Abstract

In this study, we demonstrated an improvement in the detection sensitivity of dual-comb spectroscopy using the repetition rate multiplication of optical frequency combs. We compared the dual-comb signals in three dual-comb setups consisting of combinations of two combs with and without mode-filtering, and investigated how the repetition rate influences the signal-to-noise ratio (SNR) of dual-comb measurements. The dual-comb setups using high-repetition-rate combs enabled the absorption lines of HCN gas to be measured with a high SNR in a short averaging time, and real-time spectral data acquisition was realized using a low-sensitivity and low-resolution RF spectrum analyzer.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct-comb molecular spectroscopy by heterodyne detection with continuous-wave laser for high sensitivity

Taro Hasegawa and Hiroyuki Sasada
Opt. Express 25(16) A680-A688 (2017)

Referenced passive spectroscopy using dual frequency combs

Sylvain Boudreau and Jérôme Genest
Opt. Express 20(7) 7375-7387 (2012)

Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate

Sargis Hakobyan, Valentin J. Wittwer, Pierre Brochard, Kutan Gürel, Stéphane Schilt, Aline S. Mayer, Ursula Keller, and Thomas Südmeyer
Opt. Express 25(17) 20437-20453 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).
  2. A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
    [PubMed]
  3. G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290–298 (2014).
  4. T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3, 748 (2016).
  5. A. Asahara, A. Nishiyama, S. Yoshida, K. I. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
    [PubMed]
  6. O. E. Bonilla-Manrique, P. Martín-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 5300107 (2017).
  7. A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photonics 2, 041301 (2017).
  8. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [PubMed]
  9. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
  10. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
    [PubMed]
  11. J.-D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18(22), 23358–23370 (2010).
    [PubMed]
  12. S. A. Diddams, M. Kirchner, T. Fortier, D. Braje, A. M. Weiner, and L. Hollberg, “Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb,” Opt. Express 17(5), 3331–3340 (2009).
    [PubMed]
  13. K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42(2), 318–321 (2017).
    [PubMed]
  14. V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41(18), 4190–4193 (2016).
    [PubMed]
  15. M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
    [PubMed]
  16. J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
    [PubMed]
  17. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
    [PubMed]
  18. M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34(7), 872–874 (2009).
    [PubMed]
  19. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
    [PubMed]
  20. S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23(26), 33184–33193 (2015).
    [PubMed]

2017 (3)

O. E. Bonilla-Manrique, P. Martín-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 5300107 (2017).

A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photonics 2, 041301 (2017).

K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42(2), 318–321 (2017).
[PubMed]

2016 (6)

2015 (2)

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23(26), 33184–33193 (2015).
[PubMed]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).

2014 (1)

2013 (1)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[PubMed]

2010 (3)

2009 (3)

2008 (1)

Acedo, P.

O. E. Bonilla-Manrique, P. Martín-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 5300107 (2017).

Andrekson, P. A.

Asahara, A.

Baumann, E.

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[PubMed]

Bohn, B. J.

Bonilla-Manrique, O. E.

O. E. Bonilla-Manrique, P. Martín-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 5300107 (2017).

Braje, D.

Braje, D. A.

Chen, J.

Coddington, I.

Cromer, C.

Deschênes, J.-D.

Diddams, S. A.

Durán, V.

Fendel, P.

Fortier, T.

Fortier, T. M.

Genest, J.

Giaccarri, P.

Giorgetta, F. R.

Goda, K.

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[PubMed]

Hänsch, T. W.

Hashimoto, M.

Hollberg, L.

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[PubMed]

Holzwarth, R.

Hong, F.-L.

Hosaka, K.

Hsieh, Y.-D.

Ideguchi, T.

T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3, 748 (2016).

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[PubMed]

Inaba, H.

Ippen, E. P.

Iwakuni, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).

Jerez, B.

O. E. Bonilla-Manrique, P. Martín-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 5300107 (2017).

Kärtner, F. X.

Katsuyama, T.

Kawato, S.

Kirchner, M.

Kirchner, M. S.

Kobayashi, T.

Kobayashi, Y.

Kofler, J.

Kohno, T.

Kondo, K. I.

Martín-Mateos, P.

O. E. Bonilla-Manrique, P. Martín-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 5300107 (2017).

Mélen, G.

Minoshima, K.

Mohler, K. J.

Nakagawa, K.

Nakajima, Y.

Nakamura, T.

Newbury, N.

Newbury, N. R.

Nishiyama, A.

Okubo, S.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23(26), 33184–33193 (2015).
[PubMed]

Onae, A.

Petron, G.

Picqué, N.

K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42(2), 318–321 (2017).
[PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[PubMed]

Rieker, G. B.

Ruiz-Llata, M.

O. E. Bonilla-Manrique, P. Martín-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 5300107 (2017).

Sasada, H.

A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
[PubMed]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).

Sickler, J. W.

Sinclair, L. C.

Suh, M.-G.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[PubMed]

Swann, W.

Swann, W. C.

Sweeney, C.

Tans, P. P.

Torres-Company, V.

Vahala, K. J.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[PubMed]

Weiner, A. M.

Wilken, T.

Yan, M.

Yang, K. Y.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[PubMed]

Yang, Q.-F.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[PubMed]

Yasuda, M.

Yasui, T.

Yi, X.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[PubMed]

Yoshida, S.

Zolot, A. M.

APL Photonics (1)

A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photonics 2, 041301 (2017).

Appl. Phys. Express (1)

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F.-L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8, 082402 (2015).

IEEE J. Sel. Top. Quantum Electron. (1)

O. E. Bonilla-Manrique, P. Martín-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 5300107 (2017).

Nature (1)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[PubMed]

Opt. Express (6)

Opt. Lett. (6)

Optica (3)

Science (1)

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of the mode-filtering of an optical frequency comb. EDFA: Er-doped fiber amplifier, PZT: piezoelectric transducer, H: half-wave plate, Q: quarter-wave plate, Opt-SA: optical spectrum analyzer, RF-SA: RF spectrum analyzer. (b) Optical spectra before (black) and after (red) the Fabry–Perot cavity. (c) RF spectrum of the mode-filtered comb.

Fig. 2
Fig. 2

Three dual-comb setups used in this study with a HCN cell as the sample: (a) Type 0, without filtering; (b) Type 1, one-comb filtering; (c) Type 2, two-comb filtering.

Fig. 3
Fig. 3

Heterodyne beat spectra observed in each dual-comb setup without HCN cell: (a) Type 0, (b) Type 1, and (c) Type 2. In all the measurements, the input power to the detectors was 10 μW and the resolution of the RF spectrum analyzer was 1 Hz.

Fig. 4
Fig. 4

RF peak power of the heterodyne beats observed in Type 0 (black), Type 1 (blue), and Type 2 (red) versus total input power to the photodetector.

Fig. 5
Fig. 5

Interferograms observed in the setup of (a) Type 0 and (b) Type 1. The insets show the magnified views around a center burst. The averaging time was 2 s.

Fig. 6
Fig. 6

Dual-comb spectra around HCN absorptions observed with same input power of 10 μW and same averaging time over 2 s. (a) Calculated spectra from unapodized (gray) and apodized (black) interferogram of Fig. 5(a). The apodized resolution was 1.47 GHz. (b) Mode-filtered comb spectrum calculated from the interferogram of Fig. 5(b) including the 26 center bursts.

Fig. 7
Fig. 7

Dual-comb heterodyne beat spectrum of the transmittance of the HCN cell measured by the low-resolution RF spectrum analyzer with a resolution of 30 kHz and acquisition time of 5.2 s. The assignments of the transitions are shown under the absorptions.

Fig. 8
Fig. 8

SNR of the dual-comb heterodyne beats.

Tables (1)

Tables Icon

Table 1 Ratio of the Peak Powers of the Dual-Comb Heterodyne Beat.