Abstract

We design and demonstrate a suspended high sensitivity silicon nitride (Si3N4) photonic crystal (PhC) nanobeam cavity sensor. By utilizing the higher order mode, the optical field distribution in the analytes increases dramatically and the light matter interaction between the optical mode and the analytes has been enhanced. A high sensitivity of 321 nm/refractive index unit (nm/RIU) has been experimentally achieved at the wavelength ~700 nm which is the highest value reported so far for a resonator based sensor at such a short wavelength.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
    [Crossref] [PubMed]
  2. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004).
    [Crossref] [PubMed]
  3. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  4. B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett. 8(9), 3023–3028 (2008).
    [Crossref] [PubMed]
  5. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [Crossref]
  6. Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
  7. D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh Q and Low-Mode-Volume Parabolic Radius-Modulated Single Photonic Crystal Slot Nanobeam Cavity for High-Sensitivity Refractive Index Sensing,” IEEE Photonics J. 7(5), 1–8 (2015).
    [Crossref]
  8. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  9. T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
    [Crossref]
  10. S. Kim, H. M. Kim, and Y. H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40(22), 5351–5354 (2015).
    [Crossref] [PubMed]
  11. W. Zhou, Z. Cheng, X. Wu, B. Zhu, X. Sun, and H. K. Tsang, “Fully suspended slot waveguides for high refractive index sensitivity,” Opt. Lett. 42(7), 1245–1248 (2017).
    [Crossref] [PubMed]
  12. J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
    [Crossref] [PubMed]
  13. A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
    [Crossref]
  14. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [Crossref] [PubMed]
  15. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20(25), 27661–27669 (2012).
    [Crossref] [PubMed]
  16. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
    [Crossref] [PubMed]
  17. M. Chemnitz, G. Schmidl, A. Schwuchow, M. Zeisberger, U. Hübner, K. Weber, and M. A. Schmidt, “Enhanced sensitivity in single-mode silicon nitride stadium resonators at visible wavelengths,” Opt. Lett. 41(22), 5377–5380 (2016).
    [Crossref] [PubMed]
  18. A. Bera, M. Häyrinen, M. Kuittinen, S. Honkanen, and M. Roussey, “Parabolic opening in atomic layer deposited TiO(2) nanobeam operating in visible wavelengths,” Opt. Express 23(11), 14973–14980 (2015).
    [Crossref] [PubMed]
  19. Lumerical Solutions, Inc., http://www.lumerical.com
  20. P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).
  21. C. Y. Tan and Y.-X. Huang, “Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
    [Crossref]

2017 (1)

2016 (3)

M. Chemnitz, G. Schmidl, A. Schwuchow, M. Zeisberger, U. Hübner, K. Weber, and M. A. Schmidt, “Enhanced sensitivity in single-mode silicon nitride stadium resonators at visible wavelengths,” Opt. Lett. 41(22), 5377–5380 (2016).
[Crossref] [PubMed]

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).

2015 (5)

C. Y. Tan and Y.-X. Huang, “Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
[Crossref]

A. Bera, M. Häyrinen, M. Kuittinen, S. Honkanen, and M. Roussey, “Parabolic opening in atomic layer deposited TiO(2) nanobeam operating in visible wavelengths,” Opt. Express 23(11), 14973–14980 (2015).
[Crossref] [PubMed]

S. Kim, H. M. Kim, and Y. H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40(22), 5351–5354 (2015).
[Crossref] [PubMed]

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1–6 (2015).

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh Q and Low-Mode-Volume Parabolic Radius-Modulated Single Photonic Crystal Slot Nanobeam Cavity for High-Sensitivity Refractive Index Sensing,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

2013 (1)

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

2012 (1)

2010 (2)

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (3)

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett. 8(9), 3023–3028 (2008).
[Crossref] [PubMed]

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

2004 (1)

2003 (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Adibi, A.

Armani, A. M.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Atabaki, A. H.

Baets, R.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Bao, J.

B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett. 8(9), 3023–3028 (2008).
[Crossref] [PubMed]

Bera, A.

Bolivar, P. H.

Brasch, V.

Capasso, F.

B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett. 8(9), 3023–3028 (2008).
[Crossref] [PubMed]

Cassan, E.

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

Chemnitz, M.

Cheng, Z.

Claes, T.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Deshpande, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Dhakal, A.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Du Bois, B.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Fan, X.

Gao, D.

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

Gondarenko, A.

Han, S.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1–6 (2015).

Hartinger, K.

Häyrinen, M.

Helin, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Henschel, W.

Herr, T.

Hogle, J. M.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

Holzwarth, R.

Honkanen, S.

Hosseini, E. S.

Huang, Y.-X.

C. Y. Tan and Y.-X. Huang, “Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
[Crossref]

Hübner, U.

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Jansen, R.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Ji, J.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

Ji, Y.

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh Q and Low-Mode-Volume Parabolic Radius-Modulated Single Photonic Crystal Slot Nanobeam Cavity for High-Sensitivity Refractive Index Sensing,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Jiang, X.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).

Kim, H. M.

Kim, S.

Kippenberg, T. J.

Kuittinen, M.

Kurz, H.

Larson, D. N.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

Lee, Y. H.

Levy, J. S.

Leyssens, K.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Li, T.

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

Lipomi, D. J.

B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett. 8(9), 3023–3028 (2008).
[Crossref] [PubMed]

Lipson, M.

Liu, P.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1–6 (2015).

Loncar, M.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Neutens, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Niehusmann, J.

Peyskens, F.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Qiu, H.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).

Quan, Q.

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh Q and Low-Mode-Volume Parabolic Radius-Modulated Single Photonic Crystal Slot Nanobeam Cavity for High-Sensitivity Refractive Index Sensing,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Riemensberger, J.

Rottenberg, X.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Roussey, M.

Schmidl, G.

Schmidt, M. A.

Schwuchow, A.

Selvaraja, S.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Severi, S.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Shi, Y.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1–6 (2015).

Soltani, M.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Subramanian, A.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Sun, X.

Tan, C. Y.

C. Y. Tan and Y.-X. Huang, “Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
[Crossref]

Tian, H.

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh Q and Low-Mode-Volume Parabolic Radius-Modulated Single Photonic Crystal Slot Nanobeam Cavity for High-Sensitivity Refractive Index Sensing,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Tsang, H. K.

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Van Dorpe, P.

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Vörckel, A.

Wahlbrink, T.

Wang, Z.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).

Weber, K.

White, I. M.

Whitesides, G. M.

B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett. 8(9), 3023–3028 (2008).
[Crossref] [PubMed]

Wiley, B. J.

B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett. 8(9), 3023–3028 (2008).
[Crossref] [PubMed]

Wu, F.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).

Wu, X.

Yang, D.

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh Q and Low-Mode-Volume Parabolic Radius-Modulated Single Photonic Crystal Slot Nanobeam Cavity for High-Sensitivity Refractive Index Sensing,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Yang, J.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).

Yang, J. C.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

Yegnanarayanan, S.

Yu, H.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).

Yu, P.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).

Zeisberger, M.

Zhang, D.

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

Zhang, P.

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh Q and Low-Mode-Volume Parabolic Radius-Modulated Single Photonic Crystal Slot Nanobeam Cavity for High-Sensitivity Refractive Index Sensing,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Zhang, S.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1–6 (2015).

Zhang, Y.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1–6 (2015).

Zhou, W.

Zhu, B.

Appl. Phys. Lett. (1)

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

IEEE Photonics J. (3)

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 1–6 (2015).

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh Q and Low-Mode-Volume Parabolic Radius-Modulated Single Photonic Crystal Slot Nanobeam Cavity for High-Sensitivity Refractive Index Sensing,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

A. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

J. Chem. Eng. Data (1)

C. Y. Tan and Y.-X. Huang, “Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution,” J. Chem. Eng. Data 60(10), 2827–2833 (2015).
[Crossref]

Nano Lett. (2)

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett. 8(9), 3023–3028 (2008).
[Crossref] [PubMed]

Nanoscale (1)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Other (1)

Lumerical Solutions, Inc., http://www.lumerical.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematics of the proposed suspended Si3N4 PhC nanobeam cavity; (b) Sketch of the x-y plane for the PhC nanobeam cavity;(c) Zoomed in view of the framed part in (b); (d) The electric filed distribution for the cross section of waveguide and also the first three modes of the PhC nanobeam cavity; (e) The calculated transmission spectrum for the PhC nanobeam cavity.

Fig. 2
Fig. 2

The calculated influence on nanobeam cavity’s Q factor and sensitivity with: (a) Wx; (b) Wy ; (c) and the period of the mirror aMirror ; (d) Calculated Q factor and transmission vary with the mirror number NMirror; (e) Calculated Q factors and resonant wavelengths vary with the refractive index of the surrounding cladding.

Fig. 3
Fig. 3

(a) Scanning Electron Microscope (SEM) image of the whole structure; (b) Zoomed in SEM picture of the PhC nanobeam cavity part.

Fig. 4
Fig. 4

(a) Measured transmission spectrums of the proposed sensor surrounded by NaCl solution (mass fraction range from 0% to 25%); (b) Measured transmission spectrum and fitted curve of the proposed sensor with water cladding; (c) (d) Measured resonant wavelengths and Q values of the sensor with different concentrations of NaCl solution.