Abstract

Integrating narrow-bandwidth and wavelength tunability together is crucially important in upgrading the applications of optical parametric oscillators (OPO). Here, we have demonstrated a widely tunable, narrow-bandwidth and efficient mid-IR OPO pumped by a single-longitudinal-mode pulsed Yb-fiber laser. By restricting the bandwidth of the oscillated signal via self-seeding dual etalon-coupled cavities, the bandwidth of the idler can be suppressed to about 0.35 nm, with a wide tunable range of 2.85-3.05 μm, which can be achieved by synergistically adjusting the temperatures of PPMgLN crystal and one of the etalons. The maximum idler power at 3.031 μm is 2.67 W with an optical-to-optical conversion efficiency of 17.4%.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-power, narrow-bandwidth mid-infrared PPMgLN optical parametric oscillator with a volume Bragg grating

Yuefeng Peng, Xingbin Wei, Zan Nie, Xingwang Luo, Jue Peng, Yong Wang, and Deyuan Shen
Opt. Express 23(24) 30827-30832 (2015)

Periodically poled lithium niobate optical parametric amplifier seeded with the narrow-band filtered output of an optical parametric generator

P. E. Powers, K. W. Aniolek, T. J. Kulp, B. A. Richman, and S. E. Bisson
Opt. Lett. 23(24) 1886-1888 (1998)

Temperature insensitive, high-power cascaded optical parametric oscillator based on an aperiodically poled lithium niobate crystal

Tao Chen, Peipei Jiang, Bo Wu, Rong Shu, Chengzhi Hu, and Yonghang Shen
Opt. Express 22(22) 26900-26907 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy,” Appl. Opt. 50(4), A1–A10 (2011).
    [Crossref] [PubMed]
  2. Y. Duan, H. Zhu, C. Xu, X. Ruan, G. Cui, Y. Zhang, D. Tang, and D. Fan, “Compact self-cascaded KTA-OPO for 2.6 μm laser generation,” Opt. Express 24(23), 26529–26535 (2016).
    [Crossref] [PubMed]
  3. J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett. 33(15), 1699–1701 (2008).
    [Crossref] [PubMed]
  4. Y. Duan, H. Zhu, Y. Ye, D. Zhang, G. Zhang, and D. Tang, “Efficient RTP-based OPO intracavity pumped by an acousto-optic Q-switched Nd:YVO4 laser,” Opt. Lett. 39(5), 1314 (2014).
    [Crossref] [PubMed]
  5. I. Ricciardi, E. D. Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J. J. Zondy, and P. D. Natale, “A narrow-bandwidth, frequency-stabilized OPO for sub-Doppler molecular spectroscopy around 3 μm,” Proc. SPIE 8434, 84341Z (2012).
    [Crossref]
  6. Q. Sheng, X. Ding, C. Shang, B. Li, C. Fan, H. Zhang, X. Yu, W. Wen, Y. Ma, and J. Yao, “Continuous-wave intra-cavity singly resonant optical parametric oscillator with resonant wave output coupling,” Opt. Express 20(25), 27953–27958 (2012).
    [Crossref] [PubMed]
  7. D. Lin, S. U. Alam, Y. Shen, T. Chen, B. Wu, and D. J. Richardson, “Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 µm pumped by a nanosecond linearly polarized fiber MOPA,” Opt. Express 20(14), 15008–15014 (2012).
    [Crossref] [PubMed]
  8. A. Henderson and R. Stafford, “Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source,” Opt. Express 14(2), 767–772 (2006).
    [Crossref] [PubMed]
  9. Y. Yu, X. Chen, J. Zhao, C. Wang, C. Wu, and G. Jin, “High-repetition-rate tunable mid-infrared optical parametric oscillator based on MgO: periodically poled lithium niobate,” Opt. Express 53(6), 061604 (2014).
  10. T. Chen, P. Jiang, D. Yang, C. Hu, B. Wu, and Y. Shen, “High-power PPMgLN-based optical parametric oscillator pumped by a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber master oscillator power amplifier,” Appl. Opt. 52(25), 6316–6321 (2013).
    [Crossref] [PubMed]
  11. F. Ganikhanov, T. Caughey, and K. L. Vodopyanov, “Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator,” J. Opt. Soc. Am. B 18(6), 818–822 (2001).
    [Crossref]
  12. Y.-F. Peng, X.-B. Wei, G. Xie, J.-R. Gao, D.-M. Li, and W.-M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
    [Crossref]
  13. P. Schlup, I. T. McKinnie, and S. D. Butterworth, “Single-mode, singly resonant, pulsed periodically poled lithium niobate optical parametric oscillator,” Appl. Opt. 38(36), 7398–7401 (1999).
    [Crossref] [PubMed]
  14. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “52 mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO:LiNbO3 device,” Opt. Lett. 31(21), 3149–3151 (2006).
    [Crossref] [PubMed]
  15. B. Anderson, G. Venus, D. Ott, I. Divliansky, and L. Glebov, “Compact cavity design in solid state resonators by way of volume Bragg gratings,” Proc. SPIE 8959, H89591 (2014).
  16. T. McComb, V. Sudesh, and M. Richardson, “Volume Bragg grating stabilized spectrally narrow Tm fiber laser,” Opt. Lett. 33(8), 881–883 (2008).
    [Crossref] [PubMed]
  17. P. Zeil, N. Thilmann, V. Pasiskevicius, and F. Laurell, “High-power, single-frequency, continuous-wave optical parametric oscillator employing a variable reflectivity volume Bragg grating,” Opt. Express 22(24), 29907–29913 (2014).
    [Crossref] [PubMed]
  18. J. W. Kim, P. Jelger, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power and wavelength-tunable operation of an Er,Yb fiber laser using a volume Bragg grating,” Opt. Lett. 33(11), 1204–1206 (2008).
    [Crossref] [PubMed]
  19. A. J. Merriam and G.-Y. Yin, “Efficient self-seeding of a pulsed Ti3+:Al2O3 laser,” Opt. Lett. 23(13), 1034–1036 (1998).
    [Crossref] [PubMed]
  20. K. Tamura, “Self-seeding of a pulsed double-grating Ti:sapphire laser oscillator,” Appl. Opt. 47(10), 1517–1521 (2008).
    [Crossref] [PubMed]
  21. M. Rahm, G. Anstett, J. Bartschke, T. Bauer, R. Beigang, and R. Wallenstein, “Widely tunable narrow-linewidth nanosecond optical parametric generator with self-injection seeding,” Appl. Phys. B 79(5), 535–538 (2004).
    [Crossref]
  22. P.-S.-F. De Matos, N.-U. Wetter and G.-E.-C. Nogueira, “Single Frequency Oscilation in a Coupled Cavity ND: GYLF Laser by Interferometric Control of the Cavity’s Length,” Revista de Fısica Aplicada e Instrumentaçao, 16(1) (2003).

2016 (1)

2014 (4)

Y. Duan, H. Zhu, Y. Ye, D. Zhang, G. Zhang, and D. Tang, “Efficient RTP-based OPO intracavity pumped by an acousto-optic Q-switched Nd:YVO4 laser,” Opt. Lett. 39(5), 1314 (2014).
[Crossref] [PubMed]

P. Zeil, N. Thilmann, V. Pasiskevicius, and F. Laurell, “High-power, single-frequency, continuous-wave optical parametric oscillator employing a variable reflectivity volume Bragg grating,” Opt. Express 22(24), 29907–29913 (2014).
[Crossref] [PubMed]

Y. Yu, X. Chen, J. Zhao, C. Wang, C. Wu, and G. Jin, “High-repetition-rate tunable mid-infrared optical parametric oscillator based on MgO: periodically poled lithium niobate,” Opt. Express 53(6), 061604 (2014).

B. Anderson, G. Venus, D. Ott, I. Divliansky, and L. Glebov, “Compact cavity design in solid state resonators by way of volume Bragg gratings,” Proc. SPIE 8959, H89591 (2014).

2013 (2)

2012 (3)

2011 (1)

2008 (4)

2006 (2)

2004 (1)

M. Rahm, G. Anstett, J. Bartschke, T. Bauer, R. Beigang, and R. Wallenstein, “Widely tunable narrow-linewidth nanosecond optical parametric generator with self-injection seeding,” Appl. Phys. B 79(5), 535–538 (2004).
[Crossref]

2001 (1)

1999 (1)

1998 (1)

Alam, S. U.

Anderson, B.

B. Anderson, G. Venus, D. Ott, I. Divliansky, and L. Glebov, “Compact cavity design in solid state resonators by way of volume Bragg gratings,” Proc. SPIE 8959, H89591 (2014).

Anstett, G.

M. Rahm, G. Anstett, J. Bartschke, T. Bauer, R. Beigang, and R. Wallenstein, “Widely tunable narrow-linewidth nanosecond optical parametric generator with self-injection seeding,” Appl. Phys. B 79(5), 535–538 (2004).
[Crossref]

Bartschke, J.

M. Rahm, G. Anstett, J. Bartschke, T. Bauer, R. Beigang, and R. Wallenstein, “Widely tunable narrow-linewidth nanosecond optical parametric generator with self-injection seeding,” Appl. Phys. B 79(5), 535–538 (2004).
[Crossref]

Bauer, T.

M. Rahm, G. Anstett, J. Bartschke, T. Bauer, R. Beigang, and R. Wallenstein, “Widely tunable narrow-linewidth nanosecond optical parametric generator with self-injection seeding,” Appl. Phys. B 79(5), 535–538 (2004).
[Crossref]

Beigang, R.

M. Rahm, G. Anstett, J. Bartschke, T. Bauer, R. Beigang, and R. Wallenstein, “Widely tunable narrow-linewidth nanosecond optical parametric generator with self-injection seeding,” Appl. Phys. B 79(5), 535–538 (2004).
[Crossref]

Butterworth, S. D.

Caughey, T.

Chen, T.

Chen, X.

Y. Yu, X. Chen, J. Zhao, C. Wang, C. Wu, and G. Jin, “High-repetition-rate tunable mid-infrared optical parametric oscillator based on MgO: periodically poled lithium niobate,” Opt. Express 53(6), 061604 (2014).

Clarkson, W. A.

Cui, G.

Ding, X.

Divliansky, I.

B. Anderson, G. Venus, D. Ott, I. Divliansky, and L. Glebov, “Compact cavity design in solid state resonators by way of volume Bragg gratings,” Proc. SPIE 8959, H89591 (2014).

Duan, Y.

Fan, C.

Fan, D.

Fujii, M.

Ganikhanov, F.

Gao, J.-R.

Y.-F. Peng, X.-B. Wei, G. Xie, J.-R. Gao, D.-M. Li, and W.-M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Glebov, L.

B. Anderson, G. Venus, D. Ott, I. Divliansky, and L. Glebov, “Compact cavity design in solid state resonators by way of volume Bragg gratings,” Proc. SPIE 8959, H89591 (2014).

Halonen, L.

Henderson, A.

Hu, C.

Ishizuki, H.

Jelger, P.

Jiang, P.

Jin, G.

Y. Yu, X. Chen, J. Zhao, C. Wang, C. Wu, and G. Jin, “High-repetition-rate tunable mid-infrared optical parametric oscillator based on MgO: periodically poled lithium niobate,” Opt. Express 53(6), 061604 (2014).

Kim, J. W.

Laurell, F.

Li, B.

Li, D.-M.

Y.-F. Peng, X.-B. Wei, G. Xie, J.-R. Gao, D.-M. Li, and W.-M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Lin, D.

Ma, Y.

Maddaloni, P.

I. Ricciardi, E. D. Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J. J. Zondy, and P. D. Natale, “A narrow-bandwidth, frequency-stabilized OPO for sub-Doppler molecular spectroscopy around 3 μm,” Proc. SPIE 8434, 84341Z (2012).
[Crossref]

McComb, T.

McKinnie, I. T.

Merriam, A. J.

Miyazaki, M.

Mosca, S.

I. Ricciardi, E. D. Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J. J. Zondy, and P. D. Natale, “A narrow-bandwidth, frequency-stabilized OPO for sub-Doppler molecular spectroscopy around 3 μm,” Proc. SPIE 8434, 84341Z (2012).
[Crossref]

Natale, P. D.

I. Ricciardi, E. D. Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J. J. Zondy, and P. D. Natale, “A narrow-bandwidth, frequency-stabilized OPO for sub-Doppler molecular spectroscopy around 3 μm,” Proc. SPIE 8434, 84341Z (2012).
[Crossref]

Ott, D.

B. Anderson, G. Venus, D. Ott, I. Divliansky, and L. Glebov, “Compact cavity design in solid state resonators by way of volume Bragg gratings,” Proc. SPIE 8959, H89591 (2014).

Pasiskevicius, V.

Peltola, J.

Peng, Y.-F.

Y.-F. Peng, X.-B. Wei, G. Xie, J.-R. Gao, D.-M. Li, and W.-M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Rahm, M.

M. Rahm, G. Anstett, J. Bartschke, T. Bauer, R. Beigang, and R. Wallenstein, “Widely tunable narrow-linewidth nanosecond optical parametric generator with self-injection seeding,” Appl. Phys. B 79(5), 535–538 (2004).
[Crossref]

Ricciardi, I.

I. Ricciardi, E. D. Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J. J. Zondy, and P. D. Natale, “A narrow-bandwidth, frequency-stabilized OPO for sub-Doppler molecular spectroscopy around 3 μm,” Proc. SPIE 8434, 84341Z (2012).
[Crossref]

Richardson, D. J.

Richardson, M.

Rocco, A.

I. Ricciardi, E. D. Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J. J. Zondy, and P. D. Natale, “A narrow-bandwidth, frequency-stabilized OPO for sub-Doppler molecular spectroscopy around 3 μm,” Proc. SPIE 8434, 84341Z (2012).
[Crossref]

Ruan, X.

Sahu, J. K.

Saikawa, J.

Schlup, P.

Shang, C.

Shen, Y.

Sheng, Q.

Siltanen, M.

Stafford, R.

Sudesh, V.

Taira, T.

Tamura, K.

Tang, D.

Thilmann, N.

Tommasi, E. D.

I. Ricciardi, E. D. Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J. J. Zondy, and P. D. Natale, “A narrow-bandwidth, frequency-stabilized OPO for sub-Doppler molecular spectroscopy around 3 μm,” Proc. SPIE 8434, 84341Z (2012).
[Crossref]

Vainio, M.

Venus, G.

B. Anderson, G. Venus, D. Ott, I. Divliansky, and L. Glebov, “Compact cavity design in solid state resonators by way of volume Bragg gratings,” Proc. SPIE 8959, H89591 (2014).

Vodopyanov, K. L.

Wallenstein, R.

M. Rahm, G. Anstett, J. Bartschke, T. Bauer, R. Beigang, and R. Wallenstein, “Widely tunable narrow-linewidth nanosecond optical parametric generator with self-injection seeding,” Appl. Phys. B 79(5), 535–538 (2004).
[Crossref]

Wang, C.

Y. Yu, X. Chen, J. Zhao, C. Wang, C. Wu, and G. Jin, “High-repetition-rate tunable mid-infrared optical parametric oscillator based on MgO: periodically poled lithium niobate,” Opt. Express 53(6), 061604 (2014).

Wang, W.-M.

Y.-F. Peng, X.-B. Wei, G. Xie, J.-R. Gao, D.-M. Li, and W.-M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Wei, X.-B.

Y.-F. Peng, X.-B. Wei, G. Xie, J.-R. Gao, D.-M. Li, and W.-M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Wen, W.

Wu, B.

Wu, C.

Y. Yu, X. Chen, J. Zhao, C. Wang, C. Wu, and G. Jin, “High-repetition-rate tunable mid-infrared optical parametric oscillator based on MgO: periodically poled lithium niobate,” Opt. Express 53(6), 061604 (2014).

Xie, G.

Y.-F. Peng, X.-B. Wei, G. Xie, J.-R. Gao, D.-M. Li, and W.-M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Xu, C.

Yang, D.

Yao, J.

Ye, Y.

Yin, G.-Y.

Yu, X.

Yu, Y.

Y. Yu, X. Chen, J. Zhao, C. Wang, C. Wu, and G. Jin, “High-repetition-rate tunable mid-infrared optical parametric oscillator based on MgO: periodically poled lithium niobate,” Opt. Express 53(6), 061604 (2014).

Zeil, P.

Zhang, D.

Zhang, G.

Zhang, H.

Zhang, Y.

Zhao, J.

Y. Yu, X. Chen, J. Zhao, C. Wang, C. Wu, and G. Jin, “High-repetition-rate tunable mid-infrared optical parametric oscillator based on MgO: periodically poled lithium niobate,” Opt. Express 53(6), 061604 (2014).

Zhu, H.

Zondy, J. J.

I. Ricciardi, E. D. Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J. J. Zondy, and P. D. Natale, “A narrow-bandwidth, frequency-stabilized OPO for sub-Doppler molecular spectroscopy around 3 μm,” Proc. SPIE 8434, 84341Z (2012).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (1)

M. Rahm, G. Anstett, J. Bartschke, T. Bauer, R. Beigang, and R. Wallenstein, “Widely tunable narrow-linewidth nanosecond optical parametric generator with self-injection seeding,” Appl. Phys. B 79(5), 535–538 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

Y.-F. Peng, X.-B. Wei, G. Xie, J.-R. Gao, D.-M. Li, and W.-M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Proc. SPIE (2)

I. Ricciardi, E. D. Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J. J. Zondy, and P. D. Natale, “A narrow-bandwidth, frequency-stabilized OPO for sub-Doppler molecular spectroscopy around 3 μm,” Proc. SPIE 8434, 84341Z (2012).
[Crossref]

B. Anderson, G. Venus, D. Ott, I. Divliansky, and L. Glebov, “Compact cavity design in solid state resonators by way of volume Bragg gratings,” Proc. SPIE 8959, H89591 (2014).

Other (1)

P.-S.-F. De Matos, N.-U. Wetter and G.-E.-C. Nogueira, “Single Frequency Oscilation in a Coupled Cavity ND: GYLF Laser by Interferometric Control of the Cavity’s Length,” Revista de Fısica Aplicada e Instrumentaçao, 16(1) (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of experimental setup.

Fig. 2
Fig. 2

(a) The longitudinal mode property of the pump laser measured with an F-P scanning interferometer. The spectrum of idler (b) only with ordinary mirror, (c) only the master oscillator remained, (d) with dual etalon-coupled cavities.

Fig. 3
Fig. 3

The varying power and efficiency of the idler with different pump power.

Fig. 4
Fig. 4

The idler power at different wavelengths when the pump power was at 15.3 W.

Metrics