Abstract

We examine the impact of fiber bends on ultrashort pulse propagation in a 169-core multicore fiber (MCF) by numerical simulations and experimental measurements. We show that an L-shaped bend (where only one end of the MCF is fixed) induces significant changes in group delays that are a function of core position but linear along the bending axis with a slope directly proportional to the bending angle. For U- and S-shaped bends (where both ends of the MCF are fixed) the induced refractive index and group delay changes are much smaller than the residual, intrinsic inter-core group delay differences of the unbent MCF. We further show that when used for point-scanning lensless endoscopy with ultrashort pulse excitation, bend-induced group delays in the MCF degrade the point-spread function due to spatiotemporal coupling. Our results show that bend-induced effects in MCFs can be parametrized with only two parameters: the angle of the bend axis and the amplitude of the bend. This remains valid for bend amplitudes up to at least 200 degrees.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy

Esben Ravn Andresen, Siddharth Sivankutty, Géraud Bouwmans, Laurent Gallais, Serge Monneret, and Hervé Rigneault
J. Opt. Soc. Am. B 32(6) 1221-1228 (2015)

Flexible lensless endoscope with a conformationally invariant multi-core fiber

Victor Tsvirkun, Siddharth Sivankutty, Karen Baudelle, Rémi Habert, Géraud Bouwmans, Olivier Vanvincq, Esben Ravn Andresen, and Hervé Rigneault
Optica 6(9) 1185-1189 (2019)

High power, ultrashort pulse control through a multi-core fiber for ablation

Donald B. Conkey, Eirini Kakkava, Thomas Lanvin, Damien Loterie, Nicolino Stasio, Edgar Morales-Delgado, Christophe Moser, and Demetri Psaltis
Opt. Express 25(10) 11491-11502 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36, 1707 (2011).
    [Crossref] [PubMed]
  2. E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21, 121506 (2016).
    [Crossref] [PubMed]
  3. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nature Commun. 3, 1027 (2012).
    [Crossref]
  4. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583 (2012).
    [Crossref] [PubMed]
  5. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett,  109, 203901 (2012).
    [Crossref] [PubMed]
  6. S. Sivankutty, E. R. Andresen, R. Cossart, G. Bouwmans, S. Monneret, and H. Rigneault, “Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24, 825 (2016).
    [Crossref] [PubMed]
  7. D. Loterie, D. Psaltis, and C. Moser, “Bend translation in multimode fiber imaging,” Opt. Express 25, 6263 (2017).
    [Crossref] [PubMed]
  8. A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21, 12881 (2013).
    [Crossref] [PubMed]
  9. S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21, 22504 (2013).
    [Crossref] [PubMed]
  10. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nature Photon. 9529 (2015).
    [Crossref]
  11. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 612328 (1988).
    [Crossref] [PubMed]
  12. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38, 609–611 (2013).
    [Crossref] [PubMed]
  13. N. Stasio, D. B. Conkey, C. Moser, and D. Psaltis, “Light control in a multicore fiber using the memory effect,” Opt. Express 23, 30532 (2015).
    [Crossref] [PubMed]
  14. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21, 20713–21 (2013).
    [Crossref] [PubMed]
  15. A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24, 16835 (2016).
    [Crossref] [PubMed]
  16. V. Tsvirkun, S. Sivankutty, G. Bouwmans, O. Katz, E. R. Andresen, and H. Rigneault, “Widefield lensless endoscopy with a multicore fiber,” Opt. Lett. 41, 4771 (2016).
    [Crossref] [PubMed]
  17. N. Stasio, C. Moser, and D. Psaltis, “Calibration-free imaging through a multicore fiber using speckle scanning microscopy,” Opt. Lett. 41, 3078–3081 (2016).
    [Crossref] [PubMed]
  18. S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. A. Neil, C. Paterson, P. M. W. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24, 21474 (2016).
    [Crossref] [PubMed]
  19. J. C. Roper, S. Yerolatsitis, T. A. Birks, B. J. Mangan, C. Dunsby, P. M. W. French, and J. C. Knight, “Minimizing Group Index Variations in a Multicore Endoscope Fiber,” IEEE Photon. Tech. Lett. 27, 2359–2362 (2015).
    [Crossref]
  20. E. R. Andresen, S. Sivankutty, G. Bouwmans, L. Gallais, S. Monneret, and H. Rigneault, “Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy,” Journal of the Optical Society of America B 32, 1221 (2015).
    [Crossref]
  21. Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
    [Crossref]
  22. S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” Opt. Lett. 41, 3531 (2016).
    [Crossref] [PubMed]
  23. S. Sivankutty, E. R. Andresen, G. Bouwmans, T. G. Brown, M. A. Alonso, and H. Rigneault, “Single-shot polarimetry imaging of multicore fiber,” Opt. Lett. 41, 2105 (2016).
    [Crossref] [PubMed]
  24. R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
    [Crossref]
  25. W. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightw. Tech. 23, 1308–1318 (2005).
    [Crossref]
  26. V. Pratt, in “Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques -SIGGRAPH ’87,” (ACM Press, 1987).
  27. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273 (1980).
    [Crossref] [PubMed]
  28. T. Tanab, F. Kannari, F. Korte, J. Koch, and B. Chichkov, “Influence of spatiotemporal coupling induced by an ultrashort laser pulse shaper on a focused beam profile,” Appl. Opt. 44, 1092–1098 (2005).
    [Crossref]
  29. M. Coughlan, M. Plewicki, and R. J. Levis, “Spatio-temporal and -spectral coupling of shaped laser pulses in a focusing geometry,” Opt. Express 18, 23973–23986 (2010).
    [Crossref] [PubMed]

2017 (1)

2016 (9)

S. Sivankutty, E. R. Andresen, R. Cossart, G. Bouwmans, S. Monneret, and H. Rigneault, “Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24, 825 (2016).
[Crossref] [PubMed]

S. Sivankutty, E. R. Andresen, G. Bouwmans, T. G. Brown, M. A. Alonso, and H. Rigneault, “Single-shot polarimetry imaging of multicore fiber,” Opt. Lett. 41, 2105 (2016).
[Crossref] [PubMed]

N. Stasio, C. Moser, and D. Psaltis, “Calibration-free imaging through a multicore fiber using speckle scanning microscopy,” Opt. Lett. 41, 3078–3081 (2016).
[Crossref] [PubMed]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24, 16835 (2016).
[Crossref] [PubMed]

S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” Opt. Lett. 41, 3531 (2016).
[Crossref] [PubMed]

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. A. Neil, C. Paterson, P. M. W. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24, 21474 (2016).
[Crossref] [PubMed]

V. Tsvirkun, S. Sivankutty, G. Bouwmans, O. Katz, E. R. Andresen, and H. Rigneault, “Widefield lensless endoscopy with a multicore fiber,” Opt. Lett. 41, 4771 (2016).
[Crossref] [PubMed]

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21, 121506 (2016).
[Crossref] [PubMed]

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

2015 (4)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nature Photon. 9529 (2015).
[Crossref]

J. C. Roper, S. Yerolatsitis, T. A. Birks, B. J. Mangan, C. Dunsby, P. M. W. French, and J. C. Knight, “Minimizing Group Index Variations in a Multicore Endoscope Fiber,” IEEE Photon. Tech. Lett. 27, 2359–2362 (2015).
[Crossref]

E. R. Andresen, S. Sivankutty, G. Bouwmans, L. Gallais, S. Monneret, and H. Rigneault, “Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy,” Journal of the Optical Society of America B 32, 1221 (2015).
[Crossref]

N. Stasio, D. B. Conkey, C. Moser, and D. Psaltis, “Light control in a multicore fiber using the memory effect,” Opt. Express 23, 30532 (2015).
[Crossref] [PubMed]

2013 (4)

2012 (3)

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nature Commun. 3, 1027 (2012).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett,  109, 203901 (2012).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2007 (1)

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

2005 (2)

W. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightw. Tech. 23, 1308–1318 (2005).
[Crossref]

T. Tanab, F. Kannari, F. Korte, J. Koch, and B. Chichkov, “Influence of spatiotemporal coupling induced by an ultrashort laser pulse shaper on a focused beam profile,” Appl. Opt. 44, 1092–1098 (2005).
[Crossref]

1988 (1)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 612328 (1988).
[Crossref] [PubMed]

1980 (1)

Alonso, M. A.

Andresen, E. R.

S. Sivankutty, E. R. Andresen, R. Cossart, G. Bouwmans, S. Monneret, and H. Rigneault, “Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24, 825 (2016).
[Crossref] [PubMed]

S. Sivankutty, E. R. Andresen, G. Bouwmans, T. G. Brown, M. A. Alonso, and H. Rigneault, “Single-shot polarimetry imaging of multicore fiber,” Opt. Lett. 41, 2105 (2016).
[Crossref] [PubMed]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24, 16835 (2016).
[Crossref] [PubMed]

S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” Opt. Lett. 41, 3531 (2016).
[Crossref] [PubMed]

V. Tsvirkun, S. Sivankutty, G. Bouwmans, O. Katz, E. R. Andresen, and H. Rigneault, “Widefield lensless endoscopy with a multicore fiber,” Opt. Lett. 41, 4771 (2016).
[Crossref] [PubMed]

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21, 121506 (2016).
[Crossref] [PubMed]

E. R. Andresen, S. Sivankutty, G. Bouwmans, L. Gallais, S. Monneret, and H. Rigneault, “Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy,” Journal of the Optical Society of America B 32, 1221 (2015).
[Crossref]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38, 609–611 (2013).
[Crossref] [PubMed]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21, 20713–21 (2013).
[Crossref] [PubMed]

Birks, T. A.

J. C. Roper, S. Yerolatsitis, T. A. Birks, B. J. Mangan, C. Dunsby, P. M. W. French, and J. C. Knight, “Minimizing Group Index Variations in a Multicore Endoscope Fiber,” IEEE Photon. Tech. Lett. 27, 2359–2362 (2015).
[Crossref]

Bouwmans, G.

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21, 121506 (2016).
[Crossref] [PubMed]

S. Sivankutty, E. R. Andresen, G. Bouwmans, T. G. Brown, M. A. Alonso, and H. Rigneault, “Single-shot polarimetry imaging of multicore fiber,” Opt. Lett. 41, 2105 (2016).
[Crossref] [PubMed]

S. Sivankutty, E. R. Andresen, R. Cossart, G. Bouwmans, S. Monneret, and H. Rigneault, “Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24, 825 (2016).
[Crossref] [PubMed]

V. Tsvirkun, S. Sivankutty, G. Bouwmans, O. Katz, E. R. Andresen, and H. Rigneault, “Widefield lensless endoscopy with a multicore fiber,” Opt. Lett. 41, 4771 (2016).
[Crossref] [PubMed]

S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” Opt. Lett. 41, 3531 (2016).
[Crossref] [PubMed]

E. R. Andresen, S. Sivankutty, G. Bouwmans, L. Gallais, S. Monneret, and H. Rigneault, “Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy,” Journal of the Optical Society of America B 32, 1221 (2015).
[Crossref]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38, 609–611 (2013).
[Crossref] [PubMed]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21, 20713–21 (2013).
[Crossref] [PubMed]

Brown, T. G.

Caravaca-Aguirre, A. M.

Cheben, P.

W. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightw. Tech. 23, 1308–1318 (2005).
[Crossref]

Chichkov, B.

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett,  109, 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett,  109, 203901 (2012).
[Crossref] [PubMed]

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nature Photon. 9529 (2015).
[Crossref]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nature Commun. 3, 1027 (2012).
[Crossref]

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

Conkey, D. B.

Cossart, R.

Coughlan, M.

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett,  109, 203901 (2012).
[Crossref] [PubMed]

Dholakia, K.

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nature Commun. 3, 1027 (2012).
[Crossref]

Dunsby, C.

Dunsby, C. W.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

Eickhoff, W.

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett,  109, 203901 (2012).
[Crossref] [PubMed]

Farahi, S.

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 612328 (1988).
[Crossref] [PubMed]

French, P. M. W.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. A. Neil, C. Paterson, P. M. W. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24, 21474 (2016).
[Crossref] [PubMed]

J. C. Roper, S. Yerolatsitis, T. A. Birks, B. J. Mangan, C. Dunsby, P. M. W. French, and J. C. Knight, “Minimizing Group Index Variations in a Multicore Endoscope Fiber,” IEEE Photon. Tech. Lett. 27, 2359–2362 (2015).
[Crossref]

A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36, 1707 (2011).
[Crossref] [PubMed]

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 612328 (1988).
[Crossref] [PubMed]

Gallais, L.

E. R. Andresen, S. Sivankutty, G. Bouwmans, L. Gallais, S. Monneret, and H. Rigneault, “Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy,” Journal of the Optical Society of America B 32, 1221 (2015).
[Crossref]

Gigan, S.

Janz, S.

W. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightw. Tech. 23, 1308–1318 (2005).
[Crossref]

Kannari, F.

Katz, O.

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett,  109, 203901 (2012).
[Crossref] [PubMed]

Kim, Y.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. A. Neil, C. Paterson, P. M. W. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24, 21474 (2016).
[Crossref] [PubMed]

Knight, J. C.

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. A. Neil, C. Paterson, P. M. W. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24, 21474 (2016).
[Crossref] [PubMed]

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

J. C. Roper, S. Yerolatsitis, T. A. Birks, B. J. Mangan, C. Dunsby, P. M. W. French, and J. C. Knight, “Minimizing Group Index Variations in a Multicore Endoscope Fiber,” IEEE Photon. Tech. Lett. 27, 2359–2362 (2015).
[Crossref]

Koch, J.

Kogan, D.

Korte, F.

Lamontagne, B.

W. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightw. Tech. 23, 1308–1318 (2005).
[Crossref]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett,  109, 203901 (2012).
[Crossref] [PubMed]

Levis, R. J.

Loterie, D.

Mangan, B. J.

J. C. Roper, S. Yerolatsitis, T. A. Birks, B. J. Mangan, C. Dunsby, P. M. W. French, and J. C. Knight, “Minimizing Group Index Variations in a Multicore Endoscope Fiber,” IEEE Photon. Tech. Lett. 27, 2359–2362 (2015).
[Crossref]

Mitchell, C.

Monneret, S.

Moser, C.

Neil, M. A. A.

Niv, E.

Oron, D.

Papadopoulos, I. N.

Paterson, C.

Picard, M.-J.

W. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightw. Tech. 23, 1308–1318 (2005).
[Crossref]

Piestun, R.

Plewicki, M.

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nature Photon. 9529 (2015).
[Crossref]

Porat, A.

Pratt, V.

V. Pratt, in “Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques -SIGGRAPH ’87,” (ACM Press, 1987).

Psaltis, D.

Rashleigh, S. C.

Rigneault, H.

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21, 121506 (2016).
[Crossref] [PubMed]

S. Sivankutty, E. R. Andresen, R. Cossart, G. Bouwmans, S. Monneret, and H. Rigneault, “Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24, 825 (2016).
[Crossref] [PubMed]

S. Sivankutty, E. R. Andresen, G. Bouwmans, T. G. Brown, M. A. Alonso, and H. Rigneault, “Single-shot polarimetry imaging of multicore fiber,” Opt. Lett. 41, 2105 (2016).
[Crossref] [PubMed]

V. Tsvirkun, S. Sivankutty, G. Bouwmans, O. Katz, E. R. Andresen, and H. Rigneault, “Widefield lensless endoscopy with a multicore fiber,” Opt. Lett. 41, 4771 (2016).
[Crossref] [PubMed]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24, 16835 (2016).
[Crossref] [PubMed]

S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” Opt. Lett. 41, 3531 (2016).
[Crossref] [PubMed]

E. R. Andresen, S. Sivankutty, G. Bouwmans, L. Gallais, S. Monneret, and H. Rigneault, “Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy,” Journal of the Optical Society of America B 32, 1221 (2015).
[Crossref]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38, 609–611 (2013).
[Crossref] [PubMed]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21, 20713–21 (2013).
[Crossref] [PubMed]

Roper, J. C.

J. C. Roper, S. Yerolatsitis, T. A. Birks, B. J. Mangan, C. Dunsby, P. M. W. French, and J. C. Knight, “Minimizing Group Index Variations in a Multicore Endoscope Fiber,” IEEE Photon. Tech. Lett. 27, 2359–2362 (2015).
[Crossref]

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 612328 (1988).
[Crossref] [PubMed]

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

Sivankutty, S.

Stasio, N.

Stone, J. M.

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. A. Neil, C. Paterson, P. M. W. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24, 21474 (2016).
[Crossref] [PubMed]

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

Tanab, T.

Tarr, N.

W. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightw. Tech. 23, 1308–1318 (2005).
[Crossref]

Thompson, A. J.

Tsvirkun, V.

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nature Photon. 9529 (2015).
[Crossref]

Ulrich, R.

Warren, S. C.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. A. Neil, C. Paterson, P. M. W. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24, 21474 (2016).
[Crossref] [PubMed]

Xu, D.-X.

W. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightw. Tech. 23, 1308–1318 (2005).
[Crossref]

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett,  109, 203901 (2012).
[Crossref] [PubMed]

Ye, W.

W. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightw. Tech. 23, 1308–1318 (2005).
[Crossref]

Yerolatsitis, S.

J. C. Roper, S. Yerolatsitis, T. A. Birks, B. J. Mangan, C. Dunsby, P. M. W. French, and J. C. Knight, “Minimizing Group Index Variations in a Multicore Endoscope Fiber,” IEEE Photon. Tech. Lett. 27, 2359–2362 (2015).
[Crossref]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett,  109, 203901 (2012).
[Crossref] [PubMed]

Ziegler, D.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

R. T. Schermer and J. H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22, 1–8 (2016).
[Crossref]

IEEE Photon. Tech. Lett. (1)

J. C. Roper, S. Yerolatsitis, T. A. Birks, B. J. Mangan, C. Dunsby, P. M. W. French, and J. C. Knight, “Minimizing Group Index Variations in a Multicore Endoscope Fiber,” IEEE Photon. Tech. Lett. 27, 2359–2362 (2015).
[Crossref]

J. Biomed. Opt. (1)

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21, 121506 (2016).
[Crossref] [PubMed]

J. Lightw. Tech. (1)

W. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightw. Tech. 23, 1308–1318 (2005).
[Crossref]

Journal of the Optical Society of America B (1)

E. R. Andresen, S. Sivankutty, G. Bouwmans, L. Gallais, S. Monneret, and H. Rigneault, “Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy,” Journal of the Optical Society of America B 32, 1221 (2015).
[Crossref]

Nature Commun. (1)

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nature Commun. 3, 1027 (2012).
[Crossref]

Nature Photon. (1)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nature Photon. 9529 (2015).
[Crossref]

Opt. Express (10)

N. Stasio, D. B. Conkey, C. Moser, and D. Psaltis, “Light control in a multicore fiber using the memory effect,” Opt. Express 23, 30532 (2015).
[Crossref] [PubMed]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21, 20713–21 (2013).
[Crossref] [PubMed]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24, 16835 (2016).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583 (2012).
[Crossref] [PubMed]

S. Sivankutty, E. R. Andresen, R. Cossart, G. Bouwmans, S. Monneret, and H. Rigneault, “Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24, 825 (2016).
[Crossref] [PubMed]

D. Loterie, D. Psaltis, and C. Moser, “Bend translation in multimode fiber imaging,” Opt. Express 25, 6263 (2017).
[Crossref] [PubMed]

A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21, 12881 (2013).
[Crossref] [PubMed]

S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21, 22504 (2013).
[Crossref] [PubMed]

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. A. Neil, C. Paterson, P. M. W. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24, 21474 (2016).
[Crossref] [PubMed]

M. Coughlan, M. Plewicki, and R. J. Levis, “Spatio-temporal and -spectral coupling of shaped laser pulses in a focusing geometry,” Opt. Express 18, 23973–23986 (2010).
[Crossref] [PubMed]

Opt. Lett. (7)

Phys. Rev. Lett (1)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett,  109, 203901 (2012).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 612328 (1988).
[Crossref] [PubMed]

Other (1)

V. Pratt, in “Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques -SIGGRAPH ’87,” (ACM Press, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the setup used in bending experiments. SLM, spatial light modulator; L, lens; MO, microscope objective; MCF, multicore fiber; LP, linear polarizer; BS, beam splitter; CCD, charge coupled device; OSA, optical spectrum analyzer. The MCF (represented in blue gray) is clamped at both ends along approximately 1 cm long sections. Inset: SEM image of the MCF (cross-section) used in the experiments. Dashed white line delimits ∅ 200 µm circumference.
Fig. 2
Fig. 2 Simulations of bending-induced group delays in different bending configurations. MCF (in blue gray) is depicted in its initial state with fixed constraints and the points where force F is applied. For each of the three configurations the resulting deformed geometry (a–c) and the induced group delays Δ[Δτi](g–i) are plotted. Examples of 1D evolution of the optical path difference (OPD) with respect to the central core are traced along the light propagation direction (d–f).
Fig. 3
Fig. 3 Measurements of bending-induced inter-core group delays for different MCF bending configurations. For the measurement of the intrinsic group delay dispersion (GDD) (a–c) the MCF is held relatively straight; proximal (z = 0) and distal (z = 30 cm) end faces are parallel to each other. Intrinsic GDD (b) is color-coded so that each hexagon represents the relative delay Δτi between the central and an ith core according to the given color scale. Hexagons with centered gray dots represent the cores for which we could not perform reliable delay estimation (poor spectral fringe quality). Deformed MCF geometries in (d) L-, (g) U- and (j) S-bent configurations, plotted versus reference straight fiber (dashed gray). Black dots in (a,d,g,j) represent geometry points, extracted from the camera images of the MCF, taken from above the set-up. Bend-induced Δ[Δτi] (e,h,k) calculated as a difference between Δτi values from bent and reference geometries. (f,i,l) show the corresponding Δ[Δτi] spreads. Total delays spread (c) for the intrinsic GDD measurement is comparable to the probe laser pulse width (170 fs).
Fig. 4
Fig. 4 Measurements of bend-induced inter-core group delays for L-type bending geometries. Surface plots (a–c) show plane fits of the experimental data (black dots), obtained for the relative angle change of distal end face of Δα ≈ 65° (d), 125° (e) and 180° (f). (d–f) represent corresponding Δ[Δτi] spreads of the experimental data. (g) Deformed geometries, used in this series of experiments, plotted alongside with the reference (dashed gray) and Fig. 3(d) (light blue) measurements. (h) Extrema values of ∅ 200 µm plane fits (circles – data, blue lines – linear fits) for Δ[Δτi] measurements versus the bending angle Δα in L-type configuration. Violin plots (blue gray) represent normalized histograms for individual Δ[Δτi](Δα) datasets with the same binning as in (d)–(f). Red dashed line represents the analytical solution using Eq. 3 for the actual length of the MCF and two cores situated at x = ±100 µm as a function of Δα. Red crosses represent Δ[Δτi], calculated for the experimental deformed geometries in (g) using Eq. (2) for the varying R.
Fig. 5
Fig. 5 (a–e) Measurements of bending-induced PSF changes in MCF for L-type geometries (normalized intensities). Multipliers of measured maximal intensity are given with respect to bending-insensitive (d) case, PCW. (a–c) PSF in pulsed (τ = 170 fs) and (d) continuous wave (CW) regimes of probe laser operation for Δα = 0, 90 and 180° bends correspondingly. Dashed white line indicates the direction of applied force in the MCF reference frame. Scale bar, 2FWHM of PSF in CW regime. (e) Line profiles along x (red dots) and y (blue dots) axis for (c). FWHM values of the corresponding Gauss fits (solid lines) are indicated as γx,y. Far field E simulation using (f) experimental Δ[Δτi] values for (c) case and (g) with Δ[Δτi] = 0. Colormap hue and brightness represent phase and normalized amplitude of the complex field correspondingly.
Fig. 6
Fig. 6 Top view of a part of the experimental set-up showing the 180°-bent MCF.
Fig. 7
Fig. 7 Example of the circle fitting procedure for the estimation of bending-induced Δ[Δτi] using Eq. 2. Deformed geometry from Fig. 4(g) with Δα = 180° (red line) and the fitted circles (black) for all the curve segments except the straight lines (R → ∞).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n ( x , y ) = n ( x , y ) [ 1 n ( x , y ) 2 x 2 R [ p 12 ν ( p 11 + p 12 ) ] ] exp ( x R ) ,
Δ [ Δ τ i ] 0.79 n x c 1 R d s ,
Δ [ Δ τ i ] 0.79 n x c Δ α ,

Metrics