Abstract

We study theoretically the interplay between the surface confined wave modes and the linear and nonlinear gain of the dielectric layer in the Otto configuration. The surface confined wave modes, such as surface plasmons or waveguide modes, are excited in the dielectric-metal bilayer by obliquely incident p waves. In the purely linear case, we find that the interplay between linear gain and surface confined wave modes can generate a large reflectance peak with its value much greater than 1. As the linear gain parameter increases, the peak appears at smaller incident angles, and the associated modes also change from surface plasmons to waveguide modes. When the nonlinear gain is turned on, the reflectance shows very strong multistability near the incident angles associated with surface confined wave modes. As the nonlinear gain parameter is varied, the reflectance curve undergoes complicated topological changes and sometimes displays separated closed curves. When the nonlinear gain parameter takes an optimally small value, a giant amplification of the reflectance by three orders of magnitude occurs near the incident angle associated with a waveguide mode. We also find that there exists a range of the incident angle where the wave is dissipated rather than amplified even in the presence of gain. We suggest that this can provide the basis for a possible new technology for thermal control in the subwavelength scale.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Strong influence of nonlinearity and surface plasmon excitations on the lateral shift

Kihong Kim, D. K. Phung, F. Rotermund, and H. Lim
Opt. Express 16(20) 15506-15513 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B,  54(1–2), 3–15 (1999).
    [Crossref]
  2. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14(18), R597–R624 (2002).
  3. I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1977).
    [Crossref]
  4. B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [Crossref]
  5. T. Okamoto and I. Yamaguchi, “A surface plasmon microscope,” Proc. SPIE 1319, 472–473 (1990).
    [Crossref]
  6. P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modelling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators, B 22(3), 175–180 (1994).
    [Crossref]
  7. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6–7), 635–649 (1996).
    [Crossref]
  8. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref]
  9. M. I. Stockman, “Net optical gain in a plsmonic waveguide embedded in a fluorescent polymer,” Nat. Photon. 4(7), 457–461 (2010).
    [Crossref]
  10. M. I. Stockman, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4(6), 382–387 (2010).
    [Crossref]
  11. G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98(25), 251912 (2011).
    [Crossref]
  12. A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
    [Crossref] [PubMed]
  13. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [Crossref] [PubMed]
  14. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Spasers explained,” Nat. Photon. 2(6), 327–329 (2008).
    [Crossref]
  15. S. Campione, M. Albani, and F. Capolino, “Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: loss compensation using gain,” Opt. Mater. Express 1(6), 1077–1089 (2011).
    [Crossref]
  16. C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
    [Crossref] [PubMed]
  17. Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
    [Crossref] [PubMed]
  18. X. Bian, D. L. Gao, and L. Gao, “Tailoring optical pulling force on gain coated nanoparticles with nonlocal effective medium theory,” Opt. Express 25(20), 24566–24578 (2017).
    [Crossref] [PubMed]
  19. D. Gao, R. Shi, Y. Huang, and L. Gao, “Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles,” Phys. Rev. A 96(4), 043826 (2017).
    [Crossref]
  20. K. Kim, H. Lim, and D.-H. Lee, “Invariant imbedding equations for electromagnetic waves in stratified magnetic media: Applications to one-dimensional photonic crystals,” J. Korean Phys. Soc. 39(6), L956–L960 (2001).
  21. K. Kim, D.-H. Lee, and H. Lim, “Theory of the propagation of coupled waves in arbitrarily inhomogeneous stratified media,” Europhys. Lett. 69(2), 207–213 (2005).
    [Crossref]
  22. K. Kim, D. K. Phung, F. Rotermund, and H. Lim, “Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses,” Opt. Express 16(2), 1150–1164 (2008).
    [Crossref] [PubMed]
  23. D. K. Phung, F. Rotermund, K. Kim, and H. Lim, “Exact calculation of the optical properties of one-dimensional photonic crystals,” J. Korean Phys. Soc. 52(5), 1580–1584 (2008).
    [Crossref]
  24. Y. N. Ovchinnikov and I. M. Sigal, “Optical bistability,” J. Exp. Theor. Phys. 93(5), 1004–1016 (2001).
    [Crossref]
  25. J. R. Sambles and R. A. Innes, “A comment on nonlinear optics using surface plasmon-polaritons,” J. Mod. Opt. 35(5), 791–797 (1988).
    [Crossref]
  26. A. Marini, A. V. Gorbach, D. V. Skryabin, and A. V. Zayats, “Amplification of surface plasmon polaritons in the presence of nonlinearity and spectral signatures of threshold crossover,” Opt. Lett. 34(18), 2864–2866 (2009).
    [Crossref] [PubMed]
  27. H. Ikeda, M. Matsuyma, and A. Hasegawa, “Stabilization of dark-soliton transmission by means of nonlinear gain,” J. Opt. Soc. Am. B 14(1), 136–143 (1997).
    [Crossref]

2017 (2)

X. Bian, D. L. Gao, and L. Gao, “Tailoring optical pulling force on gain coated nanoparticles with nonlocal effective medium theory,” Opt. Express 25(20), 24566–24578 (2017).
[Crossref] [PubMed]

D. Gao, R. Shi, Y. Huang, and L. Gao, “Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles,” Phys. Rev. A 96(4), 043826 (2017).
[Crossref]

2015 (2)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

2012 (1)

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref] [PubMed]

2011 (3)

S. Campione, M. Albani, and F. Capolino, “Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: loss compensation using gain,” Opt. Mater. Express 1(6), 1077–1089 (2011).
[Crossref]

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98(25), 251912 (2011).
[Crossref]

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

2010 (2)

M. I. Stockman, “Net optical gain in a plsmonic waveguide embedded in a fluorescent polymer,” Nat. Photon. 4(7), 457–461 (2010).
[Crossref]

M. I. Stockman, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4(6), 382–387 (2010).
[Crossref]

2009 (1)

2008 (3)

K. Kim, D. K. Phung, F. Rotermund, and H. Lim, “Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses,” Opt. Express 16(2), 1150–1164 (2008).
[Crossref] [PubMed]

D. K. Phung, F. Rotermund, K. Kim, and H. Lim, “Exact calculation of the optical properties of one-dimensional photonic crystals,” J. Korean Phys. Soc. 52(5), 1580–1584 (2008).
[Crossref]

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Spasers explained,” Nat. Photon. 2(6), 327–329 (2008).
[Crossref]

2005 (1)

K. Kim, D.-H. Lee, and H. Lim, “Theory of the propagation of coupled waves in arbitrarily inhomogeneous stratified media,” Europhys. Lett. 69(2), 207–213 (2005).
[Crossref]

2003 (1)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

2002 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14(18), R597–R624 (2002).

2001 (2)

K. Kim, H. Lim, and D.-H. Lee, “Invariant imbedding equations for electromagnetic waves in stratified magnetic media: Applications to one-dimensional photonic crystals,” J. Korean Phys. Soc. 39(6), L956–L960 (2001).

Y. N. Ovchinnikov and I. M. Sigal, “Optical bistability,” J. Exp. Theor. Phys. 93(5), 1004–1016 (2001).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B,  54(1–2), 3–15 (1999).
[Crossref]

1997 (1)

1996 (1)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6–7), 635–649 (1996).
[Crossref]

1994 (1)

P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modelling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators, B 22(3), 175–180 (1994).
[Crossref]

1990 (1)

T. Okamoto and I. Yamaguchi, “A surface plasmon microscope,” Proc. SPIE 1319, 472–473 (1990).
[Crossref]

1988 (1)

J. R. Sambles and R. A. Innes, “A comment on nonlinear optics using surface plasmon-polaritons,” J. Mod. Opt. 35(5), 791–797 (1988).
[Crossref]

1983 (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

1977 (1)

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1977).
[Crossref]

Albani, M.

Alù, A.

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref] [PubMed]

Argyropoulos, C.

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref] [PubMed]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Bartolino, R.

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98(25), 251912 (2011).
[Crossref]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Bian, X.

Boulesbaa, A.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Briggs, D. P.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Campione, S.

Capolino, F.

Chen, P.-Y.

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref] [PubMed]

D’Aguanno, G.

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref] [PubMed]

Danz, N.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Spasers explained,” Nat. Photon. 2(6), 327–329 (2008).
[Crossref]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14(18), R597–R624 (2002).

De Luca, A.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14(18), R597–R624 (2002).

Ferrie, M.

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98(25), 251912 (2011).
[Crossref]

Finlan, M. F.

P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modelling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators, B 22(3), 175–180 (1994).
[Crossref]

Gao, D.

D. Gao, R. Shi, Y. Huang, and L. Gao, “Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles,” Phys. Rev. A 96(4), 043826 (2017).
[Crossref]

Gao, D. L.

Gao, L.

X. Bian, D. L. Gao, and L. Gao, “Tailoring optical pulling force on gain coated nanoparticles with nonlocal effective medium theory,” Opt. Express 25(20), 24566–24578 (2017).
[Crossref] [PubMed]

D. Gao, R. Shi, Y. Huang, and L. Gao, “Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles,” Phys. Rev. A 96(4), 043826 (2017).
[Crossref]

Gather, M. C.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Spasers explained,” Nat. Photon. 2(6), 327–329 (2008).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B,  54(1–2), 3–15 (1999).
[Crossref]

Geohegan, D.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Gorbach, A. V.

Gordon, J. G.

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1977).
[Crossref]

Grzelczak, M. P.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

Hasegawa, A.

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B,  54(1–2), 3–15 (1999).
[Crossref]

Huang, Y.

D. Gao, R. Shi, Y. Huang, and L. Gao, “Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles,” Phys. Rev. A 96(4), 043826 (2017).
[Crossref]

Ikeda, H.

Innes, R. A.

J. R. Sambles and R. A. Innes, “A comment on nonlinear optics using surface plasmon-polaritons,” J. Mod. Opt. 35(5), 791–797 (1988).
[Crossref]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14(18), R597–R624 (2002).

Kim, K.

D. K. Phung, F. Rotermund, K. Kim, and H. Lim, “Exact calculation of the optical properties of one-dimensional photonic crystals,” J. Korean Phys. Soc. 52(5), 1580–1584 (2008).
[Crossref]

K. Kim, D. K. Phung, F. Rotermund, and H. Lim, “Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses,” Opt. Express 16(2), 1150–1164 (2008).
[Crossref] [PubMed]

K. Kim, D.-H. Lee, and H. Lim, “Theory of the propagation of coupled waves in arbitrarily inhomogeneous stratified media,” Europhys. Lett. 69(2), 207–213 (2005).
[Crossref]

K. Kim, H. Lim, and D.-H. Lee, “Invariant imbedding equations for electromagnetic waves in stratified magnetic media: Applications to one-dimensional photonic crystals,” J. Korean Phys. Soc. 39(6), L956–L960 (2001).

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14(18), R597–R624 (2002).

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14(18), R597–R624 (2002).

Kravchenko, I. I.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

La Deda, M.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

Lee, D.-H.

K. Kim, D.-H. Lee, and H. Lim, “Theory of the propagation of coupled waves in arbitrarily inhomogeneous stratified media,” Europhys. Lett. 69(2), 207–213 (2005).
[Crossref]

K. Kim, H. Lim, and D.-H. Lee, “Invariant imbedding equations for electromagnetic waves in stratified magnetic media: Applications to one-dimensional photonic crystals,” J. Korean Phys. Soc. 39(6), L956–L960 (2001).

Leosson, K.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Spasers explained,” Nat. Photon. 2(6), 327–329 (2008).
[Crossref]

Leung, P. T.

P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modelling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators, B 22(3), 175–180 (1994).
[Crossref]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Lim, H.

K. Kim, D. K. Phung, F. Rotermund, and H. Lim, “Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses,” Opt. Express 16(2), 1150–1164 (2008).
[Crossref] [PubMed]

D. K. Phung, F. Rotermund, K. Kim, and H. Lim, “Exact calculation of the optical properties of one-dimensional photonic crystals,” J. Korean Phys. Soc. 52(5), 1580–1584 (2008).
[Crossref]

K. Kim, D.-H. Lee, and H. Lim, “Theory of the propagation of coupled waves in arbitrarily inhomogeneous stratified media,” Europhys. Lett. 69(2), 207–213 (2005).
[Crossref]

K. Kim, H. Lim, and D.-H. Lee, “Invariant imbedding equations for electromagnetic waves in stratified magnetic media: Applications to one-dimensional photonic crystals,” J. Korean Phys. Soc. 39(6), L956–L960 (2001).

Liz-Marzán, L. M.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

Luca, A. De

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98(25), 251912 (2011).
[Crossref]

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Malan, G. P.

P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modelling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators, B 22(3), 175–180 (1994).
[Crossref]

Marini, A.

Matsuyma, M.

Meerholz, K.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Spasers explained,” Nat. Photon. 2(6), 327–329 (2008).
[Crossref]

Monticone, F.

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref] [PubMed]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Okamoto, T.

T. Okamoto and I. Yamaguchi, “A surface plasmon microscope,” Proc. SPIE 1319, 472–473 (1990).
[Crossref]

Ovchinnikov, Y. N.

Y. N. Ovchinnikov and I. M. Sigal, “Optical bistability,” J. Exp. Theor. Phys. 93(5), 1004–1016 (2001).
[Crossref]

Pastoriza-Santos, I.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

Philpott, M. R.

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1977).
[Crossref]

Phung, D. K.

D. K. Phung, F. Rotermund, K. Kim, and H. Lim, “Exact calculation of the optical properties of one-dimensional photonic crystals,” J. Korean Phys. Soc. 52(5), 1580–1584 (2008).
[Crossref]

K. Kim, D. K. Phung, F. Rotermund, and H. Lim, “Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses,” Opt. Express 16(2), 1150–1164 (2008).
[Crossref] [PubMed]

Pockrand, I.

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1977).
[Crossref]

Pollard-Knight, D.

P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modelling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators, B 22(3), 175–180 (1994).
[Crossref]

Puretzky, A.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Ravaine, S.

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98(25), 251912 (2011).
[Crossref]

Rotermund, F.

K. Kim, D. K. Phung, F. Rotermund, and H. Lim, “Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses,” Opt. Express 16(2), 1150–1164 (2008).
[Crossref] [PubMed]

D. K. Phung, F. Rotermund, K. Kim, and H. Lim, “Exact calculation of the optical properties of one-dimensional photonic crystals,” J. Korean Phys. Soc. 52(5), 1580–1584 (2008).
[Crossref]

Sambles, J. R.

J. R. Sambles and R. A. Innes, “A comment on nonlinear optics using surface plasmon-polaritons,” J. Mod. Opt. 35(5), 791–797 (1988).
[Crossref]

Shi, R.

D. Gao, R. Shi, Y. Huang, and L. Gao, “Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles,” Phys. Rev. A 96(4), 043826 (2017).
[Crossref]

Sigal, I. M.

Y. N. Ovchinnikov and I. M. Sigal, “Optical bistability,” J. Exp. Theor. Phys. 93(5), 1004–1016 (2001).
[Crossref]

Skryabin, D. V.

Stockman, M. I.

M. I. Stockman, “Net optical gain in a plsmonic waveguide embedded in a fluorescent polymer,” Nat. Photon. 4(7), 457–461 (2010).
[Crossref]

M. I. Stockman, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4(6), 382–387 (2010).
[Crossref]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

Strangi, G.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98(25), 251912 (2011).
[Crossref]

Striccoli, M.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

Swalen, J. D.

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1977).
[Crossref]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Valentine, J.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Wang, W.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Yamaguchi, I.

T. Okamoto and I. Yamaguchi, “A surface plasmon microscope,” Proc. SPIE 1319, 472–473 (1990).
[Crossref]

Yang, Y.

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6–7), 635–649 (1996).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B,  54(1–2), 3–15 (1999).
[Crossref]

Zayats, A. V.

ACS Nano (1)

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano 5(7), 5823–5829 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett. 98(25), 251912 (2011).
[Crossref]

Biosens. Bioelectron. (1)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6–7), 635–649 (1996).
[Crossref]

Europhys. Lett. (1)

K. Kim, D.-H. Lee, and H. Lim, “Theory of the propagation of coupled waves in arbitrarily inhomogeneous stratified media,” Europhys. Lett. 69(2), 207–213 (2005).
[Crossref]

J. Exp. Theor. Phys. (1)

Y. N. Ovchinnikov and I. M. Sigal, “Optical bistability,” J. Exp. Theor. Phys. 93(5), 1004–1016 (2001).
[Crossref]

J. Korean Phys. Soc. (2)

D. K. Phung, F. Rotermund, K. Kim, and H. Lim, “Exact calculation of the optical properties of one-dimensional photonic crystals,” J. Korean Phys. Soc. 52(5), 1580–1584 (2008).
[Crossref]

K. Kim, H. Lim, and D.-H. Lee, “Invariant imbedding equations for electromagnetic waves in stratified magnetic media: Applications to one-dimensional photonic crystals,” J. Korean Phys. Soc. 39(6), L956–L960 (2001).

J. Mod. Opt. (1)

J. R. Sambles and R. A. Innes, “A comment on nonlinear optics using surface plasmon-polaritons,” J. Mod. Opt. 35(5), 791–797 (1988).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14(18), R597–R624 (2002).

Nano Lett. (1)

Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, “Nonlinear Fano-resonant dielectric metasurfaces,” Nano Lett. 15(11), 7388–7393 (2015).
[Crossref] [PubMed]

Nat. Photon. (3)

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Spasers explained,” Nat. Photon. 2(6), 327–329 (2008).
[Crossref]

M. I. Stockman, “Net optical gain in a plsmonic waveguide embedded in a fluorescent polymer,” Nat. Photon. 4(7), 457–461 (2010).
[Crossref]

M. I. Stockman, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4(6), 382–387 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. A (1)

D. Gao, R. Shi, Y. Huang, and L. Gao, “Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles,” Phys. Rev. A 96(4), 043826 (2017).
[Crossref]

Phys. Rev. Lett. (2)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[Crossref] [PubMed]

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

T. Okamoto and I. Yamaguchi, “A surface plasmon microscope,” Proc. SPIE 1319, 472–473 (1990).
[Crossref]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Sens. Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B,  54(1–2), 3–15 (1999).
[Crossref]

Sens. Actuators, B (1)

P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modelling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators, B 22(3), 175–180 (1994).
[Crossref]

Surf. Sci. (1)

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1977).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the Otto configuration.
Fig. 2
Fig. 2 Reflectance vs. incident angle for various values of the linear gain coefficient γ when α = β = 0. (a) γ = 0, − 0.001, − 0.01, − 0.1, (b) γ = −0.1, − 0.2, − 0.3, − 0.4.
Fig. 3
Fig. 3 (a) Reflectance vs. incident angle for various values of the nonlinear gain coefficient βw and (b) reflectance vs. nonlinear gain coefficient |β|w for the incident angle θ = 40°, when γ = 0 and α = 0.
Fig. 4
Fig. 4 (a) Reflectance R and (b) absorptance A plotted vs. incident angle for various values of the nonlinear gain coefficient βw, when γ = 0 and α = 0. Insets: the expanded view of some parts of each plot.
Fig. 5
Fig. 5 Normalized field profiles inside the metal/dielectric bilayer of thickness L (= 370 nm) at the points P, Q, R and S indicated in Fig. 4(a). (a) 1st solution (point P) and 3rd solution (point Q) at θ = 49.32°. Inset: the expanded view of the 1st solution. (b) 1st solution (point R) and 3rd solution (point S) at θ = 62.29°. The vertical dotted line indicates the position of the metal/dielectric boundary. The wave is incident from z > L onto the dielectric layer side.
Fig. 6
Fig. 6 Reflectance vs. incident angle for various values of the linear gain coefficient γ, when (a) αw = 0.0028 and βw = −0.0028, (b) αw = 0.0028 and βw = −0.0007. Inset: the expanded view of some part of (a).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d 2 H d z 2 1 ϵ ( z ) d ϵ d z d H d z + [ k 0 2 ϵ ( z ) q 2 ] H = 0 ,
ϵ ( z ) = { ϵ 1 if z > L ϵ L ( z ) + α ( z ) | E ( z ) | 2 if 0 z L ϵ 2 if z < 0 ,
H ( z ) = ν ϵ 1 [ e i p ( L z ) + i q x + r ( L ) e i p ( z L ) + i q x ] ,
1 p d r ( l ) d l = 2 i ϵ ( l ) ϵ 1 r ( l ) i 2 [ ϵ ( l ) ϵ 1 1 ] [ 1 ϵ 1 ϵ ( l ) tan 2 θ ] [ 1 + r ( l ) ] 2 , 1 p d t ( l ) d l = i ϵ ( l ) ϵ 1 t ( l ) i 2 [ ϵ ( l ) ϵ 1 1 ] [ 1 ϵ 1 ϵ ( l ) tan 2 θ ] [ 1 + r ( l ) ] t ( l ) , 1 p d w ( l ) d l = Im { 2 ϵ ( l ) ϵ 1 [ ϵ ( l ) ϵ 1 1 ] [ 1 ϵ 1 ϵ ( l ) tan 2 θ ] [ 1 + r ( l ) ] } w ( l ) .
ϵ ( l ) = ϵ L ( l ) + α ( l ) w ( l ) [ ϵ 1 2 | ϵ ( l ) | 2 | 1 + r ( l ) | 2 sin 2 θ + | 1 r ( l ) | 2 cos 2 θ ] .
r ( 0 ) = ϵ 2 ϵ 1 cos θ ϵ 1 ϵ 2 ϵ 1 sin 2 θ ϵ 2 ϵ 1 cos θ + ϵ 1 ϵ 2 ϵ 1 sin 2 θ , t ( 0 ) = 2 ϵ 2 ϵ 1 cos θ ϵ 2 ϵ 1 cos θ + ϵ 1 ϵ 2 ϵ 1 sin 2 θ , w ( 0 ) = w 0 .
T = ϵ 1 ϵ 2 ϵ 1 sin 2 θ ϵ 2 ϵ 1 cos θ | t ( L ) | 2 .
1 p u ( z , l ) l = i ϵ ( l ) ϵ 1 u ( z , l ) i 2 [ ϵ ( l ) ϵ 1 1 ] [ 1 ϵ 1 ϵ ( l ) tan 2 θ ] [ 1 + r ( l ) ] u ( z , l ) ,
ϵ = ϵ a + i γ + ( α + i β ) | E | 2 .
ϵ = ϵ L + α s | E | 2 1 + β s | E | 2 ,
ϵ ϵ L + α s | E | 2 α s β s | E | 4 .

Metrics