Abstract

We report on a method to fabricate a varifocal microlens array that employs a dielectric elastomer (DE) sandwiched between two electrodes as the lens material. The microlens array is patterned on the electrode plates, and when the electrodes are subjected to a controllable operating voltage, the DE material is “squeezed” by the Maxwell force to deform the lens array pattern, thus resulting in curvature deformation yielding a tunable lens profile. The tunable focal length performance ranges from 950 mm to infinity. When compared with liquid-filled lenses, solid-based varifocal lenses are more robust to thermal expansion, gravity, and vibrational motion. Our approach can be utilized in applications such as machine vision systems.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable liquid-filled microlens array integrated with microfluidic network

Nikolas Chronis, Gang L. Liu, Ki-Hun Jeong, and Luke P. Lee
Opt. Express 11(19) 2370-2378 (2003)

Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses

Seung Tae Choi, Byeong Soo Son, Gye Won Seo, Si-Young Park, and Kyung-Sick Lee
Opt. Express 22(5) 6133-6146 (2014)

Tunable microdoublet lens array

Ki-Hun Jeong, Gang L. Liu, Nikolas Chronis, and Luke P. Lee
Opt. Express 12(11) 2494-2500 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE Publications, 2004).
  2. H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (John Wiley & Sons, 2012).
  3. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
  4. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
    [PubMed]
  5. G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
    [PubMed]
  6. Y. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam – Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3, 79–88 (2017).
  7. H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004).
    [PubMed]
  8. D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
  9. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32(22), 4181–4186 (1993).
    [PubMed]
  10. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
    [PubMed]
  11. H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94, 221108 (2009).
  12. L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102, 131111 (2013).
  13. L. Wang, H. Oku, and M. Ishikawa, “An improved low-optical-power variable focus lens with a large aperture,” Opt. Express 22(16), 19448–19456 (2014).
    [PubMed]
  14. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
  15. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
  16. F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
  17. C.-C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
    [PubMed]
  18. S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46, 483001 (2013).
  19. H. Zhang, H. Ren, S. Xu, and S. T. Wu, “Temperature effects on dielectric liquid lenses,” Opt. Express 22(2), 1930–1939 (2014).
    [PubMed]
  20. S. Xu, H. Ren, Y.-J. Lin, M. G. J. Moharam, S.-T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photo-polymer,” Opt. Express 17(20), 17590–17595 (2009).
    [PubMed]
  21. S. Shian, R. M. Diebold, and D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21(7), 8669–8676 (2013).
    [PubMed]
  22. L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25, 1656–1665 (2015).
  23. F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
  24. A. S. Mondol, B. Vogel, and G. Bastian, “Large scale water lens for solar concentration,” Opt. Express 23(11), A692–A708 (2015).
    [PubMed]
  25. N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25(2), 1221–1233 (2017).
    [PubMed]
  26. F. Santiago, B. Bagwell, T. Martinez, S. Restaino, and S. Krishna, “Large aperture adaptive doublet polymer lens for imaging applications,” J. Opt. Soc. Am. A 31(8), 1842–1846 (2014).
    [PubMed]
  27. D. Koyama, R. Isago, and K. Nakamura, “Compact, high-speed variable-focus liquid lens using acoustic radiation force,” Opt. Express 18(24), 25158–25169 (2010).
    [PubMed]
  28. C. A. López, C.-C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).
  29. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009).
    [PubMed]
  30. A. O. Ashtiani and H. Jiang, “Thermally actuated tunable liquid microlens with sub-second response time,” Appl. Phys. Lett. 103, 111101 (2013).
  31. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [PubMed]
  32. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16(16), 11847–11857 (2008).
    [PubMed]
  33. J.-M. Choi, H.-M. Son, and Y.-J. Lee, “Biomimetic variable-focus lens system controlled by winding-type SMA actuator,” Opt. Express 17(10), 8152–8164 (2009).
    [PubMed]
  34. S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K. U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107, 081907 (2015).
  35. F. Carpi, G. Frediani, M. Nanni, and D. De Rossi, “Granularly coupled dielectric elastomer actuators,” IEEE/ASME Trans. Mechatron. 16, 16–23 (2011).
  36. Z. Suo, “Theory of dielectric elastomers,” Guti Lixue Xuebao 23, 549–578 (2010).
  37. C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
    [PubMed]
  38. L. Wang, H. Oku, and M. Ishikawa, “Paraxial ray solution for liquid-filled variable focus lenses,” Jpn. J. Appl. Phys. 56, 122501 (2017).
  39. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2001).

2017 (3)

Y. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam – Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3, 79–88 (2017).

L. Wang, H. Oku, and M. Ishikawa, “Paraxial ray solution for liquid-filled variable focus lenses,” Jpn. J. Appl. Phys. 56, 122501 (2017).

N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25(2), 1221–1233 (2017).
[PubMed]

2015 (3)

A. S. Mondol, B. Vogel, and G. Bastian, “Large scale water lens for solar concentration,” Opt. Express 23(11), A692–A708 (2015).
[PubMed]

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25, 1656–1665 (2015).

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K. U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107, 081907 (2015).

2014 (3)

2013 (5)

S. Shian, R. M. Diebold, and D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21(7), 8669–8676 (2013).
[PubMed]

C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[PubMed]

A. O. Ashtiani and H. Jiang, “Thermally actuated tunable liquid microlens with sub-second response time,” Appl. Phys. Lett. 103, 111101 (2013).

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46, 483001 (2013).

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102, 131111 (2013).

2012 (1)

2011 (2)

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).

F. Carpi, G. Frediani, M. Nanni, and D. De Rossi, “Granularly coupled dielectric elastomer actuators,” IEEE/ASME Trans. Mechatron. 16, 16–23 (2011).

2010 (2)

2009 (4)

2008 (1)

2006 (4)

C.-C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[PubMed]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[PubMed]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[PubMed]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[PubMed]

2005 (2)

C. A. López, C.-C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).

2004 (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004).
[PubMed]

2003 (1)

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).

1993 (1)

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[PubMed]

Anderson, P. A.

Ashtiani, A. O.

A. O. Ashtiani and H. Jiang, “Thermally actuated tunable liquid microlens with sub-second response time,” Appl. Phys. Lett. 103, 111101 (2013).

Ayräs, P.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[PubMed]

Baer, E.

Bagwell, B.

Banerjee, A.

Baret, J.-C.

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).

Bastian, G.

Beadie, G.

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[PubMed]

Berdichevsky, Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).

Carpi, F.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25, 1656–1665 (2015).

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).

F. Carpi, G. Frediani, M. Nanni, and D. De Rossi, “Granularly coupled dielectric elastomer actuators,” IEEE/ASME Trans. Mechatron. 16, 16–23 (2011).

Chang, C. A.

Cheng, C.-C.

Choi, J.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).

Choi, J.-M.

Clarke, D. R.

De Nicola, S.

De Rossi, D.

F. Carpi, G. Frediani, M. Nanni, and D. De Rossi, “Granularly coupled dielectric elastomer actuators,” IEEE/ASME Trans. Mechatron. 16, 16–23 (2011).

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).

Diebold, R. M.

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[PubMed]

Ferraro, P.

Finizio, A.

Foo, C. C.

C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[PubMed]

Fox, D.

Frediani, G.

F. Carpi, G. Frediani, M. Nanni, and D. De Rossi, “Granularly coupled dielectric elastomer actuators,” IEEE/ASME Trans. Mechatron. 16, 16–23 (2011).

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).

Gauza, S.

Y. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam – Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3, 79–88 (2017).

Ghilardi, M.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25, 1656–1665 (2015).

Giridhar, M. S.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[PubMed]

Gou, F.

Y. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam – Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3, 79–88 (2017).

Grilli, S.

Haddock, J. N.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[PubMed]

Hasan, N.

Hashimoto, K.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).

Hiltner, A.

Hirsa, A. H.

C. A. López, C.-C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).

Honkanen, S.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[PubMed]

Isago, R.

Ishikawa, M.

L. Wang, H. Oku, and M. Ishikawa, “Paraxial ray solution for liquid-filled variable focus lenses,” Jpn. J. Appl. Phys. 56, 122501 (2017).

L. Wang, H. Oku, and M. Ishikawa, “An improved low-optical-power variable focus lens with a large aperture,” Opt. Express 22(16), 19448–19456 (2014).
[PubMed]

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102, 131111 (2013).

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94, 221108 (2009).

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004).
[PubMed]

Jiang, H.

A. O. Ashtiani and H. Jiang, “Thermally actuated tunable liquid microlens with sub-second response time,” Appl. Phys. Lett. 103, 111101 (2013).

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[PubMed]

Kazmierczak, T.

Keplinger, C.

C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[PubMed]

Kim, H.

Kippelen, B.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[PubMed]

Koyama, D.

Krishna, S.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).

Kyung, K. U.

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K. U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107, 081907 (2015).

Lee, C.-C.

C. A. López, C.-C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).

Lee, Y.

Y. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam – Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3, 79–88 (2017).

Lee, Y.-J.

Lepkowicz, R. S.

Li, G.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[PubMed]

Lien, V.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).

Lin, Y.-J.

Liu, G.

Y. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam – Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3, 79–88 (2017).

Lo, Y.-H.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).

López, C. A.

C. A. López, C.-C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).

Maffli, L.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25, 1656–1665 (2015).

Martinez, T.

Mastrangelo, C. H.

Mathine, D. L.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[PubMed]

Meredith, G. R.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[PubMed]

Miccio, L.

Moharam, M. G. J.

Mondol, A. S.

Morita, S.

Mugele, F.

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).

Nakamura, K.

Nam, S.

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K. U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107, 081907 (2015).

Nanni, M.

F. Carpi, G. Frediani, M. Nanni, and D. De Rossi, “Granularly coupled dielectric elastomer actuators,” IEEE/ASME Trans. Mechatron. 16, 16–23 (2011).

Oku, H.

L. Wang, H. Oku, and M. Ishikawa, “Paraxial ray solution for liquid-filled variable focus lenses,” Jpn. J. Appl. Phys. 56, 122501 (2017).

L. Wang, H. Oku, and M. Ishikawa, “An improved low-optical-power variable focus lens with a large aperture,” Opt. Express 22(16), 19448–19456 (2014).
[PubMed]

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102, 131111 (2013).

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94, 221108 (2009).

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004).
[PubMed]

Park, B.

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K. U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107, 081907 (2015).

Park, S.

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K. U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107, 081907 (2015).

Park, S. K.

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K. U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107, 081907 (2015).

Paturzo, M.

Peng, F.

Y. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam – Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3, 79–88 (2017).

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).

Peyghambarian, N.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[PubMed]

Ponting, M.

Ren, H.

Restaino, S.

Rosset, S.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25, 1656–1665 (2015).

Rothemund, P.

C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[PubMed]

Sandrock, M. L.

Santiago, F.

Sato, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[PubMed]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).

Schwiegerling, J.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[PubMed]

Shea, H.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25, 1656–1665 (2015).

Shian, S.

Shirk, J. S.

Son, H.-M.

Sugiura, N.

Sun, J.-Y.

C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[PubMed]

Suo, Z.

C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[PubMed]

Z. Suo, “Theory of dielectric elastomers,” Guti Lixue Xuebao 23, 549–578 (2010).

Tabiryan, N.

Tabiryan, N. V.

Y. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam – Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3, 79–88 (2017).

Takahashi, S.

Tan, G.

Y. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam – Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3, 79–88 (2017).

Turco, S.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).

Uchida, M.

Valley, P.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[PubMed]

Vespini, V.

Vogel, B.

Wang, B.

Wang, L.

L. Wang, H. Oku, and M. Ishikawa, “Paraxial ray solution for liquid-filled variable focus lenses,” Jpn. J. Appl. Phys. 56, 122501 (2017).

L. Wang, H. Oku, and M. Ishikawa, “An improved low-optical-power variable focus lens with a large aperture,” Opt. Express 22(16), 19448–19456 (2014).
[PubMed]

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102, 131111 (2013).

Weng, Y.

Y. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam – Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3, 79–88 (2017).

Whitesides, G. M.

C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[PubMed]

Wiggins, M. J.

Williby, G.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[PubMed]

Wu, B.

Wu, S. T.

Wu, S.-T.

Y. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam – Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3, 79–88 (2017).

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46, 483001 (2013).

S. Xu, H. Ren, Y.-J. Lin, M. G. J. Moharam, S.-T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photo-polymer,” Opt. Express 17(20), 17590–17595 (2009).
[PubMed]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[PubMed]

Xu, S.

Yanase, S.

Yang, Y.

Ye, M.

Yeh, J. A.

Yun, S.

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K. U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107, 081907 (2015).

Zhan, T.

Y. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam – Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3, 79–88 (2017).

Zhang, D.-Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).

Zhang, H.

Adv. Funct. Mater. (2)

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25, 1656–1665 (2015).

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).

Appl. Opt. (2)

Appl. Phys. Lett. (7)

C. A. López, C.-C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).

A. O. Ashtiani and H. Jiang, “Thermally actuated tunable liquid microlens with sub-second response time,” Appl. Phys. Lett. 103, 111101 (2013).

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94, 221108 (2009).

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102, 131111 (2013).

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K. U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107, 081907 (2015).

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).

Guti Lixue Xuebao (1)

Z. Suo, “Theory of dielectric elastomers,” Guti Lixue Xuebao 23, 549–578 (2010).

IEEE/ASME Trans. Mechatron. (1)

F. Carpi, G. Frediani, M. Nanni, and D. De Rossi, “Granularly coupled dielectric elastomer actuators,” IEEE/ASME Trans. Mechatron. 16, 16–23 (2011).

J. Opt. Soc. Am. A (1)

J. Phys. Condens. Matter (1)

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).

J. Phys. D Appl. Phys. (1)

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46, 483001 (2013).

Jpn. J. Appl. Phys. (2)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).

L. Wang, H. Oku, and M. Ishikawa, “Paraxial ray solution for liquid-filled variable focus lenses,” Jpn. J. Appl. Phys. 56, 122501 (2017).

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[PubMed]

Opt. Data Process. Storage (1)

Y. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam – Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3, 79–88 (2017).

Opt. Express (13)

S. Shian, R. M. Diebold, and D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21(7), 8669–8676 (2013).
[PubMed]

H. Zhang, H. Ren, S. Xu, and S. T. Wu, “Temperature effects on dielectric liquid lenses,” Opt. Express 22(2), 1930–1939 (2014).
[PubMed]

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004).
[PubMed]

C.-C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[PubMed]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[PubMed]

G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16(16), 11847–11857 (2008).
[PubMed]

L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009).
[PubMed]

J.-M. Choi, H.-M. Son, and Y.-J. Lee, “Biomimetic variable-focus lens system controlled by winding-type SMA actuator,” Opt. Express 17(10), 8152–8164 (2009).
[PubMed]

S. Xu, H. Ren, Y.-J. Lin, M. G. J. Moharam, S.-T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photo-polymer,” Opt. Express 17(20), 17590–17595 (2009).
[PubMed]

D. Koyama, R. Isago, and K. Nakamura, “Compact, high-speed variable-focus liquid lens using acoustic radiation force,” Opt. Express 18(24), 25158–25169 (2010).
[PubMed]

L. Wang, H. Oku, and M. Ishikawa, “An improved low-optical-power variable focus lens with a large aperture,” Opt. Express 22(16), 19448–19456 (2014).
[PubMed]

A. S. Mondol, B. Vogel, and G. Bastian, “Large scale water lens for solar concentration,” Opt. Express 23(11), A692–A708 (2015).
[PubMed]

N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25(2), 1221–1233 (2017).
[PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[PubMed]

Science (1)

C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, and Z. Suo, “Stretchable, transparent, ionic conductors,” Science 341(6149), 984–987 (2013).
[PubMed]

Other (3)

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2001).

J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE Publications, 2004).

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (John Wiley & Sons, 2012).

Supplementary Material (1)

NameDescription
» Visualization 1       A video clip of our experiment is linked, which shows that the focal plane shifts from left to right of the target when the applied voltage is increased from zero to 5 kV. In our experiment, the applied voltage was increased in steps of 0.5 kV.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the varifocal microlens array based on dielectric elastomer (DE). The green color represents the DE material, and the blue color the electrode. Under the OFF state (no applied voltage), there is no deformation. In the ON state, the upper and lower electrodes squeeze the DE material via Maxwell stress, thereby resulting in curvature deformation of the “exposed” microlens array cells.

Fig. 2
Fig. 2

Simulation result of voltage distribution of proposed dielectric elastomer (DE) upon application of 5 kV. Circularly shaped polyacrylate with a diameter of 10 mm was employed as the DE material. Two electrodes patterned with a 3 × 3 array with 1.5-mm-aperture cells were affixed to the DE top and bottom surfaces. (a) Simulated model, (b) voltage distribution, and (c) displacement distribution.

Fig. 3
Fig. 3

Fabrication process of the dielectric elastomer (DE) microlens array device. (a) A 40 × 40 mm square-shaped, 1-mm-thick insulating plastic plate with a 30-mm circular hole in the center is fabricated. (b) A circular stainless steel plate with 30-mm diameter forms the (bottom) electrode plate, and it is affixed to the plastic frame. A 9 × 9 array is patterned on the plate, with each aperture size being set to 1 mm. (c) A 40 × 40 mm, 1-mm-thickness acrylic elastomer (3M, VHB 4910) is employed as the DE material. The top and bottom electrode plates are pasted onto this DE material. (d) A second (top) electrode plate with an insulating plastic frame and electrode plate is affixed to the top surface of the DE material.

Fig. 4
Fig. 4

(a) Experimental layout to determine varifocal lens performance. The microlens array is positioned in between a camera mounted with a lens kit and a target with depth information. (b) A black occluder with an aperture is positioned atop the lens prototype in order to evaluate the varifocal performance of a single lens cell. (c) Photograph of the microlens array prototype. (d) Visualization 1 linked to a video clip showing the focus changing with the applied voltage.

Fig. 5
Fig. 5

Evaluation of varifocal performance of proposed microlens array. (a) Photograph of target with no applied voltage. The left portion of the image is in focus. (b) Photograph of target with application of 5 kV. The right portion of the image is in focus. To analyze the change in the focal plane, we calculated the focal change gradient using MATLAB. The gradient was calculated along the red line in (a) and (b). (c) and (d) Gradient plots corresponding to (a) and (b), respectively. The higher-amplitude region in the plot corresponds to the area in focus. The black box in (c) indicates that the image region corresponding to this box was defocused when the applied voltage was zero. In (d), the change in amplitude indicates the area being in focus with the application of 5 kV.

Fig. 6
Fig. 6

Schematic depicting the change in the focal length of the test lens. The focal length of the test lens is f 2 . With change in f 2 , the combined focal plane shifts by a distance of S 2 . The distance D between the camera lens and test lens is 50 mm, and with the initial combined focal length being f 1 =100 mm. When no voltage is applied to the DE, focal length f 2 is infinity. When 5 kV is applied to the DE, the focal plane moves by S S =2.5 mm. The tunable range of the test lens is calculated as 950 mm to infinity.

Fig. 7
Fig. 7

Plot showing focal length changes at various voltages. In this experiment, the applied voltage was increased from zero to 5 kV in steps of 0.5 kV. The tunable focal length range of the microlens system was 950 mm to infinity. A 1951 USAF resolution test chart, shown in the top right, was captured through one of the microlens arrays.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P eq = ε 0 ε r U 2 d 2 ,
F= F x i ^ + F y j ^ .
1 f 2 = 1 S 2 1 S 1 D .