Abstract

The attractive plasmonic force between two metallic walls due to electromagnetic wave in the slit has been studied earlier for parallel plates and normal incidence. In present paper the effects of imperfectly adjusted plates and laser beam are analyzed. The change of force for non-parallel plates is shown to be of the first order in angle when the wedge is oriented along wave propagation and of the second order for the transverse case. Beam inclination decreases the force due to an antisymmetric mode excited in the slit.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical field and attractive force at the subwavelength slit

David Shapiro, Daniel Nies, Oleg Belai, Matthias Wurm, and Vladimir Nesterov
Opt. Express 24(14) 15972-15977 (2016)

Transmission of light through slit apertures in metallic films

Yong Xie, Armis R. Zakharian, Jerome V. Moloney, and Masud Mansuripur
Opt. Express 12(25) 6106-6121 (2004)

Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls

Yuzhang Liang, Wei Peng, Rui Hu, and Helin Zou
Opt. Express 21(5) 6139-6152 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref] [PubMed]
  2. S. Chu, “Nobel lecture: The manipulation of neutral particles,” Rev. Mod. Phys. 70, 685–706 (1998).
    [Crossref]
  3. K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple au nanoparticles,” Opt. Express 15, 12017–12029 (2007).
    [Crossref] [PubMed]
  4. J. R. Arias-González and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20, 1201–1209 (2003).
    [Crossref]
  5. A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” P. Natl. Acad. Sci USA 102, 1280–1284 (2005).
    [Crossref]
  6. V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73, 075416 (2006).
    [Crossref]
  7. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
    [Crossref] [PubMed]
  8. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
    [Crossref]
  9. P. H. Jones, O. M. Maragò, and G. Volpe, Optical tweezers: Principles and applications (Cambridge University Press, 2015).
    [Crossref]
  10. R.-c. Jin, J. Li, Y.-h. Wang, M.-j. Zhu, J.-q. Li, and Z.-g. Dong, “Optical force enhancement and annular trapping by plasmonic toroidal resonance in a double-disk metastructure,” Opt. Express 24, 27563–27568 (2016).
    [Crossref] [PubMed]
  11. P. Chu and D. L. Mills, “Laser-induced forces in metallic nanosystems: the role of plasmon resonances,” Phys. Rev. Lett. 99, 127401 (2007).
    [Crossref] [PubMed]
  12. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
    [Crossref] [PubMed]
  13. M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10, 116–122 (2016).
    [Crossref]
  14. M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108, 111105 (2016).
    [Crossref]
  15. J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets (2015).
    [Crossref]
  16. V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” EPL 94, 64002 (2011).
    [Crossref]
  17. V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Meas. Sci. Technol. 22, 094008 (2011).
    [Crossref]
  18. D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” Proc. SPIE 9922, 99222L (2016).
    [Crossref]
  19. V. Nesterov, O. Belai, D. Nies, S. Buetefisch, M. Mueller, T. Ahbe, D. Naparty, R. Popadic, and H. Wolff, “Si-traceable determination of the spring constant of a soft cantilever using the nanonewton force facility based on electrostatic methods,” Metrologia 53, 1031 (2016).
    [Crossref]
  20. D. Shapiro, D. Nies, O. Belai, M. Wurm, and V. Nesterov, “Optical field and attractive force at the subwavelength slit,” Opt. Express 24, 15972–15977 (2016).
    [Crossref] [PubMed]
  21. G. N. Watson, A treatise on the theory of Bessel functions (Cambridge University Press, 1952).
  22. H. Bateman and A. Erdelyi, Higher transcendental functions, vol. 2 (McGraw-Hill, 1953).
  23. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
    [Crossref]
  24. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1 (2007).
    [Crossref]
  25. F. W. J. Ovler, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, 2010).
  26. E. D. Palik, ed., Handbook of Optical Constants of Solids. Vol 1,2. (Academic Press, 1998).
  27. A. B. Migdal, “Superfluidity and the moments of inertia of nuclei,” JETP 37, 176–185 (1960).
  28. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-relativistic Theory), vol. 3 of Course of Theoretical Physics (Elsevier, 1977).
  29. B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Phys. Rev. B 82, 115419 (2010).
    [Crossref]

2016 (6)

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10, 116–122 (2016).
[Crossref]

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108, 111105 (2016).
[Crossref]

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” Proc. SPIE 9922, 99222L (2016).
[Crossref]

V. Nesterov, O. Belai, D. Nies, S. Buetefisch, M. Mueller, T. Ahbe, D. Naparty, R. Popadic, and H. Wolff, “Si-traceable determination of the spring constant of a soft cantilever using the nanonewton force facility based on electrostatic methods,” Metrologia 53, 1031 (2016).
[Crossref]

D. Shapiro, D. Nies, O. Belai, M. Wurm, and V. Nesterov, “Optical field and attractive force at the subwavelength slit,” Opt. Express 24, 15972–15977 (2016).
[Crossref] [PubMed]

R.-c. Jin, J. Li, Y.-h. Wang, M.-j. Zhu, J.-q. Li, and Z.-g. Dong, “Optical force enhancement and annular trapping by plasmonic toroidal resonance in a double-disk metastructure,” Opt. Express 24, 27563–27568 (2016).
[Crossref] [PubMed]

2011 (3)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” EPL 94, 64002 (2011).
[Crossref]

V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Meas. Sci. Technol. 22, 094008 (2011).
[Crossref]

2010 (1)

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Phys. Rev. B 82, 115419 (2010).
[Crossref]

2007 (3)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1 (2007).
[Crossref]

P. Chu and D. L. Mills, “Laser-induced forces in metallic nanosystems: the role of plasmon resonances,” Phys. Rev. Lett. 99, 127401 (2007).
[Crossref] [PubMed]

K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple au nanoparticles,” Opt. Express 15, 12017–12029 (2007).
[Crossref] [PubMed]

2006 (2)

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[Crossref] [PubMed]

V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73, 075416 (2006).
[Crossref]

2005 (2)

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” P. Natl. Acad. Sci USA 102, 1280–1284 (2005).
[Crossref]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

2003 (1)

2002 (1)

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[Crossref] [PubMed]

1998 (1)

S. Chu, “Nobel lecture: The manipulation of neutral particles,” Rev. Mod. Phys. 70, 685–706 (1998).
[Crossref]

1986 (1)

1960 (1)

A. B. Migdal, “Superfluidity and the moments of inertia of nuclei,” JETP 37, 176–185 (1960).

Ahbe, T.

V. Nesterov, O. Belai, D. Nies, S. Buetefisch, M. Mueller, T. Ahbe, D. Naparty, R. Popadic, and H. Wolff, “Si-traceable determination of the spring constant of a soft cantilever using the nanonewton force facility based on electrostatic methods,” Metrologia 53, 1031 (2016).
[Crossref]

Arias-González, J. R.

Ashkin, A.

Badenes, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[Crossref] [PubMed]

Bateman, H.

H. Bateman and A. Erdelyi, Higher transcendental functions, vol. 2 (McGraw-Hill, 1953).

Belai, O.

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” Proc. SPIE 9922, 99222L (2016).
[Crossref]

V. Nesterov, O. Belai, D. Nies, S. Buetefisch, M. Mueller, T. Ahbe, D. Naparty, R. Popadic, and H. Wolff, “Si-traceable determination of the spring constant of a soft cantilever using the nanonewton force facility based on electrostatic methods,” Metrologia 53, 1031 (2016).
[Crossref]

D. Shapiro, D. Nies, O. Belai, M. Wurm, and V. Nesterov, “Optical field and attractive force at the subwavelength slit,” Opt. Express 24, 15972–15977 (2016).
[Crossref] [PubMed]

Bjorkholm, J. E.

Bogdanov, A. A.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10, 116–122 (2016).
[Crossref]

Boisvert, R. F.

F. W. J. Ovler, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, 2010).

Brus, L. E.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” P. Natl. Acad. Sci USA 102, 1280–1284 (2005).
[Crossref]

Buetefisch, S.

V. Nesterov, O. Belai, D. Nies, S. Buetefisch, M. Mueller, T. Ahbe, D. Naparty, R. Popadic, and H. Wolff, “Si-traceable determination of the spring constant of a soft cantilever using the nanonewton force facility based on electrostatic methods,” Metrologia 53, 1031 (2016).
[Crossref]

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” Proc. SPIE 9922, 99222L (2016).
[Crossref]

Chu, P.

P. Chu and D. L. Mills, “Laser-induced forces in metallic nanosystems: the role of plasmon resonances,” Phys. Rev. Lett. 99, 127401 (2007).
[Crossref] [PubMed]

Chu, S.

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1 (2007).
[Crossref]

Clark, C. W.

F. W. J. Ovler, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, 2010).

Darbari, S.

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108, 111105 (2016).
[Crossref]

Dogariu, A.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10, 116–122 (2016).
[Crossref]

Dong, Z.-g.

Dziedzic, J. M.

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1 (2007).
[Crossref]

Erdelyi, A.

H. Bateman and A. Erdelyi, Higher transcendental functions, vol. 2 (McGraw-Hill, 1953).

Friz, P. D.

J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets (2015).
[Crossref]

Frumin, L.

V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Meas. Sci. Technol. 22, 094008 (2011).
[Crossref]

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” EPL 94, 64002 (2011).
[Crossref]

Ghorbanzadeh, M.

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108, 111105 (2016).
[Crossref]

Glascock, M. S.

J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets (2015).
[Crossref]

Gorkunov, M.

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Phys. Rev. B 82, 115419 (2010).
[Crossref]

Guffey, M. J.

Guyot-Sionnest, P.

Hallock, A. J.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” P. Natl. Acad. Sci USA 102, 1280–1284 (2005).
[Crossref]

Hu, C.

J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets (2015).
[Crossref]

Jin, R.-c.

Jones, P. H.

P. H. Jones, O. M. Maragò, and G. Volpe, Optical tweezers: Principles and applications (Cambridge University Press, 2015).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

Käll, M.

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[Crossref] [PubMed]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-relativistic Theory), vol. 3 of Course of Theoretical Physics (Elsevier, 1977).

Li, J.

Li, J.-q.

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-relativistic Theory), vol. 3 of Course of Theoretical Physics (Elsevier, 1977).

Liu, M.

Lozier, D. W.

F. W. J. Ovler, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, 2010).

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Maragò, O. M.

P. H. Jones, O. M. Maragò, and G. Volpe, Optical tweezers: Principles and applications (Cambridge University Press, 2015).
[Crossref]

Migdal, A. B.

A. B. Migdal, “Superfluidity and the moments of inertia of nuclei,” JETP 37, 176–185 (1960).

Mills, D. L.

P. Chu and D. L. Mills, “Laser-induced forces in metallic nanosystems: the role of plasmon resonances,” Phys. Rev. Lett. 99, 127401 (2007).
[Crossref] [PubMed]

Moravvej-Farshi, M.

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108, 111105 (2016).
[Crossref]

Mueller, M.

V. Nesterov, O. Belai, D. Nies, S. Buetefisch, M. Mueller, T. Ahbe, D. Naparty, R. Popadic, and H. Wolff, “Si-traceable determination of the spring constant of a soft cantilever using the nanonewton force facility based on electrostatic methods,” Metrologia 53, 1031 (2016).
[Crossref]

Naparty, D.

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” Proc. SPIE 9922, 99222L (2016).
[Crossref]

V. Nesterov, O. Belai, D. Nies, S. Buetefisch, M. Mueller, T. Ahbe, D. Naparty, R. Popadic, and H. Wolff, “Si-traceable determination of the spring constant of a soft cantilever using the nanonewton force facility based on electrostatic methods,” Metrologia 53, 1031 (2016).
[Crossref]

Nesterov, V.

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” Proc. SPIE 9922, 99222L (2016).
[Crossref]

V. Nesterov, O. Belai, D. Nies, S. Buetefisch, M. Mueller, T. Ahbe, D. Naparty, R. Popadic, and H. Wolff, “Si-traceable determination of the spring constant of a soft cantilever using the nanonewton force facility based on electrostatic methods,” Metrologia 53, 1031 (2016).
[Crossref]

D. Shapiro, D. Nies, O. Belai, M. Wurm, and V. Nesterov, “Optical field and attractive force at the subwavelength slit,” Opt. Express 24, 15972–15977 (2016).
[Crossref] [PubMed]

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” EPL 94, 64002 (2011).
[Crossref]

V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Meas. Sci. Technol. 22, 094008 (2011).
[Crossref]

Nies, D.

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” Proc. SPIE 9922, 99222L (2016).
[Crossref]

V. Nesterov, O. Belai, D. Nies, S. Buetefisch, M. Mueller, T. Ahbe, D. Naparty, R. Popadic, and H. Wolff, “Si-traceable determination of the spring constant of a soft cantilever using the nanonewton force facility based on electrostatic methods,” Metrologia 53, 1031 (2016).
[Crossref]

D. Shapiro, D. Nies, O. Belai, M. Wurm, and V. Nesterov, “Optical field and attractive force at the subwavelength slit,” Opt. Express 24, 15972–15977 (2016).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

Ovler, F. W. J.

F. W. J. Ovler, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, 2010).

Pelton, M.

Pesic, J.

Petrov, D.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[Crossref] [PubMed]

Petrov, M. I.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10, 116–122 (2016).
[Crossref]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1 (2007).
[Crossref]

Podivilov, E.

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” EPL 94, 64002 (2011).
[Crossref]

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Phys. Rev. B 82, 115419 (2010).
[Crossref]

Popadic, R.

V. Nesterov, O. Belai, D. Nies, S. Buetefisch, M. Mueller, T. Ahbe, D. Naparty, R. Popadic, and H. Wolff, “Si-traceable determination of the spring constant of a soft cantilever using the nanonewton force facility based on electrostatic methods,” Metrologia 53, 1031 (2016).
[Crossref]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[Crossref] [PubMed]

Ratner, M. A.

V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73, 075416 (2006).
[Crossref]

Redmond, P. L.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” P. Natl. Acad. Sci USA 102, 1280–1284 (2005).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

Rovey, J. L.

J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets (2015).
[Crossref]

Scherer, N. F.

Shalin, A. S.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10, 116–122 (2016).
[Crossref]

Shapiro, D.

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” Proc. SPIE 9922, 99222L (2016).
[Crossref]

D. Shapiro, D. Nies, O. Belai, M. Wurm, and V. Nesterov, “Optical field and attractive force at the subwavelength slit,” Opt. Express 24, 15972–15977 (2016).
[Crossref] [PubMed]

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1 (2007).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Sturman, B.

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Phys. Rev. B 82, 115419 (2010).
[Crossref]

Sukhov, S. V.

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10, 116–122 (2016).
[Crossref]

Toussaint, K. C.

Volpe, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[Crossref] [PubMed]

P. H. Jones, O. M. Maragò, and G. Volpe, Optical tweezers: Principles and applications (Cambridge University Press, 2015).
[Crossref]

Wang, Y.-h.

Watson, G. N.

G. N. Watson, A treatise on the theory of Bessel functions (Cambridge University Press, 1952).

Wolff, H.

V. Nesterov, O. Belai, D. Nies, S. Buetefisch, M. Mueller, T. Ahbe, D. Naparty, R. Popadic, and H. Wolff, “Si-traceable determination of the spring constant of a soft cantilever using the nanonewton force facility based on electrostatic methods,” Metrologia 53, 1031 (2016).
[Crossref]

Wong, V.

V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73, 075416 (2006).
[Crossref]

Wurm, M.

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” Proc. SPIE 9922, 99222L (2016).
[Crossref]

D. Shapiro, D. Nies, O. Belai, M. Wurm, and V. Nesterov, “Optical field and attractive force at the subwavelength slit,” Opt. Express 24, 15972–15977 (2016).
[Crossref] [PubMed]

Xu, H.

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[Crossref] [PubMed]

Yang, X.

J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets (2015).
[Crossref]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Zhu, M.-j.

Appl. Phys. Lett. (1)

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108, 111105 (2016).
[Crossref]

EPL (1)

V. Nesterov, L. Frumin, and E. Podivilov, “Negative light pressure force between two metal bodies separated by a subwavelength slit,” EPL 94, 64002 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

JETP (1)

A. B. Migdal, “Superfluidity and the moments of inertia of nuclei,” JETP 37, 176–185 (1960).

Laser Photonics Rev. (1)

M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin, and A. Dogariu, “Surface plasmon polariton assisted optical pulling force,” Laser Photonics Rev. 10, 116–122 (2016).
[Crossref]

Meas. Sci. Technol. (1)

V. Nesterov and L. Frumin, “Light-induced attractive force between two metal bodies separated by a subwavelength slit,” Meas. Sci. Technol. 22, 094008 (2011).
[Crossref]

Metrologia (1)

V. Nesterov, O. Belai, D. Nies, S. Buetefisch, M. Mueller, T. Ahbe, D. Naparty, R. Popadic, and H. Wolff, “Si-traceable determination of the spring constant of a soft cantilever using the nanonewton force facility based on electrostatic methods,” Metrologia 53, 1031 (2016).
[Crossref]

Nat. Photonics (1)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

P. Natl. Acad. Sci USA (1)

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” P. Natl. Acad. Sci USA 102, 1280–1284 (2005).
[Crossref]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Phys. Rev. B (2)

V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73, 075416 (2006).
[Crossref]

B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Phys. Rev. B 82, 115419 (2010).
[Crossref]

Phys. Rev. Lett. (3)

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[Crossref] [PubMed]

P. Chu and D. L. Mills, “Laser-induced forces in metallic nanosystems: the role of plasmon resonances,” Phys. Rev. Lett. 99, 127401 (2007).
[Crossref] [PubMed]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

D. Nies, S. Buetefisch, D. Naparty, M. Wurm, O. Belai, D. Shapiro, and V. Nesterov, “Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies,” Proc. SPIE 9922, 99222L (2016).
[Crossref]

Rep. Prog. Phys. (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1 (2007).
[Crossref]

Rev. Mod. Phys. (1)

S. Chu, “Nobel lecture: The manipulation of neutral particles,” Rev. Mod. Phys. 70, 685–706 (1998).
[Crossref]

Other (7)

P. H. Jones, O. M. Maragò, and G. Volpe, Optical tweezers: Principles and applications (Cambridge University Press, 2015).
[Crossref]

F. W. J. Ovler, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, 2010).

E. D. Palik, ed., Handbook of Optical Constants of Solids. Vol 1,2. (Academic Press, 1998).

J. L. Rovey, P. D. Friz, C. Hu, M. S. Glascock, and X. Yang, “Plasmonic force space propulsion,” J. Spacecraft Rockets (2015).
[Crossref]

G. N. Watson, A treatise on the theory of Bessel functions (Cambridge University Press, 1952).

H. Bateman and A. Erdelyi, Higher transcendental functions, vol. 2 (McGraw-Hill, 1953).

L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-relativistic Theory), vol. 3 of Course of Theoretical Physics (Elsevier, 1977).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A schematic representation of p-wave in the slit. At γ = 0 the incidence is normal. Here E, H are vectors of electric and magnetic fields, k0 is the wave vector.

Fig. 2
Fig. 2

Scheme of longitudinal (a) and transverse (b) wedge: the inclined metallic walls (thick solid line), parallel walls (dashed).

Fig. 3
Fig. 3

Polar coordinates for the problem of vertically inclined walls: r is counted from the intersection point 0 of the wall extensions, φ from axis z. The slit is bounded by metal walls φ = ±α. The distance from the origin to slit entrance is r0 = 0/α, where 0 is the slit half-width. Cartesian coordinate z is counted from the entrance (r, φ) = (r0, 0).

Fig. 4
Fig. 4

The force f/f0 for εM = −91.5 + 10.3i (gold at λ = 1.512 μm [26]) as a function of dimensionless height of plates Lz/ℓ0 at: α = 0 (solid line), 10−3 (dot-dash), 5 × 10−3 (dashed), 10−2 (dotted).

Fig. 5
Fig. 5

Tension σxx for gold as a function of parameter k0l at γ = 0 (solid line), 0.05 (dashed), 0.1 (doted), 1 (dot-dashed).

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

E i ( r , t ) = e i ( r ) e i ω t + c . c . , H i ( r , t ) = h i ( r ) e i ω t + c . c . ,
σ x x = | e x | 2 | h y | 2 | e z | 2 4 π h 0 2 e 2 β 2 z 4 π | ε 1 | k 0 l ,
β 1 k 0 + 1 2 l | ε 1 | , β 2 = ε 2 4 l | ε 1 | 3 / 2 .
f 0 σ x x 2 β 2 = h 0 2 λ | ε 1 | 4 π 2 ε 2 .
( x 2 + z 2 + k 2 ) h = 0 ,
[ 1 r r ( r r ) + 1 r 2 2 φ 2 + k 0 2 ] H = 0 ,
( r R ) r R + 1 r 2 Φ Φ + k 0 2 = 0 .
Φ m ( φ ) = { cos π m φ 2 α , m = 0 , 2 , , sin π m φ 2 α , m = 1 , 3 ,
Φ 0 ( φ ) = { cosh ( p φ α ) , φ < α , exp ( p M φ α α ) , α < φ .
R + 1 r R + ( k 0 2 + p 2 α 2 r 2 ) R = 0 , R + 1 r R + ( k M 2 + p M 2 α 2 r 2 ) R = 0 .
R ( t ) = { H i p / α ( 1 ) ( k 0 r ) , φ < α , H i p M / α ( 1 ) ( k M r ) , α < φ .
p tanh p = p M ε M .
H ν ( 1 ) ( ν cos ψ ) 2 π ν tan ψ e i ν ( tan ψ ψ ) i π / 4 ,
α z 0 .
H ν ( 1 ) ( ν cos ψ ) A exp ( ± i β z ) , β = 1 a 2 + p 2 .
p 2 + a 2 = p M 2 + ε M a 2 .
p tanh p = p 2 + a 2 ( 1 ε M ) ε M .
α L z 0 .
f = 2 f 0 0 L z exp ( 2 β 2 z 1 + α z / 0 ) 1 + α z / 0 β 2 d z = 2 f 0 β 2 e 2 β 2 0 / α α [ Ei ( 2 β 2 0 α ) Ei ( 2 β 2 0 α + α 2 L z / 0 ) ] ,
Ei ( ζ ) = ζ e t t d t .
f = f 0 ( 1 e 2 β 2 L z ) [ 1 + α S ] + O ( α 2 ) , S = ( 2 β 2 L z ) 1 + 1 + ( 2 β 2 L z ) .
δ f = α f 0 2 0 β 2 L z 2 .
x = x + α y , y = y
x = + α y x , y = α x ( + α y ) 2 x + y .
Δ = 2 ( + α y ) 2 [ 1 + α 2 x 2 ( + α y ) 2 ] x 2 + y 2 2 α x ( + α y ) 2 x y + 2 α 2 x ( + α y ) 3 x + z 2 .
h ( x , y , z ) = g 0 + α g 1 + α 2 g 2 +
g 0 = h 0 e i β z { cosh κ x 0 < x < l , cosh κ l e κ M ( x l ) , l x .
H > = ν h ν b ν ( x ) e i β ( ν ) z ,
H < = ( e i k 0 z z + R e i k 0 z z ) e i k 0 x x + a k e i k x i κ z d k , R = ε M cos γ ε M sin 2 γ ε M cos γ + ε M sin 2 γ ,
tan ( q ν l ) = ( 1 ε M ) a 2 ( q ν ) 2 ε M q ν ,
H > = h 0 cosh ( q 0 x ) e i β ( 0 ) z + h 1 sin ( q 1 x ) e i β ( 1 ) z .
h 0 = ( 1 + R ) f q 0 , k 0 x + k 0 z ( 1 R ) / π sinc ( ( k 0 x k ) ) f q 0 , k κ d k f q 0 , q 0 + β ( 0 ) / 2 π { f q 0 , k f q 0 , k κ d k + cosh ( q 0 ) / ε M G e v ( q 0 M , k ) f q 0 , k κ d k } ,
h 1 = ( 1 + R ) f q 1 , k 0 x + k 0 z ( 1 R ) / π sinc ( ( k 0 x k ) ) f q 1 , k κ d k f q 1 , q 1 + β ( 1 ) / 2 π { f q 1 , k f q 1 , k κ d k + sin ( q 1 ) / ε M G odd ( q 1 M , k ) f q 1 , k κ d k } .
f q 0 , k = sinc ( ( i q 0 + k ) ) + sinc ( ( i q 0 + k ) ) , f q 1 , k = i ( sinc ( ( q 1 + k ) ) sinc ( ( q 1 k ) ) ) , G e v ( x , y ) = 2 ( x cos y 2 y sin y ) ( x 2 + y 2 ) , G odd ( x , y ) = 2 i ( x sin y + 2 y cos y ) ( x 2 + y 2 ) ,