Abstract

We propose a method of extending the depth of field to twice that achievable by conventional lenses for the purpose of a low cost iris recognition front-facing camera in mobile phones. By introducing intrinsic primary chromatic aberration in the lens, the depth of field is doubled by means of dual wavelength illumination. The lens parameters (radius of curvature, optical power) can be found analytically by using paraxial raytracing. The effective range of distances covered increases with dispersion of the glass chosen and with larger distance for the near object point.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Increasing the information acquisition volume in iris recognition systems

D. Shane Barwick
Appl. Opt. 47(26) 4684-4691 (2008)

Model eyes for evaluation of intraocular lenses

Sverker Norrby, Patricia Piers, Charles Campbell, and Marrie van der Mooren
Appl. Opt. 46(26) 6595-6605 (2007)

Retinal image contrast obtained by a model eye with combined correction of chromatic and spherical aberrations

Kazuhiko Ohnuma, Hiroyuki Kayanuma, Tjundewo Lawu, Kazuno Negishi, Takefumi Yamaguchi, and Toru Noda
Biomed. Opt. Express 2(6) 1443-1457 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, 7th ed., (Cambridge University, 1999).
    [Crossref]
  2. H. Gross, Handbook of Optical Systems, Volume 1, Fundamentals of Technical Optics (Wiley-VCH, 2005).
    [Crossref]
  3. M. Laikin, Lens Design (CRC Press, 2006).
  4. E. R. Dowski and W. T. Cathey, “Extended depth of field through wavefront coding,” Appl. Opt. 34, 1859–1866 (1995).
    [Crossref] [PubMed]
  5. W. Chi, K. Chu, and N. George, “Polarization coded aperture,” Opt. Express 14, 6634–6642 (2006)
    [Crossref] [PubMed]
  6. H. Nagahara, S. Kuthirummal, C. Zhou, and S. K. Nayar, “Flexible depth of field photography,” in “European Conference on Computer Vision,” (Springer, 2008), pp. 60–73.
  7. R. Yokoya and S. K. Nayar, “Extended depth of field catadioptric imaging using focal sweep,” in Proceedings of the IEEE International Conference on Computer Vision (2015), pp. 3505–3513.
  8. S. Elmalem, N. Konforti, and E. Marom, “Polychromatic imaging with extended depth of field using phase masks exhibiting constant phase over broad wavelength band,” Appl. Opt. 52, 8634–8643 (2013).
    [Crossref]
  9. B. Milgrom, N. Konforti, M. A. Golub, and E. Marom, “Novel approach for extending the depth of field of Barcode decoders by using RGB channels of information,” Opt. Express 18, 17027–17039 (2010).
    [Crossref] [PubMed]
  10. H. Haim, A. Bronstein, and E. Marom, “Computational multi-focus imaging combining sparse model with color dependent phase mask,” Opt. Express 23, 24547–24556 (2015)
    [Crossref] [PubMed]
  11. E. Ben-Eliezer, E. Marom, N. Konforti, and Z. Zalevsky, “Experimental realization of an imaging system with an extended depth of field,” Appl. Opt. 44, 2792–2798 (2005).
    [Crossref] [PubMed]
  12. N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. Soc. Am. A 5, S157 (2003).
  13. H.-S. Chen and Y.-H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21, 18079–18088 (2013).
    [Crossref] [PubMed]
  14. S. Liu and H. Hua, “Extended depth-of-field microscopic imaging with a variable focus microscope objective,” Opt. Express 19, 353–362 (2011).
    [Crossref] [PubMed]
  15. C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012)
    [Crossref]
  16. P. Mouroulis, “Depth of field extension with spherical optics,” Opt. Express 16, 12995–13004 (2008).
    [Crossref] [PubMed]
  17. F. Guichard, H. Nguyen, R. Tessieres, M. Pyanet, I. Tarchouna, and F. Cao, “Extended depth-of-field using sharpness transport across color channels,” Proc. SPIE 7250, 72500N (2009).
    [Crossref]
  18. C. Olsovsky, R. Shelton, O. Carrasco-Zevallos, B. E. Applegate, and K. C. Maitland, “Chromatic confocal microscopy for multi-depth imaging of epithelial tissue,” Biomed. Opt. Express 4, 732–740 (2013).
    [Crossref] [PubMed]
  19. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-HeinemannOxford, 2000).
  20. W. T. Welford, Aberrations of Optical Systems (CRC Press, 1986).
  21. C. J. Sheil and A. V. Goncharov, “Crystalline lens paradoxes revisited: significance of age-related restructuring of the GRIN,” Biomed. Opt. Express 8, 4172–4180 (2017)
    [Crossref] [PubMed]
  22. R. Navarro, “Adaptive model of the aging emmetropic eye and its changes with accommodation,” J. Vis. 14(13, 21 (2014)
    [Crossref] [PubMed]
  23. N. Fitzgerald, C. Dainty, and A. V. Goncharov, “Extending the depth of field in a fixed focus lens using axial colour,” Proc. SPIE10590, 1059034 (2017)

2017 (1)

2015 (1)

2014 (1)

R. Navarro, “Adaptive model of the aging emmetropic eye and its changes with accommodation,” J. Vis. 14(13, 21 (2014)
[Crossref] [PubMed]

2013 (3)

2012 (1)

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012)
[Crossref]

2011 (1)

2010 (1)

2009 (1)

F. Guichard, H. Nguyen, R. Tessieres, M. Pyanet, I. Tarchouna, and F. Cao, “Extended depth-of-field using sharpness transport across color channels,” Proc. SPIE 7250, 72500N (2009).
[Crossref]

2008 (1)

2006 (1)

2005 (1)

2003 (1)

N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. Soc. Am. A 5, S157 (2003).

1995 (1)

Applegate, B. E.

Atchison, D. A.

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-HeinemannOxford, 2000).

Ben-Eliezer, E.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed., (Cambridge University, 1999).
[Crossref]

Bronstein, A.

Cao, F.

F. Guichard, H. Nguyen, R. Tessieres, M. Pyanet, I. Tarchouna, and F. Cao, “Extended depth-of-field using sharpness transport across color channels,” Proc. SPIE 7250, 72500N (2009).
[Crossref]

Carrasco-Zevallos, O.

Cathey, W. T.

Chen, H.-S.

Chi, W.

W. Chi, K. Chu, and N. George, “Polarization coded aperture,” Opt. Express 14, 6634–6642 (2006)
[Crossref] [PubMed]

N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. Soc. Am. A 5, S157 (2003).

Chu, K.

Dainty, C.

N. Fitzgerald, C. Dainty, and A. V. Goncharov, “Extending the depth of field in a fixed focus lens using axial colour,” Proc. SPIE10590, 1059034 (2017)

Dowski, E. R.

Elmalem, S.

Fitzgerald, N.

N. Fitzgerald, C. Dainty, and A. V. Goncharov, “Extending the depth of field in a fixed focus lens using axial colour,” Proc. SPIE10590, 1059034 (2017)

George, N.

W. Chi, K. Chu, and N. George, “Polarization coded aperture,” Opt. Express 14, 6634–6642 (2006)
[Crossref] [PubMed]

N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. Soc. Am. A 5, S157 (2003).

Golub, M. A.

Goncharov, A. V.

C. J. Sheil and A. V. Goncharov, “Crystalline lens paradoxes revisited: significance of age-related restructuring of the GRIN,” Biomed. Opt. Express 8, 4172–4180 (2017)
[Crossref] [PubMed]

N. Fitzgerald, C. Dainty, and A. V. Goncharov, “Extending the depth of field in a fixed focus lens using axial colour,” Proc. SPIE10590, 1059034 (2017)

Gross, H.

H. Gross, Handbook of Optical Systems, Volume 1, Fundamentals of Technical Optics (Wiley-VCH, 2005).
[Crossref]

Guichard, F.

F. Guichard, H. Nguyen, R. Tessieres, M. Pyanet, I. Tarchouna, and F. Cao, “Extended depth-of-field using sharpness transport across color channels,” Proc. SPIE 7250, 72500N (2009).
[Crossref]

Haim, H.

Hua, H.

Konforti, N.

Kuthirummal, S.

H. Nagahara, S. Kuthirummal, C. Zhou, and S. K. Nayar, “Flexible depth of field photography,” in “European Conference on Computer Vision,” (Springer, 2008), pp. 60–73.

Laikin, M.

M. Laikin, Lens Design (CRC Press, 2006).

Lin, Y.-H.

Liu, S.

Maitland, K. C.

Marom, E.

Milgrom, B.

Mouroulis, P.

Nagahara, H.

H. Nagahara, S. Kuthirummal, C. Zhou, and S. K. Nayar, “Flexible depth of field photography,” in “European Conference on Computer Vision,” (Springer, 2008), pp. 60–73.

Navarro, R.

R. Navarro, “Adaptive model of the aging emmetropic eye and its changes with accommodation,” J. Vis. 14(13, 21 (2014)
[Crossref] [PubMed]

Nayar, S. K.

R. Yokoya and S. K. Nayar, “Extended depth of field catadioptric imaging using focal sweep,” in Proceedings of the IEEE International Conference on Computer Vision (2015), pp. 3505–3513.

H. Nagahara, S. Kuthirummal, C. Zhou, and S. K. Nayar, “Flexible depth of field photography,” in “European Conference on Computer Vision,” (Springer, 2008), pp. 60–73.

Nguyen, H.

F. Guichard, H. Nguyen, R. Tessieres, M. Pyanet, I. Tarchouna, and F. Cao, “Extended depth-of-field using sharpness transport across color channels,” Proc. SPIE 7250, 72500N (2009).
[Crossref]

Olsovsky, C.

Perwass, C.

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012)
[Crossref]

Pyanet, M.

F. Guichard, H. Nguyen, R. Tessieres, M. Pyanet, I. Tarchouna, and F. Cao, “Extended depth-of-field using sharpness transport across color channels,” Proc. SPIE 7250, 72500N (2009).
[Crossref]

Sheil, C. J.

Shelton, R.

Smith, G.

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-HeinemannOxford, 2000).

Tarchouna, I.

F. Guichard, H. Nguyen, R. Tessieres, M. Pyanet, I. Tarchouna, and F. Cao, “Extended depth-of-field using sharpness transport across color channels,” Proc. SPIE 7250, 72500N (2009).
[Crossref]

Tessieres, R.

F. Guichard, H. Nguyen, R. Tessieres, M. Pyanet, I. Tarchouna, and F. Cao, “Extended depth-of-field using sharpness transport across color channels,” Proc. SPIE 7250, 72500N (2009).
[Crossref]

Welford, W. T.

W. T. Welford, Aberrations of Optical Systems (CRC Press, 1986).

Wietzke, L.

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012)
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed., (Cambridge University, 1999).
[Crossref]

Yokoya, R.

R. Yokoya and S. K. Nayar, “Extended depth of field catadioptric imaging using focal sweep,” in Proceedings of the IEEE International Conference on Computer Vision (2015), pp. 3505–3513.

Zalevsky, Z.

Zhou, C.

H. Nagahara, S. Kuthirummal, C. Zhou, and S. K. Nayar, “Flexible depth of field photography,” in “European Conference on Computer Vision,” (Springer, 2008), pp. 60–73.

Appl. Opt. (3)

Biomed. Opt. Express (2)

J. Opt. Soc. Am. A (1)

N. George and W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. Soc. Am. A 5, S157 (2003).

J. Vis. (1)

R. Navarro, “Adaptive model of the aging emmetropic eye and its changes with accommodation,” J. Vis. 14(13, 21 (2014)
[Crossref] [PubMed]

Opt. Express (6)

Proc. SPIE (2)

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012)
[Crossref]

F. Guichard, H. Nguyen, R. Tessieres, M. Pyanet, I. Tarchouna, and F. Cao, “Extended depth-of-field using sharpness transport across color channels,” Proc. SPIE 7250, 72500N (2009).
[Crossref]

Other (8)

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-HeinemannOxford, 2000).

W. T. Welford, Aberrations of Optical Systems (CRC Press, 1986).

M. Born and E. Wolf, Principles of Optics, 7th ed., (Cambridge University, 1999).
[Crossref]

H. Gross, Handbook of Optical Systems, Volume 1, Fundamentals of Technical Optics (Wiley-VCH, 2005).
[Crossref]

M. Laikin, Lens Design (CRC Press, 2006).

H. Nagahara, S. Kuthirummal, C. Zhou, and S. K. Nayar, “Flexible depth of field photography,” in “European Conference on Computer Vision,” (Springer, 2008), pp. 60–73.

R. Yokoya and S. K. Nayar, “Extended depth of field catadioptric imaging using focal sweep,” in Proceedings of the IEEE International Conference on Computer Vision (2015), pp. 3505–3513.

N. Fitzgerald, C. Dainty, and A. V. Goncharov, “Extending the depth of field in a fixed focus lens using axial colour,” Proc. SPIE10590, 1059034 (2017)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Effective doubled depth of field for object position l ( λ ¯ ).

Fig. 2
Fig. 2

EDOF concept: the dual-wavelength flash illuminates the iris which then reflects the NIR light. The lens is designed with a specific amount of axial chromatic aberration such that the iris image remains in focus in one of the two colours shown in the top schematic which is not to scale. Zemax raytrace to scale from the detector into object space showing the cornea and the iris.

Fig. 3
Fig. 3

Extending depth of field in a plano-convex singlet by means of longitudinal chromatic aberration.

Fig. 4
Fig. 4

Plot in object space showing the depth of field for an N-SF5 singlet fulfilling the criterion. Solid lines indicate the optimum position of the eye with respect to the camera.

Fig. 5
Fig. 5

Iris imaging with an aspheric, plano-convex singlet lens. The features of the iris required for identification remain sharp, while the effect of astigmatism is noticeable outside the central field. For comparative purposes the object and image are the same size and orientation

Fig. 6
Fig. 6

(a) Seidel aberrations for the high dispersion N-SF5 singlet in image space. Maximum aberration scale is 0.00500 mm. (b) The Block 1 and 2 of spot diagrams for the dual flash illumination on the image plane. The Airy disk is shown in black with a radius of 2.376 µm.

Fig. 7
Fig. 7

Rms wavefront error vs field for the singlet illuminated by λ1 ± Δλ. The effect of introducing the cornea on the rms wavefront error is seen by the dashed purple line.

Fig. 8
Fig. 8

MTF for singlet lens and cornea.

Fig. 9
Fig. 9

Iris imaging with a aspheric, plano-convex singlet lens centred at object height 15 mm positioned on the parabololic object surface at a distance 240 mm from the lens where l is the sag of the parabola at h =15 mm.

Fig. 10
Fig. 10

Singlet lenses in imaging mode: (a) concentric surface singlet, (b) reverse plano-convex singlet and (c) meniscus singlet.

Fig. 11
Fig. 11

Changes to f-number and Δl as the distance of the near object point is varied. The solid blue line corresponds to Δl vs l(λ1) and the dashed orange line represents F # vs l(λ1).

Tables (2)

Tables Icon

Table 1 N-SF5 glass and E48R optical plastic aspheric singlets with parabolic object surface.

Tables Icon

Table 2 Shape factor: Lens data for N-SF5 singlet where CP for the object surface as a parabola, FP is a flat object plane and SF is shape factor

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Δ z = ± 2 λ ( F # ) 2 ,
Δ Z Δ z / m ¯ ,
m = l i m a g e / l o b j e c t f / l ,
Δ Z = 2 λ ( f 2 / D 2 ) ( l 2 / f 2 ) = 2 λ ( l 2 / D 2 )
Δ Z = Z ¯ ( l f ) / ( l + Z ¯ )
Δ Z * = Z ¯ ( l f ) / ( l Z ¯ )
n j   u j   n j u j = h j ϕ j
h j + 1 = h j + u j   d j   ,
ϕ j = ( 1 n j ) / R j
u ( λ 1 ) = 1 / f ( λ 1 ) + ( n ( λ 1 ) 1 ) / R = 1 / l ( λ 1 )
u ( λ 2 ) = 1 / f ( λ 2 ) + ( n ( λ 2 ) 1 ) / R = 1 / l ( λ 2 )
δ ( λ ) = d d / n ( λ )
f ( λ ) = B F D + d / n ( λ ) ,
R = f ( λ 1 ) l ( λ 1 ) ( 1 n ( λ 1 ) ) / ( f ( λ 1 ) + l ( λ 1 ) )
l ( λ 2 ) = R / ( 1 n ( λ 2 ) R / f ( λ 1 ) )
F # 2 f 2 Δ l / 2 λ 1 [ l 2 ( λ 1 ) + l 2 ( λ 2 ) ]
z = y 2 / 2 R + A y 4 + B y 6