and S. Christiane, “Impact of the Arctic Oscillation pattern on inter-annual forest fire variability in Central Siberia,” Geophys. Res. Lett. 32, L14709 (2005).

Hudzikowski, A. J.

Hughes, L. C.

Ian, M.

B. Heiko, G. F. France, G. T. Charles, R. S. Clare, J. E. Tim, M. Ian, S. Anatoly, N. Sten, S. Anatoly, O. Alexander, and S. Christiane, “Impact of the Arctic Oscillation pattern on inter-annual forest fire variability in Central Siberia,” Geophys. Res. Lett. 32, L14709 (2005).

Jeffries, J. B.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4, and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
[Crossref]

Jiang, W.

Kailath, T.

D. T. M. Slock and T. Kailath, “A fast RLS transversal filter for adaptive linear phase filtering,” Int. J. Adapt. Control Signal Process. 2(3), 157–179 (1988).
[Crossref]

Kim, C. S.

Kim, M.

Kolyer, R.

E. S. F. Berman, M. Fladeland, J. Liem, R. Kolyer, and M. Gupta, “Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle,” Sens. Actuators B Chem. 169(4), 128–135 (2012).
[Crossref]

Kranert, M.

A. Groth, C. Maurer, M. Reiser, and M. Kranert, “Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry,” Bioresour. Technol. 178, 359–361 (2015).
[Crossref] [PubMed]

Kuritsyn, Y. A.

M. A. Bolshov, Y. A. Kuritsyn, and Y. V. Romanovskii, “Tunable diode laser spectroscopy as a technique for combustion diagnostics,” Spectrochim. Acta B At. Spectrosc. 106, 45–66 (2015).
[Crossref]

Lang, N.

N. Lang, U. Macherius, M. Wiese, H. Zimmermann, J. Röpcke, and J. H. van Helden, “Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy,” Opt. Express 24(6), A536–A543 (2016).
[Crossref] [PubMed]

K. M. Manfred, G. A. D. Ritchie, N. Lang, J. Röpcke, and J. H. van Helden, “Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 m interband cascade laser,” Appl. Phys. Lett. 106(22), 221106 (2015).
[Crossref]

Li, C.

Li, C. G.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem. 232, 188–194 (2016).
[Crossref]

Li, G. L.

C. T. Zheng, W. L. Ye, G. L. Li, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Performance enhancement of a mid-infrared CH4, detection sensor by optimizing an asymmetric ellipsoid gas-cell and reducing voltage-fluctuation: Theory, design and experiment,” Sens. Actuators B Chem. 160(1), 389–398 (2011).
[Crossref]

Li, J.

J. Li, U. Parchatka, and H. Fischer, “Development of field-deployable QCL sensor for simultaneous detection of ambient N2O and CO,” Sens. Actuators B Chem. 182, 659–667 (2013).
[Crossref]

Liem, J.

E. S. F. Berman, M. Fladeland, J. Liem, R. Kolyer, and M. Gupta, “Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle,” Sens. Actuators B Chem. 169(4), 128–135 (2012).
[Crossref]

Luo, L.

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm,” Sens. Actuators B Chem. 221, 1062–1068 (2015).
[Crossref]

Macherius, U.

Manfred, K. M.

K. M. Manfred, G. A. D. Ritchie, N. Lang, J. Röpcke, and J. H. van Helden, “Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 m interband cascade laser,” Appl. Phys. Lett. 106(22), 221106 (2015).
[Crossref]

Maurer, C.

A. Groth, C. Maurer, M. Reiser, and M. Kranert, “Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry,” Bioresour. Technol. 178, 359–361 (2015).
[Crossref] [PubMed]

Meinardi, S.

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

Merritt, C. D.

Meyer, J. R.

Northern, J. H.

O’Hagan, S.

Parchatka, U.

J. Li, U. Parchatka, and H. Fischer, “Development of field-deployable QCL sensor for simultaneous detection of ambient N2O and CO,” Sens. Actuators B Chem. 182, 659–667 (2013).
[Crossref]

Ramani, N.

K. S. Bharath, A. Ara, N. Ramani, K. Bindu, and R. Hegde, “Adaptive Noise Cancellation Filter Using LMS Algorithm on an FPGA for Military Applications,” Int. J. Knowl. Eng. 3, 207–211 (2012).

Reiser, M.

A. Groth, C. Maurer, M. Reiser, and M. Kranert, “Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry,” Bioresour. Technol. 178, 359–361 (2015).
[Crossref] [PubMed]

Ren, W.

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm,” Sens. Actuators B Chem. 221, 1062–1068 (2015).
[Crossref]

Ritchie, G. A. D.

K. M. Manfred, G. A. D. Ritchie, N. Lang, J. Röpcke, and J. H. van Helden, “Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 m interband cascade laser,” Appl. Phys. Lett. 106(22), 221106 (2015).
[Crossref]

Robert, P.

Romanovskii, Y. V.

M. A. Bolshov, Y. A. Kuritsyn, and Y. V. Romanovskii, “Tunable diode laser spectroscopy as a technique for combustion diagnostics,” Spectrochim. Acta B At. Spectrosc. 106, 45–66 (2015).
[Crossref]

Röpcke, J.

N. Lang, U. Macherius, M. Wiese, H. Zimmermann, J. Röpcke, and J. H. van Helden, “Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy,” Opt. Express 24(6), A536–A543 (2016).
[Crossref] [PubMed]

K. M. Manfred, G. A. D. Ritchie, N. Lang, J. Röpcke, and J. H. van Helden, “Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 m interband cascade laser,” Appl. Phys. Lett. 106(22), 221106 (2015).
[Crossref]

Rowland, F. S.

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

Saini, D. K. K.

D. K. K. Saini, “Review of methods of adaptive noise cancellation using LMS and NLMS algorithms,” Int. J. Sci. Res. Publ. 2(6), 99–100 (2012).

Sanchez, N. P.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. E. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121–2132 (2015).
[Crossref] [PubMed]

Schilt, S.

Silver, J. A.

Simpson, I. J.

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

Slock, D. T. M.

D. T. M. Slock and T. Kailath, “A fast RLS transversal filter for adaptive linear phase filtering,” Int. J. Adapt. Control Signal Process. 2(3), 157–179 (1988).
[Crossref]

So, S.

Socha, J. G.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4, and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
[Crossref]

Song, Z. W.

C. T. Zheng, W. L. Ye, G. L. Li, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Performance enhancement of a mid-infrared CH4, detection sensor by optimizing an asymmetric ellipsoid gas-cell and reducing voltage-fluctuation: Theory, design and experiment,” Sens. Actuators B Chem. 160(1), 389–398 (2011).
[Crossref]

W. L. Ye, C. T. Zheng, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Design and performances of a mid-infrared CH4, detection device with novel three-channel-based LS-FTF self-adaptive denoising structure,” Sens. Actuators B Chem. 155(1), 37–45 (2011).
[Crossref]

Sten, N.

B. Heiko, G. F. France, G. T. Charles, R. S. Clare, J. E. Tim, M. Ian, S. Anatoly, N. Sten, S. Anatoly, O. Alexander, and S. Christiane, “Impact of the Arctic Oscillation pattern on inter-annual forest fire variability in Central Siberia,” Geophys. Res. Lett. 32, L14709 (2005).

Stieger, J.

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: Attributing atmospheric concentrations to emissions,” Environ. Pollut. 190(190C), 65–74 (2014).
[Crossref] [PubMed]

Sun, K.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4, and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
[Crossref]

Sur, R.

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4, and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
[Crossref]

Szopos, E.

E. Szopos and H. Hedesiu, “LabVIEW FPGA Based Noise Cancelling Using the LMS Adaptive Algorithm,” Acta Tech. Napoc. Electron. Telecommun. 50(4), 5–8 (2009).

Thévenaz, L.

Tim, J. E.

B. Heiko, G. F. France, G. T. Charles, R. S. Clare, J. E. Tim, M. Ian, S. Anatoly, N. Sten, S. Anatoly, O. Alexander, and S. Christiane, “Impact of the Arctic Oscillation pattern on inter-annual forest fire variability in Central Siberia,” Geophys. Res. Lett. 32, L14709 (2005).

Tittel, F. K.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

W. Ye, C. Li, C. Zheng, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, L. Dong, R. J. Griffin, and F. K. Tittel, “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser,” Opt. Express 24(15), 16973–16985 (2016).
[Crossref] [PubMed]

C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem. 232, 188–194 (2016).
[Crossref]

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23(15), 19821–19830 (2015).
[Crossref] [PubMed]

Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. E. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121–2132 (2015).
[Crossref] [PubMed]

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm,” Sens. Actuators B Chem. 221, 1062–1068 (2015).
[Crossref]

van Helden, J. H.

N. Lang, U. Macherius, M. Wiese, H. Zimmermann, J. Röpcke, and J. H. van Helden, “Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy,” Opt. Express 24(6), A536–A543 (2016).
[Crossref] [PubMed]

K. M. Manfred, G. A. D. Ritchie, N. Lang, J. Röpcke, and J. H. van Helden, “Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 m interband cascade laser,” Appl. Phys. Lett. 106(22), 221106 (2015).
[Crossref]

Vurgaftman, I.

Wang, Y. D.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

C. T. Zheng, W. L. Ye, G. L. Li, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Performance enhancement of a mid-infrared CH4, detection sensor by optimizing an asymmetric ellipsoid gas-cell and reducing voltage-fluctuation: Theory, design and experiment,” Sens. Actuators B Chem. 160(1), 389–398 (2011).
[Crossref]

W. L. Ye, C. T. Zheng, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Design and performances of a mid-infrared CH4, detection device with novel three-channel-based LS-FTF self-adaptive denoising structure,” Sens. Actuators B Chem. 155(1), 37–45 (2011).
[Crossref]

Werle, P.

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54(2), 197–236 (1998).
[Crossref]

Wiese, M.

Wu, X. L.

G. J. Zhang and X. L. Wu, “A novel CO2 gas analyzer based on IR absorption,” Opt. Lasers Eng. 42(2), 219–231 (2004).
[Crossref]

Xie, F.

Ye, W.

Ye, W. L.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

C. T. Zheng, W. L. Ye, G. L. Li, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Performance enhancement of a mid-infrared CH4, detection sensor by optimizing an asymmetric ellipsoid gas-cell and reducing voltage-fluctuation: Theory, design and experiment,” Sens. Actuators B Chem. 160(1), 389–398 (2011).
[Crossref]

W. L. Ye, C. T. Zheng, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Design and performances of a mid-infrared CH4, detection device with novel three-channel-based LS-FTF self-adaptive denoising structure,” Sens. Actuators B Chem. 155(1), 37–45 (2011).
[Crossref]

Yu, X.

W. L. Ye, C. T. Zheng, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Design and performances of a mid-infrared CH4, detection device with novel three-channel-based LS-FTF self-adaptive denoising structure,” Sens. Actuators B Chem. 155(1), 37–45 (2011).
[Crossref]

C. T. Zheng, W. L. Ye, G. L. Li, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Performance enhancement of a mid-infrared CH4, detection sensor by optimizing an asymmetric ellipsoid gas-cell and reducing voltage-fluctuation: Theory, design and experiment,” Sens. Actuators B Chem. 160(1), 389–398 (2011).
[Crossref]

Yu, Y.

Zah, C. E.

Zhang, G. J.

G. J. Zhang and X. L. Wu, “A novel CO2 gas analyzer based on IR absorption,” Opt. Lasers Eng. 42(2), 219–231 (2004).
[Crossref]

Zhao, C. X.

C. T. Zheng, W. L. Ye, G. L. Li, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Performance enhancement of a mid-infrared CH4, detection sensor by optimizing an asymmetric ellipsoid gas-cell and reducing voltage-fluctuation: Theory, design and experiment,” Sens. Actuators B Chem. 160(1), 389–398 (2011).
[Crossref]

W. L. Ye, C. T. Zheng, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Design and performances of a mid-infrared CH4, detection device with novel three-channel-based LS-FTF self-adaptive denoising structure,” Sens. Actuators B Chem. 155(1), 37–45 (2011).
[Crossref]

Zheng, C.

Zheng, C. T.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem. 232, 188–194 (2016).
[Crossref]

W. L. Ye, C. T. Zheng, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Design and performances of a mid-infrared CH4, detection device with novel three-channel-based LS-FTF self-adaptive denoising structure,” Sens. Actuators B Chem. 155(1), 37–45 (2011).
[Crossref]

C. T. Zheng, W. L. Ye, G. L. Li, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Performance enhancement of a mid-infrared CH4, detection sensor by optimizing an asymmetric ellipsoid gas-cell and reducing voltage-fluctuation: Theory, design and experiment,” Sens. Actuators B Chem. 160(1), 389–398 (2011).
[Crossref]

Zimmermann, H.

Acta Tech. Napoc. Electron. Telecommun. (1)

E. Szopos and H. Hedesiu, “LabVIEW FPGA Based Noise Cancelling Using the LMS Adaptive Algorithm,” Acta Tech. Napoc. Electron. Telecommun. 50(4), 5–8 (2009).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

L. Dong, C. G. Li, N. P. Sanchez, A. K. Gluszek, R. J. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

K. M. Manfred, G. A. D. Ritchie, N. Lang, J. Röpcke, and J. H. van Helden, “Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 m interband cascade laser,” Appl. Phys. Lett. 106(22), 221106 (2015).
[Crossref]

Bioresour. Technol. (1)

A. Groth, C. Maurer, M. Reiser, and M. Kranert, “Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry,” Bioresour. Technol. 178, 359–361 (2015).
[Crossref] [PubMed]

Environ. Pollut. (1)

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: Attributing atmospheric concentrations to emissions,” Environ. Pollut. 190(190C), 65–74 (2014).
[Crossref] [PubMed]

Fuel (1)

R. Sur, K. Sun, J. B. Jeffries, J. G. Socha, and R. K. Hanson, “Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4, and H2O in a high-pressure engineering-scale transport-reactor coal gasifier,” Fuel 150, 102–111 (2015).
[Crossref]

Geophys. Res. Lett. (2)

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

B. Heiko, G. F. France, G. T. Charles, R. S. Clare, J. E. Tim, M. Ian, S. Anatoly, N. Sten, S. Anatoly, O. Alexander, and S. Christiane, “Impact of the Arctic Oscillation pattern on inter-annual forest fire variability in Central Siberia,” Geophys. Res. Lett. 32, L14709 (2005).

Int. J. Adapt. Control Signal Process. (1)

D. T. M. Slock and T. Kailath, “A fast RLS transversal filter for adaptive linear phase filtering,” Int. J. Adapt. Control Signal Process. 2(3), 157–179 (1988).
[Crossref]

Int. J. Knowl. Eng. (1)

K. S. Bharath, A. Ara, N. Ramani, K. Bindu, and R. Hegde, “Adaptive Noise Cancellation Filter Using LMS Algorithm on an FPGA for Military Applications,” Int. J. Knowl. Eng. 3, 207–211 (2012).

Int. J. Sci. Res. Publ. (1)

D. K. K. Saini, “Review of methods of adaptive noise cancellation using LMS and NLMS algorithms,” Int. J. Sci. Res. Publ. 2(6), 99–100 (2012).

J. Appl. Phys. (1)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (1)

G. J. Zhang and X. L. Wu, “A novel CO2 gas analyzer based on IR absorption,” Opt. Lasers Eng. 42(2), 219–231 (2004).
[Crossref]

Opt. Lett. (1)

Sens. Actuators B Chem. (7)

C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem. 232, 188–194 (2016).
[Crossref]

W. L. Ye, C. T. Zheng, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Design and performances of a mid-infrared CH4, detection device with novel three-channel-based LS-FTF self-adaptive denoising structure,” Sens. Actuators B Chem. 155(1), 37–45 (2011).
[Crossref]

C. T. Zheng, W. L. Ye, G. L. Li, X. Yu, C. X. Zhao, Z. W. Song, and Y. D. Wang, “Performance enhancement of a mid-infrared CH4, detection sensor by optimizing an asymmetric ellipsoid gas-cell and reducing voltage-fluctuation: Theory, design and experiment,” Sens. Actuators B Chem. 160(1), 389–398 (2011).
[Crossref]

W. Ren, L. Luo, and F. K. Tittel, “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm,” Sens. Actuators B Chem. 221, 1062–1068 (2015).
[Crossref]

J. Li, U. Parchatka, and H. Fischer, “Development of field-deployable QCL sensor for simultaneous detection of ambient N2O and CO,” Sens. Actuators B Chem. 182, 659–667 (2013).
[Crossref]

E. S. F. Berman, M. Fladeland, J. Liem, R. Kolyer, and M. Gupta, “Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle,” Sens. Actuators B Chem. 169(4), 128–135 (2012).
[Crossref]

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, R. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

Spectrochim. Acta A (1)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54(2), 197–236 (1998).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (1)

M. A. Bolshov, Y. A. Kuritsyn, and Y. V. Romanovskii, “Tunable diode laser spectroscopy as a technique for combustion diagnostics,” Spectrochim. Acta B At. Spectrosc. 106, 45–66 (2015).
[Crossref]

Other (2)

J. Jiang, G. M. Ma, H. T. Song, C. R. Li, Y. T. Luo, and H. B. Wang, “Highly sensitive detection of methane based on tunable diode laser absorption spectrum,” in Instrumentation & Measurement Technology Conference (2016), pp. 1–5.

S. Haykin, Adaptive Filter Theory, 3rd ed. (Prentice Hall Inc., 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic of the SA-DLAS CH4 sensor system based on a single CW, TEC ICL. The red line is related to laser current feedback signal (noise channel); The blue line is related to the signal output from the MCT detector (signal channel); The green line is related to the laser drive signal; The pink line represents the signal from the temperature controller. (b) Photograph of the SA-DLAS CH4 sensor system.
Fig. 2
Fig. 2 HITRAN based absorption spectra of CH4 (2 ppmv) and H2O (2%) in a narrow spectral range from 3036 cm−1 to 3042 cm−1 at a pressure of 1 atm and an absorption length of 16 m. CH4 and H2O lines are shown in black and red, respectively.
Fig. 3
Fig. 3 (a) The measured output power for the 3.291 µm CW TEC ICL at different drive current at 15 °C. (b) The measured ICL emission spectrum for the 3.291µm CW TEC ICL under an operating temperature of 15°C. (c) Curves of emission wavenumber versus ICL temperature and drive current.
Fig. 4
Fig. 4 RLS-based SAD principle used in the SA-DLAS CH4 sensor, where u(n) is the output from the detector, n2(n) is the noise extracted from the feedback of the laser drive signal.
Fig. 5
Fig. 5 Denoising simulation on (a) the polluted absorption signal u(t) = d(t) + n1(t) by a low-frequency noise signal, where n1(t) = n2(t) = 0.05cos(60πt) V, (b) the denoised output from the RLS self-adaptive filter; Denoising simulation on (c) the polluted absorption signal u(t) = d(t) + n1(t) by a high-frequency noise signal, where n1(t) = n2(t) = 0.05cos(120000πt) V, (d) the denoised output from the RLS self-adaptive filter; Denoising simulation on (e) the polluted absorption signal u(t) = d(t) + n1(t) by a White-Gaussian noise with a standard deviation of 0.05 V, and (f) the denoised output from the RLS self-adaptive filter. The sub-graphs are the corresponding normalized absorbance curves for the three cases, respectively.
Fig. 6
Fig. 6 Function diagram of the LabVIEW-based laptop platform, which performs four functions including SG, SA, SAF and CE.
Fig. 7
Fig. 7 Measured MCT output signals when (a) a 30 Hz low-frequency noise with an equivalent noise level of 25 mV, (b) a 60 kHz high-frequency noise with an equivalent noise level of 37.5 mV, (c) a White-Gaussian noise with an equivalent noise level (standard deviation) of 37.5 mV, and (d) a composite noise was imposed on the laser scan signal; (e)-(h) are the calculated normalized absorbance curves using NF and using SAF under the four noise cases shown in (a), (b), (c) and (d), respectively.
Fig. 8
Fig. 8 (a) Measured amplitude of uabsorbance(t) versus calibration time t for eight CH4 concentration levels of 0, 0.5, 1, 2, 5, 10, 20, 50 ppmv. The inset in Fig. 8(a) shows the fluctuation of the measured CH4 results at 1 ppmv and 2 ppmv concentration levels; (b) Experimental data dots and fitting curve of CH4 concentration versus the amplitude of uabsorbance(t).
Fig. 9
Fig. 9 (a) Allan-Werle deviation plot using NF as a function of averaging time, τ, based on the data shown in the upper figure; (b) Allan-Werle deviation plot using SAF as a function of averaging time, τ, based on the data shown in the upper figures.
Fig. 10
Fig. 10 (a) Schematic of a vacuum ‘Y’ connector with two entrance ports and one exit port. (b) Response time measurement results by varying CH4 concentration between 0 and 2 ppmv.
Fig. 11
Fig. 11 (a) Measured concentration of CH4 in ambient air during ~36 hours period on June 21-23, 2017 inside the Infrared Opto-Electron Application Laboratory (located in the D part, Tang Aoqing building, Jilin University). (b) Measurement results of CH4 monitoring in the atmosphere for ~36 hours time duration on the Jilin University campus. The red curve is the measured concentration with SAF and the blue curve is the measured concentration using NF.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

e ( n ) = r ( n ) y 1 ( n ) = r ( n ) W H ( n 1 ) s ( n )
ξ ( n ) = i = 1 n λ n i | e ( i ) | 2
Φ ( n ) W ( n ) = φ ( n )
Φ ( n ) = i = 1 n λ n i s ( i ) s H ( i )
φ ( n ) = i = 1 n λ n i s ( i ) r * ( i )
Φ 1 ( n ) = λ 1 Φ 1 ( n 1 ) λ 2 Φ 1 ( n 1 ) s ( n ) s H ( n ) Φ 1 ( n 1 ) 1 + λ 1 s H ( n ) Φ 1 ( n 1 ) s ( n )
W ( n ) = Φ 1 ( n ) φ ( n )
P ( n ) = Φ 1 ( n )
k ( n ) = λ 1 P ( n 1 ) s ( n ) 1 + λ 1 s H ( n ) P ( n 1 ) s ( n )
W ( n ) = Φ 1 ( n ) φ ( n ) = W ( n 1 ) + k ( n ) = W ( n 1 ) + k ( n ) e ( n ) [ r ( n ) s H ( n ) W ( n 1 ) ] = W ( n 1 ) + k ( n ) e ( n )
f u n c t i o n [ e , y 2 ] = R L S _ a l g o r i t h m ( M , λ , u , n 2 )
C = 61 .0 9118 × Amp ( u absorbance ( t ) ) 0. 19545

Metrics