Abstract

We perform comprehensive studies on the fundamental loss mechanisms in III-nitride waveguides in the visible spectral region. Theoretical analysis shows that free carrier loss dominates for GaN under low photon power injection. When optical power increases, the two photon absorption loss becomes important and eventually dominates when photon energy above half-bandgap of GaN. When the dimensions of the waveguides reduce, the sidewall scattering loss will start to dominate. To verify the theoretical results, a high performance GaN-on-sapphire waveguide was fabricated and characterized. Experimental results are consistent with the theoretical findings, showing that under high power injection the optical loss changed significantly for GaN waveguides. A low optical loss ~2 dB/cm was achieved on the GaN waveguide, which is the lowest value ever reported for the visible spectral range. The results and fabrication processes developed in this work pave the way for the development of III-nitride integrated photonics in the visible and potentially ultraviolet spectral range for nonlinear optics and quantum photonics applications.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator

Luisa Ottaviano, Minhao Pu, Elizaveta Semenova, and Kresten Yvind
Opt. Lett. 41(17) 3996-3999 (2016)

Effects of oxide formation around core circumference of silicon-on-oxidized-porous-silicon strip waveguides

E. J. Teo, B. Q. Xiong, Y. S. Ow, M. B. H. Breese, and A. A. Bettiol
Opt. Lett. 34(20) 3142-3144 (2009)

Optimization of dry etching parameters for fabrication of polysilicon waveguides with smooth sidewall using a capacitively coupled plasma reactor

Surya Cheemalapati, Mikhail Ladanov, John Winskas, and Anna Pyayt
Appl. Opt. 53(25) 5745-5749 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
  2. Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).
  3. S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(1B), L74 (1996).
  4. S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, “Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
  5. T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).
  6. Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar (2021) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).
  7. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
    [PubMed]
  8. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [PubMed]
  9. J. F. Muth, J. D. Brown, M. A. L. Johnson, Z. Yu, R. M. Kolbas, J. W. Cook, Jr., and J. F. Schetzina, “Absorption coefficient and refractive index of GaN, AlN and AlGaN alloys,” MRS Internet J. Nitride Semicond. Res. 4(S1), G5.2 (1999).
  10. G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, “Improved refractive index formulas for the Al x Ga 1− x N and In y Ga 1− y N alloys,” J. Appl. Phys. 89(2), 1108–1115 (2001).
  11. J. L. Hughes, Y. Wang, and J. E. Sipe, “Calculation of linear and second-order optical response in wurtzite GaN and AlN,” Phys. Rev. B 55(20), 13630 (1997).
  12. X. Guo, C. L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3(10), 1126–1131 (2016).
  13. C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
  14. X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
    [PubMed]
  15. H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlNmicroring resonator,” Optica 1(6), 396–399 (2014).
  16. X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, and T. Wei, “Nearly octave-spanning frequency comb generation in AlN-on-sapphire microresonators,” arXiv:1611, 01994 (2016).
  17. M. Soltani, R. Soref, T. Palacios, and D. Englund, “AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range,” Opt. Express 24(22), 25415–25423 (2016).
    [PubMed]
  18. D. Y. Oh, D. Sell, H. Lee, K. Y. Yang, S. A. Diddams, and K. J. Vahala, “Supercontinuum generation in an on-chip silica waveguide,” Opt. Lett. 39(4), 1046–1048 (2014).
    [PubMed]
  19. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003).
    [PubMed]
  20. X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, and T. Wei, “Integrated continuous-wave aluminum nitride Raman laser,” Optica 4(8), 893–896 (2017).
  21. H. Chen, X. Huang, H. Fu, Z. Lu, X. Zhang, J. A. Montes, and Y. Zhao, “Characterizations of nonlinear optical properties on GaN crystals in polar, nonpolar, and semipolar orientations,” Appl. Phys. Lett. 110(18), 181110 (2017).
  22. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
  23. R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82(9), 1326–1328 (2003).
  24. A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98(16), 161903 (2011).
  25. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008).
    [PubMed]
  26. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [PubMed]
  27. R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27(3), 626–640 (1991).
  28. N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3 N 4 waveguides,” Mater. Sci. Semicond. Process. 7(4), 453–458 (2004).
  29. H. Chen, H. Fu, X. Huang, Z. Lu, X. Zhang, J. Montes, and Y. Zhao, “Optical Cavity Effects in InGaN Micro-Light-Emitting Diodes With Metallic Coating,” IEEE Photonics J. 9(3), 1–8 (2017).
  30. A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107(14), 141113 (2015).
  31. S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, and Y. F. Wu, “Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures,” J. Appl. Phys. 86(10), 5850–5857 (1999).
  32. R. J. Shul, G. C. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69(8), 1119–1121 (1996).
  33. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971).
    [PubMed]
  34. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [PubMed]
  35. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
  36. J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. J. 137, 282–288 (1990).
  37. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
  38. C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).
  39. D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,” Mater. Sci. Eng. R-Rep. 48(1), 1–46 (2005).
  40. C. Gupta, Y. Enatsu, G. Gupta, S. Keller, and U. K. Mishra, “High breakdown voltage p–n diodes on GaN on sapphire by MOCVD,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 878–882 (2016).
  41. M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Görgens, O. Ambacher, and M. Stutzmann, “Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff,” Jpn. J. Appl. Phys. 38(3A), 217 (1999).
  42. M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai, “Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates,” Jpn. J. Appl. Phys. 45(7L), 659 (2006).
  43. K. Misiakos and D. Tsamakis, “Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K,” J. Appl. Phys. 74(5), 3293–3297 (1993).
  44. S. M. Sze and K. K. Ng, “Physics of semiconductor devices.” John wiley & sons (2006).
  45. K. Kainosho, H. Shimakura, H. Yamamoto, and O. Oda, “Undoped semi‐insulating InP by high‐pressure annealing,” Appl. Phys. Lett. 59(8), 932–934 (1991).
  46. O. Malyk, “Charge carrier mobility in gallium nitride,” Diamond Related Materials 23, 23–27 (2012).
  47. M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (John Wiley & Sons 2001).
  48. W. Li, D. Ji, R. Tanaka, S. Mandal, M. Laurent, and S. Chowdhury, “Demonstration of GaN Static Induction Transistor (SIT) Using Self-Aligned Process,” IEEE J. Electron Devices Soc. 5(6), 485–490 (2017).
  49. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
    [PubMed]
  50. T. Sekiya, T. Sasaki, and K. Hane, “Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate,” J. Vac. Sci. Technol. B 33(3), 031207 (2015).
  51. W. Li, Y. Luo, B. Xiong, C. Sun, L. Wang, J. Wang, Y. Han, J. Yan, T. Wei, and H. Lu, “Fabrication of GaN‐based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2341–2344 (2015).
  52. R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550 nm,” Appl. Phys. Lett. 87(13), 132107 (2005).
  53. M. Gromovyi, F. Semond, J. Y. Duboz, G. Feuillet, and M. P. De Micheli, “Low loss GaN waveguides for visible light on Si substrates,” J. Eur. Opt. Soc. 9, 14050 (2014).

2017 (4)

H. Chen, X. Huang, H. Fu, Z. Lu, X. Zhang, J. A. Montes, and Y. Zhao, “Characterizations of nonlinear optical properties on GaN crystals in polar, nonpolar, and semipolar orientations,” Appl. Phys. Lett. 110(18), 181110 (2017).

H. Chen, H. Fu, X. Huang, Z. Lu, X. Zhang, J. Montes, and Y. Zhao, “Optical Cavity Effects in InGaN Micro-Light-Emitting Diodes With Metallic Coating,” IEEE Photonics J. 9(3), 1–8 (2017).

W. Li, D. Ji, R. Tanaka, S. Mandal, M. Laurent, and S. Chowdhury, “Demonstration of GaN Static Induction Transistor (SIT) Using Self-Aligned Process,” IEEE J. Electron Devices Soc. 5(6), 485–490 (2017).

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, and T. Wei, “Integrated continuous-wave aluminum nitride Raman laser,” Optica 4(8), 893–896 (2017).

2016 (4)

X. Guo, C. L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3(10), 1126–1131 (2016).

M. Soltani, R. Soref, T. Palacios, and D. Englund, “AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range,” Opt. Express 24(22), 25415–25423 (2016).
[PubMed]

C. Gupta, Y. Enatsu, G. Gupta, S. Keller, and U. K. Mishra, “High breakdown voltage p–n diodes on GaN on sapphire by MOCVD,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 878–882 (2016).

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[PubMed]

2015 (3)

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107(14), 141113 (2015).

T. Sekiya, T. Sasaki, and K. Hane, “Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate,” J. Vac. Sci. Technol. B 33(3), 031207 (2015).

W. Li, Y. Luo, B. Xiong, C. Sun, L. Wang, J. Wang, Y. Han, J. Yan, T. Wei, and H. Lu, “Fabrication of GaN‐based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2341–2344 (2015).

2014 (3)

2013 (2)

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar (2021) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, “Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).

2012 (2)

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).

O. Malyk, “Charge carrier mobility in gallium nitride,” Diamond Related Materials 23, 23–27 (2012).

2011 (3)

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98(16), 161903 (2011).

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[PubMed]

2009 (1)

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).

2008 (1)

2007 (1)

2006 (2)

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).

M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai, “Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates,” Jpn. J. Appl. Phys. 45(7L), 659 (2006).

2005 (2)

D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,” Mater. Sci. Eng. R-Rep. 48(1), 1–46 (2005).

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550 nm,” Appl. Phys. Lett. 87(13), 132107 (2005).

2004 (2)

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3 N 4 waveguides,” Mater. Sci. Semicond. Process. 7(4), 453–458 (2004).

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[PubMed]

2003 (3)

2001 (3)

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).

G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, “Improved refractive index formulas for the Al x Ga 1− x N and In y Ga 1− y N alloys,” J. Appl. Phys. 89(2), 1108–1115 (2001).

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
[PubMed]

2000 (1)

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).

1999 (2)

M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Görgens, O. Ambacher, and M. Stutzmann, “Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff,” Jpn. J. Appl. Phys. 38(3A), 217 (1999).

S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, and Y. F. Wu, “Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures,” J. Appl. Phys. 86(10), 5850–5857 (1999).

1997 (1)

J. L. Hughes, Y. Wang, and J. E. Sipe, “Calculation of linear and second-order optical response in wurtzite GaN and AlN,” Phys. Rev. B 55(20), 13630 (1997).

1996 (2)

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(1B), L74 (1996).

R. J. Shul, G. C. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69(8), 1119–1121 (1996).

1993 (1)

K. Misiakos and D. Tsamakis, “Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K,” J. Appl. Phys. 74(5), 3293–3297 (1993).

1991 (3)

K. Kainosho, H. Shimakura, H. Yamamoto, and O. Oda, “Undoped semi‐insulating InP by high‐pressure annealing,” Appl. Phys. Lett. 59(8), 932–934 (1991).

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27(3), 626–640 (1991).

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).

1971 (1)

Ambacher, O.

M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Görgens, O. Ambacher, and M. Stutzmann, “Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff,” Jpn. J. Appl. Phys. 38(3A), 217 (1999).

Androussi, Y.

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98(16), 161903 (2011).

Barratt, C.

R. J. Shul, G. C. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69(8), 1119–1121 (1996).

Bellutti, P.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3 N 4 waveguides,” Mater. Sci. Semicond. Process. 7(4), 453–458 (2004).

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).

Bruch, A. W.

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107(14), 141113 (2015).

Casalnuovo, S. A.

R. J. Shul, G. C. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69(8), 1119–1121 (1996).

Cerrina, F.

Chen, C. H.

S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, and Y. F. Wu, “Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures,” J. Appl. Phys. 86(10), 5850–5857 (1999).

Chen, H.

H. Chen, X. Huang, H. Fu, Z. Lu, X. Zhang, J. A. Montes, and Y. Zhao, “Characterizations of nonlinear optical properties on GaN crystals in polar, nonpolar, and semipolar orientations,” Appl. Phys. Lett. 110(18), 181110 (2017).

H. Chen, H. Fu, X. Huang, Z. Lu, X. Zhang, J. Montes, and Y. Zhao, “Optical Cavity Effects in InGaN Micro-Light-Emitting Diodes With Metallic Coating,” IEEE Photonics J. 9(3), 1–8 (2017).

Cho, E.

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98(16), 161903 (2011).

Chowdhury, A.

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550 nm,” Appl. Phys. Lett. 87(13), 132107 (2005).

Chowdhury, S.

W. Li, D. Ji, R. Tanaka, S. Mandal, M. Laurent, and S. Chowdhury, “Demonstration of GaN Static Induction Transistor (SIT) Using Self-Aligned Process,” IEEE J. Electron Devices Soc. 5(6), 485–490 (2017).

Claps, R.

Constantine, C.

R. J. Shul, G. C. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69(8), 1119–1121 (1996).

Crivellari, M.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3 N 4 waveguides,” Mater. Sci. Semicond. Process. 7(4), 453–458 (2004).

Daldosso, N.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3 N 4 waveguides,” Mater. Sci. Semicond. Process. 7(4), 453–458 (2004).

De Micheli, M. P.

M. Gromovyi, F. Semond, J. Y. Duboz, G. Feuillet, and M. P. De Micheli, “Low loss GaN waveguides for visible light on Si substrates,” J. Eur. Opt. Soc. 9, 14050 (2014).

Decoster, D.

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98(16), 161903 (2011).

DenBaars, S. P.

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar (2021) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, “Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).

S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, and Y. F. Wu, “Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures,” J. Appl. Phys. 86(10), 5850–5857 (1999).

Deri, R. J.

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27(3), 626–640 (1991).

Diddams, S. A.

Dimitropoulos, D.

Dogheche, E.

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98(16), 161903 (2011).

Duboz, J. Y.

M. Gromovyi, F. Semond, J. Y. Duboz, G. Feuillet, and M. P. De Micheli, “Low loss GaN waveguides for visible light on Si substrates,” J. Eur. Opt. Soc. 9, 14050 (2014).

Edgar, J. H.

D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,” Mater. Sci. Eng. R-Rep. 48(1), 1–46 (2005).

Enatsu, Y.

C. Gupta, Y. Enatsu, G. Gupta, S. Keller, and U. K. Mishra, “High breakdown voltage p–n diodes on GaN on sapphire by MOCVD,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 878–882 (2016).

Englund, D.

Farrell, R.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, “Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).

Feezell, D.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, “Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).

Feuillet, G.

M. Gromovyi, F. Semond, J. Y. Duboz, G. Feuillet, and M. P. De Micheli, “Low loss GaN waveguides for visible light on Si substrates,” J. Eur. Opt. Soc. 9, 14050 (2014).

Fini, P. T.

S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, and Y. F. Wu, “Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures,” J. Appl. Phys. 86(10), 5850–5857 (1999).

Fischer, D.

Fong, K. Y.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[PubMed]

Freude, W.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).

Fu, H.

H. Chen, X. Huang, H. Fu, Z. Lu, X. Zhang, J. A. Montes, and Y. Zhao, “Characterizations of nonlinear optical properties on GaN crystals in polar, nonpolar, and semipolar orientations,” Appl. Phys. Lett. 110(18), 181110 (2017).

H. Chen, H. Fu, X. Huang, Z. Lu, X. Zhang, J. Montes, and Y. Zhao, “Optical Cavity Effects in InGaN Micro-Light-Emitting Diodes With Metallic Coating,” IEEE Photonics J. 9(3), 1–8 (2017).

Fujii, M.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).

Fujito, K.

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar (2021) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).

Funato, M.

M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai, “Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates,” Jpn. J. Appl. Phys. 45(7L), 659 (2006).

Geiss, R.

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550 nm,” Appl. Phys. Lett. 87(13), 132107 (2005).

Görgens, L.

M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Görgens, O. Ambacher, and M. Stutzmann, “Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff,” Jpn. J. Appl. Phys. 38(3A), 217 (1999).

Green, W. M.

Gromovyi, M.

M. Gromovyi, F. Semond, J. Y. Duboz, G. Feuillet, and M. P. De Micheli, “Low loss GaN waveguides for visible light on Si substrates,” J. Eur. Opt. Soc. 9, 14050 (2014).

Guo, X.

Gupta, C.

C. Gupta, Y. Enatsu, G. Gupta, S. Keller, and U. K. Mishra, “High breakdown voltage p–n diodes on GaN on sapphire by MOCVD,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 878–882 (2016).

Gupta, G.

C. Gupta, Y. Enatsu, G. Gupta, S. Keller, and U. K. Mishra, “High breakdown voltage p–n diodes on GaN on sapphire by MOCVD,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 878–882 (2016).

Hagan, D. J.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).

Han, J.

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107(14), 141113 (2015).

Han, J. Y.

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550 nm,” Appl. Phys. Lett. 87(13), 132107 (2005).

Han, Y.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, and T. Wei, “Integrated continuous-wave aluminum nitride Raman laser,” Optica 4(8), 893–896 (2017).

W. Li, Y. Luo, B. Xiong, C. Sun, L. Wang, J. Wang, Y. Han, J. Yan, T. Wei, and H. Lu, “Fabrication of GaN‐based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2341–2344 (2015).

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003).
[PubMed]

Hane, K.

T. Sekiya, T. Sasaki, and K. Hane, “Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate,” J. Vac. Sci. Technol. B 33(3), 031207 (2015).

Hao, Z.

Harrison, I.

G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, “Improved refractive index formulas for the Al x Ga 1− x N and In y Ga 1− y N alloys,” J. Appl. Phys. 89(2), 1108–1115 (2001).

Heikman, S.

S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, and Y. F. Wu, “Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures,” J. Appl. Phys. 86(10), 5850–5857 (1999).

Huang, X.

H. Chen, X. Huang, H. Fu, Z. Lu, X. Zhang, J. A. Montes, and Y. Zhao, “Characterizations of nonlinear optical properties on GaN crystals in polar, nonpolar, and semipolar orientations,” Appl. Phys. Lett. 110(18), 181110 (2017).

H. Chen, H. Fu, X. Huang, Z. Lu, X. Zhang, J. Montes, and Y. Zhao, “Optical Cavity Effects in InGaN Micro-Light-Emitting Diodes With Metallic Coating,” IEEE Photonics J. 9(3), 1–8 (2017).

Hughes, J. L.

J. L. Hughes, Y. Wang, and J. E. Sipe, “Calculation of linear and second-order optical response in wurtzite GaN and AlN,” Phys. Rev. B 55(20), 13630 (1997).

Hui, R.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82(9), 1326–1328 (2003).

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).

Iwasa, N.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(1B), L74 (1996).

Iza, M.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, “Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).

Jalali, B.

Ji, D.

W. Li, D. Ji, R. Tanaka, S. Mandal, M. Laurent, and S. Chowdhury, “Demonstration of GaN Static Induction Transistor (SIT) Using Self-Aligned Process,” IEEE J. Electron Devices Soc. 5(6), 485–490 (2017).

Jiang, H. X.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82(9), 1326–1328 (2003).

Jin, S. X.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82(9), 1326–1328 (2003).

Jung, H.

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[PubMed]

H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlNmicroring resonator,” Optica 1(6), 396–399 (2014).

Kainosho, K.

K. Kainosho, H. Shimakura, H. Yamamoto, and O. Oda, “Undoped semi‐insulating InP by high‐pressure annealing,” Appl. Phys. Lett. 59(8), 932–934 (1991).

Kao, F. J.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).

Kapon, E.

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27(3), 626–640 (1991).

Karlicek, R. F.

R. J. Shul, G. C. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69(8), 1119–1121 (1996).

Kawaguchi, Y.

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar (2021) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).

Kawakami, Y.

M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai, “Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates,” Jpn. J. Appl. Phys. 45(7L), 659 (2006).

Kelchner, K.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, “Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).

Keller, S.

C. Gupta, Y. Enatsu, G. Gupta, S. Keller, and U. K. Mishra, “High breakdown voltage p–n diodes on GaN on sapphire by MOCVD,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 878–882 (2016).

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).

S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, and Y. F. Wu, “Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures,” J. Appl. Phys. 86(10), 5850–5857 (1999).

Kelly, M. K.

M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Görgens, O. Ambacher, and M. Stutzmann, “Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff,” Jpn. J. Appl. Phys. 38(3A), 217 (1999).

Kimerling, L. C.

Kiyoku, H.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(1B), L74 (1996).

Kobayashi, N.

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).

Kompocholis, C.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3 N 4 waveguides,” Mater. Sci. Semicond. Process. 7(4), 453–458 (2004).

Koos, C.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).

Kosugi, T.

M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai, “Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates,” Jpn. J. Appl. Phys. 45(7L), 659 (2006).

Kwong, D. L.

Lacey, J.

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. J. 137, 282–288 (1990).

Larkins, E. C.

G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, “Improved refractive index formulas for the Al x Ga 1− x N and In y Ga 1− y N alloys,” J. Appl. Phys. 89(2), 1108–1115 (2001).

Laurent, M.

W. Li, D. Ji, R. Tanaka, S. Mandal, M. Laurent, and S. Chowdhury, “Demonstration of GaN Static Induction Transistor (SIT) Using Self-Aligned Process,” IEEE J. Electron Devices Soc. 5(6), 485–490 (2017).

Laws, G. M.

G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, “Improved refractive index formulas for the Al x Ga 1− x N and In y Ga 1− y N alloys,” J. Appl. Phys. 89(2), 1108–1115 (2001).

Lee, H.

Lee, K. K.

Leung, B.

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107(14), 141113 (2015).

Leuthold, J.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).

Li, H.

Li, J.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82(9), 1326–1328 (2003).

Li, W.

W. Li, D. Ji, R. Tanaka, S. Mandal, M. Laurent, and S. Chowdhury, “Demonstration of GaN Static Induction Transistor (SIT) Using Self-Aligned Process,” IEEE J. Electron Devices Soc. 5(6), 485–490 (2017).

W. Li, Y. Luo, B. Xiong, C. Sun, L. Wang, J. Wang, Y. Han, J. Yan, T. Wei, and H. Lu, “Fabrication of GaN‐based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2341–2344 (2015).

Liang, J. C.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).

Lim, D. R.

Lin, J. Y.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82(9), 1326–1328 (2003).

Liu, X.

Lo, G. Q.

Lu, H.

W. Li, Y. Luo, B. Xiong, C. Sun, L. Wang, J. Wang, Y. Han, J. Yan, T. Wei, and H. Lu, “Fabrication of GaN‐based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2341–2344 (2015).

Lu, Z.

H. Chen, H. Fu, X. Huang, Z. Lu, X. Zhang, J. Montes, and Y. Zhao, “Optical Cavity Effects in InGaN Micro-Light-Emitting Diodes With Metallic Coating,” IEEE Photonics J. 9(3), 1–8 (2017).

H. Chen, X. Huang, H. Fu, Z. Lu, X. Zhang, J. A. Montes, and Y. Zhao, “Characterizations of nonlinear optical properties on GaN crystals in polar, nonpolar, and semipolar orientations,” Appl. Phys. Lett. 110(18), 181110 (2017).

Lui, A.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3 N 4 waveguides,” Mater. Sci. Semicond. Process. 7(4), 453–458 (2004).

Luo, Y.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, and T. Wei, “Integrated continuous-wave aluminum nitride Raman laser,” Optica 4(8), 893–896 (2017).

W. Li, Y. Luo, B. Xiong, C. Sun, L. Wang, J. Wang, Y. Han, J. Yan, T. Wei, and H. Lu, “Fabrication of GaN‐based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2341–2344 (2015).

Mack, M. P.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).

Malyk, O.

O. Malyk, “Charge carrier mobility in gallium nitride,” Diamond Related Materials 23, 23–27 (2012).

Mandal, S.

W. Li, D. Ji, R. Tanaka, S. Mandal, M. Laurent, and S. Chowdhury, “Demonstration of GaN Static Induction Transistor (SIT) Using Self-Aligned Process,” IEEE J. Electron Devices Soc. 5(6), 485–490 (2017).

Mao, S. C.

Matsushita, T.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(1B), L74 (1996).

McClellan, G. C.

R. J. Shul, G. C. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69(8), 1119–1121 (1996).

McNab, S.

Melchiorri, M.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3 N 4 waveguides,” Mater. Sci. Semicond. Process. 7(4), 453–458 (2004).

Mishra, U.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).

Mishra, U. K.

C. Gupta, Y. Enatsu, G. Gupta, S. Keller, and U. K. Mishra, “High breakdown voltage p–n diodes on GaN on sapphire by MOCVD,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 878–882 (2016).

S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, and Y. F. Wu, “Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures,” J. Appl. Phys. 86(10), 5850–5857 (1999).

Misiakos, K.

K. Misiakos and D. Tsamakis, “Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K,” J. Appl. Phys. 74(5), 3293–3297 (1993).

Moll, N.

Molloy, C.

G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, “Improved refractive index formulas for the Al x Ga 1− x N and In y Ga 1− y N alloys,” J. Appl. Phys. 89(2), 1108–1115 (2001).

Montes, J.

H. Chen, H. Fu, X. Huang, Z. Lu, X. Zhang, J. Montes, and Y. Zhao, “Optical Cavity Effects in InGaN Micro-Light-Emitting Diodes With Metallic Coating,” IEEE Photonics J. 9(3), 1–8 (2017).

Montes, J. A.

H. Chen, X. Huang, H. Fu, Z. Lu, X. Zhang, J. A. Montes, and Y. Zhao, “Characterizations of nonlinear optical properties on GaN crystals in polar, nonpolar, and semipolar orientations,” Appl. Phys. Lett. 110(18), 181110 (2017).

Mukai, T.

M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai, “Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates,” Jpn. J. Appl. Phys. 45(7L), 659 (2006).

Nagahama, S. I.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(1B), L74 (1996).

Nakamura, S.

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar (2021) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(1B), L74 (1996).

Narukawa, Y.

M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai, “Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates,” Jpn. J. Appl. Phys. 45(7L), 659 (2006).

Ng, H. M.

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550 nm,” Appl. Phys. Lett. 87(13), 132107 (2005).

Nishida, T.

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).

Oda, O.

K. Kainosho, H. Shimakura, H. Yamamoto, and O. Oda, “Undoped semi‐insulating InP by high‐pressure annealing,” Appl. Phys. Lett. 59(8), 932–934 (1991).

Oh, D. Y.

Oh, S. H.

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar (2021) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).

Palacios, T.

Pan, C. C.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, “Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).

Parish, G.

S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, and Y. F. Wu, “Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures,” J. Appl. Phys. 86(10), 5850–5857 (1999).

Park, S. S.

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550 nm,” Appl. Phys. Lett. 87(13), 132107 (2005).

Pavesi, L.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3 N 4 waveguides,” Mater. Sci. Semicond. Process. 7(4), 453–458 (2004).

Pavlidis, D.

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98(16), 161903 (2011).

Payne, F.

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. J. 137, 282–288 (1990).

Pearton, S. J.

R. J. Shul, G. C. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69(8), 1119–1121 (1996).

Pernice, W.

Pernice, W. H.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).

Pfaff, N.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, “Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).

Pfrang, A.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).

Phanse, V. M.

M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Görgens, O. Ambacher, and M. Stutzmann, “Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff,” Jpn. J. Appl. Phys. 38(3A), 217 (1999).

Pimputkar, S.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, “Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).

Poot, M.

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107(14), 141113 (2015).

Poulton, C. G.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).

Pucker, G.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3 N 4 waveguides,” Mater. Sci. Semicond. Process. 7(4), 453–458 (2004).

Raghunathan, V.

Riboli, F.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3 N 4 waveguides,” Mater. Sci. Semicond. Process. 7(4), 453–458 (2004).

Rieger, D. J.

R. J. Shul, G. C. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69(8), 1119–1121 (1996).

Rooks, M. J.

Ryu, K. K.

Saito, H.

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).

Sasaki, T.

T. Sekiya, T. Sasaki, and K. Hane, “Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate,” J. Vac. Sci. Technol. B 33(3), 031207 (2015).

Sbrana, F.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3 N 4 waveguides,” Mater. Sci. Semicond. Process. 7(4), 453–458 (2004).

Schimmel, T.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).

Schuck, C.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[PubMed]

Schurman, M.

R. J. Shul, G. C. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69(8), 1119–1121 (1996).

Sekaric, L.

Sekiya, T.

T. Sekiya, T. Sasaki, and K. Hane, “Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate,” J. Vac. Sci. Technol. B 33(3), 031207 (2015).

Sell, D.

Semond, F.

M. Gromovyi, F. Semond, J. Y. Duboz, G. Feuillet, and M. P. De Micheli, “Low loss GaN waveguides for visible light on Si substrates,” J. Eur. Opt. Soc. 9, 14050 (2014).

Senoh, M.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(1B), L74 (1996).

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).

Shimakura, H.

K. Kainosho, H. Shimakura, H. Yamamoto, and O. Oda, “Undoped semi‐insulating InP by high‐pressure annealing,” Appl. Phys. Lett. 59(8), 932–934 (1991).

Shin, J.

Shul, R. J.

R. J. Shul, G. C. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69(8), 1119–1121 (1996).

Sipe, J. E.

J. L. Hughes, Y. Wang, and J. E. Sipe, “Calculation of linear and second-order optical response in wurtzite GaN and AlN,” Phys. Rev. B 55(20), 13630 (1997).

Soltani, M.

Somerford, D.

G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, “Improved refractive index formulas for the Al x Ga 1− x N and In y Ga 1− y N alloys,” J. Appl. Phys. 89(2), 1108–1115 (2001).

Soref, R.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).

Speck, J. S.

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar (2021) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).

Staus, C. M.

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550 nm,” Appl. Phys. Lett. 87(13), 132107 (2005).

Stoll, R.

Stolz, A.

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98(16), 161903 (2011).

Stutzmann, M.

M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Görgens, O. Ambacher, and M. Stutzmann, “Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff,” Jpn. J. Appl. Phys. 38(3A), 217 (1999).

Sugimoto, Y.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(1B), L74 (1996).

Sun, C.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, and T. Wei, “Integrated continuous-wave aluminum nitride Raman laser,” Optica 4(8), 893–896 (2017).

W. Li, Y. Luo, B. Xiong, C. Sun, L. Wang, J. Wang, Y. Han, J. Yan, T. Wei, and H. Lu, “Fabrication of GaN‐based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2341–2344 (2015).

Sun, C. K.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).

Sun, X.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).

Sun, X. W.

Taherion, S.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82(9), 1326–1328 (2003).

Takahashi, M.

M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai, “Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates,” Jpn. J. Appl. Phys. 45(7L), 659 (2006).

Tanaka, R.

W. Li, D. Ji, R. Tanaka, S. Mandal, M. Laurent, and S. Chowdhury, “Demonstration of GaN Static Induction Transistor (SIT) Using Self-Aligned Process,” IEEE J. Electron Devices Soc. 5(6), 485–490 (2017).

Tanaka, S.

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar (2021) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, “Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).

Tang, H. X.

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[PubMed]

X. Guo, C. L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3(10), 1126–1131 (2016).

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107(14), 141113 (2015).

H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlNmicroring resonator,” Optica 1(6), 396–399 (2014).

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[PubMed]

Tao, S. H.

Tien, P. K.

Tran, C.

R. J. Shul, G. C. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69(8), 1119–1121 (1996).

Troadec, D.

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98(16), 161903 (2011).

Tsamakis, D.

K. Misiakos and D. Tsamakis, “Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K,” J. Appl. Phys. 74(5), 3293–3297 (1993).

Ueda, M.

M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai, “Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates,” Jpn. J. Appl. Phys. 45(7L), 659 (2006).

Vahala, K. J.

Van Stryland, E. W.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).

Vaudo, R. P.

M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Görgens, O. Ambacher, and M. Stutzmann, “Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff,” Jpn. J. Appl. Phys. 38(3A), 217 (1999).

Vlasov, Y.

Vlasov, Y. A.

Wan, Y.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82(9), 1326–1328 (2003).

Wang, J.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, and T. Wei, “Integrated continuous-wave aluminum nitride Raman laser,” Optica 4(8), 893–896 (2017).

W. Li, Y. Luo, B. Xiong, C. Sun, L. Wang, J. Wang, Y. Han, J. Yan, T. Wei, and H. Lu, “Fabrication of GaN‐based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2341–2344 (2015).

Wang, J. C.

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).

Wang, L.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, and T. Wei, “Integrated continuous-wave aluminum nitride Raman laser,” Optica 4(8), 893–896 (2017).

W. Li, Y. Luo, B. Xiong, C. Sun, L. Wang, J. Wang, Y. Han, J. Yan, T. Wei, and H. Lu, “Fabrication of GaN‐based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2341–2344 (2015).

Wang, Y.

J. L. Hughes, Y. Wang, and J. E. Sipe, “Calculation of linear and second-order optical response in wurtzite GaN and AlN,” Phys. Rev. B 55(20), 13630 (1997).

Wei, T.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, and T. Wei, “Integrated continuous-wave aluminum nitride Raman laser,” Optica 4(8), 893–896 (2017).

W. Li, Y. Luo, B. Xiong, C. Sun, L. Wang, J. Wang, Y. Han, J. Yan, T. Wei, and H. Lu, “Fabrication of GaN‐based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2341–2344 (2015).

Wu, F.

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar (2021) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).

Wu, Y. F.

S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, and Y. F. Wu, “Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures,” J. Appl. Phys. 86(10), 5850–5857 (1999).

Xiong, B.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, and T. Wei, “Integrated continuous-wave aluminum nitride Raman laser,” Optica 4(8), 893–896 (2017).

W. Li, Y. Luo, B. Xiong, C. Sun, L. Wang, J. Wang, Y. Han, J. Yan, T. Wei, and H. Lu, “Fabrication of GaN‐based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2341–2344 (2015).

Xiong, C.

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107(14), 141113 (2015).

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011).
[PubMed]

Xu, Y. L.

Yamada, T.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(1B), L74 (1996).

Yamamoto, H.

K. Kainosho, H. Shimakura, H. Yamamoto, and O. Oda, “Undoped semi‐insulating InP by high‐pressure annealing,” Appl. Phys. Lett. 59(8), 932–934 (1991).

Yan, J.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, and T. Wei, “Integrated continuous-wave aluminum nitride Raman laser,” Optica 4(8), 893–896 (2017).

W. Li, Y. Luo, B. Xiong, C. Sun, L. Wang, J. Wang, Y. Han, J. Yan, T. Wei, and H. Lu, “Fabrication of GaN‐based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2341–2344 (2015).

Yang, K. Y.

Yen, C. C.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, “Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).

Yu, M. B.

Zhang, N.

S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, and Y. F. Wu, “Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures,” J. Appl. Phys. 86(10), 5850–5857 (1999).

Zhang, X.

H. Chen, X. Huang, H. Fu, Z. Lu, X. Zhang, J. A. Montes, and Y. Zhao, “Characterizations of nonlinear optical properties on GaN crystals in polar, nonpolar, and semipolar orientations,” Appl. Phys. Lett. 110(18), 181110 (2017).

H. Chen, H. Fu, X. Huang, Z. Lu, X. Zhang, J. Montes, and Y. Zhao, “Optical Cavity Effects in InGaN Micro-Light-Emitting Diodes With Metallic Coating,” IEEE Photonics J. 9(3), 1–8 (2017).

Zhao, Y.

H. Chen, H. Fu, X. Huang, Z. Lu, X. Zhang, J. Montes, and Y. Zhao, “Optical Cavity Effects in InGaN Micro-Light-Emitting Diodes With Metallic Coating,” IEEE Photonics J. 9(3), 1–8 (2017).

H. Chen, X. Huang, H. Fu, Z. Lu, X. Zhang, J. A. Montes, and Y. Zhao, “Characterizations of nonlinear optical properties on GaN crystals in polar, nonpolar, and semipolar orientations,” Appl. Phys. Lett. 110(18), 181110 (2017).

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, “Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar (2021) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).

Zhuang, D.

D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,” Mater. Sci. Eng. R-Rep. 48(1), 1–46 (2005).

Zou, C. L.

X. Guo, C. L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3(10), 1126–1131 (2016).

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[PubMed]

Acta Mater. (1)

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C. C. Pan, C. C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, and M. Iza, “Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).

Appl. Opt. (1)

Appl. Phys. Express (2)

Y. Zhao, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2,” Appl. Phys. Express 4(8), 082104 (2011).

Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Green semipolar (2021) InGaN light-emitting diodes with small wavelength shift and narrow spectral linewidth,” Appl. Phys. Express 6(6), 062102 (2013).

Appl. Phys. Lett. (9)

T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79(6), 711–712 (2001).

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107(14), 141113 (2015).

R. J. Shul, G. C. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, C. Tran, and M. Schurman, “Inductively coupled plasma etching of GaN,” Appl. Phys. Lett. 69(8), 1119–1121 (1996).

C. K. Sun, J. C. Liang, J. C. Wang, F. J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. DenBaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76(4), 439–441 (2000).

K. Kainosho, H. Shimakura, H. Yamamoto, and O. Oda, “Undoped semi‐insulating InP by high‐pressure annealing,” Appl. Phys. Lett. 59(8), 932–934 (1991).

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82(9), 1326–1328 (2003).

A. Stolz, E. Cho, E. Dogheche, Y. Androussi, D. Troadec, D. Pavlidis, and D. Decoster, “Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 98(16), 161903 (2011).

H. Chen, X. Huang, H. Fu, Z. Lu, X. Zhang, J. A. Montes, and Y. Zhao, “Characterizations of nonlinear optical properties on GaN crystals in polar, nonpolar, and semipolar orientations,” Appl. Phys. Lett. 110(18), 181110 (2017).

R. Geiss, A. Chowdhury, C. M. Staus, H. M. Ng, S. S. Park, and J. Y. Han, “Low loss GaN at 1550 nm,” Appl. Phys. Lett. 87(13), 132107 (2005).

Diamond Related Materials (1)

O. Malyk, “Charge carrier mobility in gallium nitride,” Diamond Related Materials 23, 23–27 (2012).

IEEE J. Electron Devices Soc. (1)

W. Li, D. Ji, R. Tanaka, S. Mandal, M. Laurent, and S. Chowdhury, “Demonstration of GaN Static Induction Transistor (SIT) Using Self-Aligned Process,” IEEE J. Electron Devices Soc. 5(6), 485–490 (2017).

IEEE J. Quantum Electron. (3)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27(3), 626–640 (1991).

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).

IEEE J. Sel. Top. Quantum Electron. (1)

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).

IEEE Photonics J. (1)

H. Chen, H. Fu, X. Huang, Z. Lu, X. Zhang, J. Montes, and Y. Zhao, “Optical Cavity Effects in InGaN Micro-Light-Emitting Diodes With Metallic Coating,” IEEE Photonics J. 9(3), 1–8 (2017).

J. Appl. Phys. (3)

S. Keller, G. Parish, P. T. Fini, S. Heikman, C. H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, and Y. F. Wu, “Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures,” J. Appl. Phys. 86(10), 5850–5857 (1999).

G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, “Improved refractive index formulas for the Al x Ga 1− x N and In y Ga 1− y N alloys,” J. Appl. Phys. 89(2), 1108–1115 (2001).

K. Misiakos and D. Tsamakis, “Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K,” J. Appl. Phys. 74(5), 3293–3297 (1993).

J. Eur. Opt. Soc. (1)

M. Gromovyi, F. Semond, J. Y. Duboz, G. Feuillet, and M. P. De Micheli, “Low loss GaN waveguides for visible light on Si substrates,” J. Eur. Opt. Soc. 9, 14050 (2014).

J. Vac. Sci. Technol. B (1)

T. Sekiya, T. Sasaki, and K. Hane, “Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate,” J. Vac. Sci. Technol. B 33(3), 031207 (2015).

Jpn. J. Appl. Phys. (3)

M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Görgens, O. Ambacher, and M. Stutzmann, “Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff,” Jpn. J. Appl. Phys. 38(3A), 217 (1999).

M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai, “Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates,” Jpn. J. Appl. Phys. 45(7L), 659 (2006).

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(1B), L74 (1996).

Mater. Sci. Eng. R-Rep. (1)

D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,” Mater. Sci. Eng. R-Rep. 48(1), 1–46 (2005).

Mater. Sci. Semicond. Process. (1)

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3 N 4 waveguides,” Mater. Sci. Semicond. Process. 7(4), 453–458 (2004).

Nat. Photonics (1)

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).

New J. Phys. (1)

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).

Opt. Express (7)

Opt. Lett. (2)

Optica (3)

Phys. Rev. B (1)

J. L. Hughes, Y. Wang, and J. E. Sipe, “Calculation of linear and second-order optical response in wurtzite GaN and AlN,” Phys. Rev. B 55(20), 13630 (1997).

Phys. Rev. Lett. (1)

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[PubMed]

Phys. Status Solidi., A Appl. Mater. Sci. (2)

C. Gupta, Y. Enatsu, G. Gupta, S. Keller, and U. K. Mishra, “High breakdown voltage p–n diodes on GaN on sapphire by MOCVD,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 878–882 (2016).

W. Li, Y. Luo, B. Xiong, C. Sun, L. Wang, J. Wang, Y. Han, J. Yan, T. Wei, and H. Lu, “Fabrication of GaN‐based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2341–2344 (2015).

Other (5)

M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (John Wiley & Sons 2001).

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. J. 137, 282–288 (1990).

S. M. Sze and K. K. Ng, “Physics of semiconductor devices.” John wiley & sons (2006).

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, and T. Wei, “Nearly octave-spanning frequency comb generation in AlN-on-sapphire microresonators,” arXiv:1611, 01994 (2016).

J. F. Muth, J. D. Brown, M. A. L. Johnson, Z. Yu, R. M. Kolbas, J. W. Cook, Jr., and J. F. Schetzina, “Absorption coefficient and refractive index of GaN, AlN and AlGaN alloys,” MRS Internet J. Nitride Semicond. Res. 4(S1), G5.2 (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic structures of the GaN-on-sapphire waveguides studied in this work. (b) Calculated dispersion relation of the first order TE-like mode in GaN waveguides at different waveguide cross section dimensions. (c) Calculated mode areas vs. waveguide areas for GaN waveguides at different wavelengths.

Fig. 2
Fig. 2

(a) Calculated sidewall scattering loss vs. wavelengths for GaN waveguides with dimensions of 1.6 µm × 1.6µm and 0.6 µm × 0.6 µm. (b) Calculated sidewall scattering loss vs. waveguide with wavelengths at 400, 600, 800 and 1550 nm. Sidewall surface roughness σ used in (a) and (b) is 1 nm which represents the ideal case. (c) Calculated sidewall scattering loss vs. sidewall roughness σ at 400 nm for GaN waveguides at waveguide dimensions of 1.6 µm × 1.6µm, 0.8 µm × 0.8µm, and 0.4 µm × 0.4µm.

Fig. 3
Fig. 3

Calculated free carrier loss vs. wavelength for GaN waveguides at waveguide dimensions of 1.6 µm × 1.6 µm. The redline shows the ideal case (e.g., GaN on bulk GaN substrate), while black line indicates a practical case (e.g., GaN on sapphire substrate).

Fig. 4
Fig. 4

(a) Calculated TPA loss vs. waveguide dimensions for GaN waveguides at different wavelengths. (b) Calculated TPA loss vs. incident power for GaN waveguides (dimension of 200 nm × 200 nm) at different wavelengths. (c) Calculated TPA loss (blue curve) and quality factor (red curve) vs. incident power for GaN waveguide using a mode area of 1 µm2 at a wavelength of 710 nm.

Fig. 5
Fig. 5

Calculated loss map of GaN waveguides at 600 nm in an ideal case, i.e., good material quality (N = 1015 cm−3) and small sidewall surface roughness (σ = 0.1 nm). The dashed line in this plot refers to cut off.

Fig. 6
Fig. 6

(a) Calculated loss map of GaN waveguides at 600 nm in a more realistic case, i.e., moderate material quality (N/µ = 103N00) and sidewall surface roughness σ = 1 nm. (b) Contributions of different loss mechanisms in this GaN waveguide structure. The dashed line in both plots refers to the mode cut off.

Fig. 7
Fig. 7

Fabrication process of GaN-on-sapphire waveguides.

Fig. 8
Fig. 8

(a) and (b) SEM images of fabricated GaN-on-sapphire waveguides. (c) SEM image showing the smooth sidewall profile for the GaN waveguides with optimized etching processes.

Fig. 9
Fig. 9

(a), (b), and (c) Loss characterization of GaN waveguides with good, decent, and failed performance, respectively. The width for each waveguides are 1.6 μm. (d) Loss vs. wavelengths for the GaN waveguide with 1.6 μm width. (e) Loss vs. waveguide width tested at 700 nm in CW lasing mode.

Fig. 10
Fig. 10

Loss vs. incident power for the GaN waveguides when the laser is in CW and pulsed mode. Data in the dash line region indicates that the loss is lower than 2 dB/cm.

Tables (2)

Tables Icon

Table 1 The cut-off wavelengths for the GaN waveguides with different dimensions.

Tables Icon

Table 2 Previous reports on GaN based waveguides

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α FC = N e 3 m e * 2 n ε 0 ω 2 μc
α TPA =β P in A eff