Abstract

355 nm pulsed laser is employed to excite pre-resonance forward stimulated Raman scattering (FSRS) of liquid water at ambient temperature. Due to the shockwave induced dynamic high pressure, the obtained Raman spectra begin to exhibit double peaks distribution at 3318 and 3373 cm−1 with the input energy of 17 mJ,which correspond with OH stretching vibration with strong and weak hydrogen (H) bonds. With laser energy rising from 17 to 27 mJ, the Stokes line at 3318 cm−1 shifts to 3255 and 3230 cm−1 because of the high pressure being enlarged. When the energy is up to 32 mJ, only 3373 cm−1 peak exists. The strong and weak H bond exhibit quite different energy dependent behaviors.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Influence of strong and weak hydrogen bonds in ices on stimulated Raman scattering

Tianyu Li, Fangfang Li, Zhanlong Li, Chenglin Sun, Junhong Tong, Wenhui Fang, and Zhiwei Men
Opt. Lett. 41(6) 1297-1300 (2016)

Hydrated-electron resonance enhancement O–H stretching vibration of water hexamer at air–water interface

Zhiwei Men, Wenhui Fang, Zuowei Li, Chenglin Sun, Zhanlong Li, and Xiaojun Wang
Opt. Lett. 40(7) 1434-1437 (2015)

Pre-resonance-stimulated Raman scattering for water bilayer structure on laser-induced plasma bubble surface

Zhanlong Li, Hongdong Li, Wenhui Fang, Shenghan Wang, Chenglin Sun, Zuowei Li, and Zhiwei Men
Opt. Lett. 40(14) 3253-3255 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Zhong, Z. Q. Wang, and Y. M. Li, “Oscillations of absorbing particles at the water-air interface induced by laser tweezers,” Opt. Express 25(3), 2481–2488 (2017).
  2. F. Saglimbeni, S. Bianchi, G. Gibson, R. Bowman, M. Padgett, and R. Di Leonardo, “Holographic tracking and sizing of optically trapped microprobes in diamond anvil cells,” Opt. Express 24(23), 27009–27015 (2016).
    [PubMed]
  3. Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. E. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121–2132 (2015).
    [PubMed]
  4. M. D. Knudson, M. P. Desjarlais, and D. H. Dolan, “Shock-wave exploration of the high-pressure phases of carbon,” Science 322(5909), 1822–1825 (2008).
    [PubMed]
  5. H. Abramczyk, B. Brozek-Płuska, K. Kurczewski, M. Kurczewska, I. Szymczyk, P. Krzyczmonik, T. Błaszczyk, H. Scholl, and W. Czajkowski, “Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions,” J. Phys. Chem. A 110(28), 8627–8636 (2006).
    [PubMed]
  6. H. Abramczyk, “Femtosecond primary events in bacteriorhodopsin and its retinal modified analogs: revision of commonly accepted interpretation of electronic spectra of transient intermediates in the bacteriorhodopsin photocycle,” J. Chem. Phys. 120(23), 11120–11132 (2004).
    [PubMed]
  7. H. Yui, T. Tomai, M. Sawada, and K. Terashima, “Generation of laser-induced plasma in supercritical water and vibrational spectroscopic study of accompanying stimulated Raman scattering,” Appl. Phys. Lett. 99, 091504 (2011).
  8. B. Hafizi, J. P. Palastro, J. R. Peñano, T. G. Jones, L. A. Johnson, M. H. Helle, D. Kaganovich, Y. H. Chen, and A. B. Stamm, “Stimulated Raman and Brillouin scattering, nonlinear focusing, thermal blooming, and optical breakdown of a laser beam propagating in water,” J. Opt. Soc. Am. B 33(10), 2062–2072 (2016).
  9. Z. Men, W. Fang, Z. Li, C. Sun, Z. Li, and X. Wang, “Hydrated-electron resonance enhancement O-H stretching vibration of water hexamer at air-water interface,” Opt. Lett. 40(7), 1434–1437 (2015).
    [PubMed]
  10. Z. Li, H. Li, W. Fang, S. Wang, C. Sun, and Z. Men, “Nanoshock wave resonance enhancement on stimulated Raman scattering of H2O2 in liquid water,” Opt. Lett. 40(21), 5023–5025 (2015).
    [PubMed]
  11. H. Abramczyk, B. Brozek-Pluska, M. Tondusson, and E. Freysz, “Ultrafast Dynamics of Metal Complexes of Tetrasulfonated Phthalocyanines at Biological Interfaces: Comparison between Photochemistry in Solutions, Films, and Noncancerous and Cancerous Human Breast Tissues,” J. Phys. Chem. C 117(10), 4999–5013 (2013).
  12. W. Fang, Z. Li, D. Li, Z. Li, M. Zhou, Z. Men, and C. Sun, “Stimulated Raman scattering from sulfur-II produced by laser decomposition of liquid carbon disulfide,” Opt. Lett. 38(6), 950–952 (2013).
    [PubMed]
  13. Z. Men, Z. Li, M. Zhou, G. Lu, B. Zou, Z. Li, and C. Sun, “Stimulated Raman scattering from ice-VIII by shock-induced compression in liquid water,” Phys. Rev. B 85, 092101 (2012).
  14. Z. Li, Z. Li, M. Zhou, Y. Wang, Z. Men, and C. Sun, “Stimulated Raman scattering of lattice translational modes in liquid heavy water,” Opt. Lett. 37(8), 1319–1321 (2012).
    [PubMed]
  15. S. Wang, W. Fang, T. Li, F. Li, C. Sun, Z. Li, Y. Huang, and Z. Men, “An insight into liquid water networks through hydrogen bonding halide anion: Stimulated Raman scattering,” J. Appl. Phys. 119, 163104 (2016).
  16. A. Rybakov, “Phase transformation of water under shock compression,” J. Appl. Mech. Tech. Phys. 37(5), 629–633 (1996).
  17. K. Hirsch and W. Holzapfel, “Effect of high pressure on the Raman spectra of ice VIII and evidence for ice X,” J. Chem. Phys. 84(5), 2771–2775 (1986).
  18. I. M. Chou, J. G. Blank, A. F. Goncharov, H. Mao, and R. J. Hemley, “In situ observations of a high-pressure phase of H2O Ice,” Science 281(5378), 809–812 (1998).
    [PubMed]
  19. M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, and K. Aoki, “Infrared investigation on ice VIII and the phase diagram of dense ices,” Phys. Rev. B 68, 014106 (2003).
  20. H. Yui, Y. Yoneda, T. Kitamori, and T. Sawada, “Spectroscopic analysis of stimulated Raman scattering in the early stage of laser-induced breakdown in water,” Phys. Rev. Lett. 82, 4110 (1999).
  21. J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “Femtosecond pump–probe spectroscopy of graphene oxide in water,” J. Phys. D Appl. Phys. 47, 094008 (2014).
  22. H. Yuan, B. Gai, J. Liu, J. Guo, H. Li, S. Hu, L. Deng, Y. Jin, and F. Sang, “Phase-interfacial stimulated Raman scattering generated in strongly pumped water,” Opt. Lett. 41(14), 3335–3338 (2016).
    [PubMed]
  23. B. Hafizi, J. P. Palastro, J. R. Peñano, D. F. Gordon, T. G. Jones, M. H. Helle, and D. Kaganovich, “Stimulated Raman scattering and nonlinear focusing of high-power laser beams propagating in water,” Opt. Lett. 40(7), 1556–1558 (2015).
    [PubMed]
  24. V. Rakesh Kumar and P. Prem Kiran, “Onset of ice VII phase of liquid water: Role of filamentation in stimulated Raman scattering,” Opt. Lett. 40(12), 2802–2805 (2015).
    [PubMed]
  25. V. R. Kumar and P. P. Kiran, “Transformation of liquid water to ice VII during propagation of picosecond laser pulses: effects of wavelength and polarization,” J. Opt. Soc. Am. B 33(6), 1157–1168 (2016).
  26. Z. Men, W. Fang, D. Li, Z. Li, and C. Sun, “Raman spectra from symmetric hydrogen bonds in water by high-intensity laser-induced breakdown,” Sci. Rep. 4, 4606 (2014).
    [PubMed]
  27. P. Zazakowny, M. Makowski, and M. T. Pawlikowski, “The vibronic effects in the excited 11 E u state of (CO) 4 dianion in terms of time dependent (TD) density functional theory: The resonance and pre-resonance Raman studies,” Chem. Phys. Lett. 418(4), 555–560 (2006).
  28. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38(5), 721–729 (1984).
  29. P. Cao, R. Gu, L. Qiu, R. Sun, B. Ren, and Z. Tian, “SERS investigation of interfacial water at a silver electrode in acetonitrile solutions,” Surf. Sci. 531(3), 217–225 (2003).
  30. H. Yui and T. Sawada, “Interaction of excess electrons with water molecules at the early stage of laser-induced plasma generation in water,” Phys. Rev. Lett. 85(16), 3512–3515 (2000).
    [PubMed]
  31. S. Siano, R. Pini, R. Salimbeni, and M. Vannini, “A diagnostic set-up for time-resolved imaging of laser-induced ablation,” Opt. Lasers Eng. 25(1), 1–12 (1996).
  32. A. Fedotov-Gefen, S. Efimov, L. Gilburd, G. Bazalitski, V. T. Gurovich, and Y. E. Krasik, “Generation of a 400 GPa pressure in water using converging strong shock waves,” Phys. Plasmas 18, 062701 (2011).
  33. Z. Li, H. Li, W. Fang, S. Wang, C. Sun, Z. Li, and Z. Men, “Pre-resonance-stimulated Raman scattering for water bilayer structure on laser-induced plasma bubble surface,” Opt. Lett. 40(14), 3253–3255 (2015).
    [PubMed]
  34. S. Meng, L. F. Xu, E. G. Wang, and S. Gao, “Vibrational recognition of hydrogen-bonded water networks on a metal surface,” Phys. Rev. Lett. 89(17), 176104 (2002).
    [PubMed]
  35. T. Li, F. Li, Z. Li, C. Sun, J. Tong, W. Fang, and Z. Men, “Influence of strong and weak hydrogen bonds in ices on stimulated Raman scattering,” Opt. Lett. 41(6), 1297–1300 (2016).
    [PubMed]
  36. H. Yui, H. Fujiwara, and T. Sawada, “Spectroscopic analysis of total-internal-reflection stimulated Raman scattering from the air/water interface under the strong focusing condition,” Chem. Phys. Lett. 360(1), 53–58 (2002).
  37. V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: processes and analytical aspects,” Spectrochim. Acta B At. Spectrosc. 101, 288–311 (2014).
  38. H. Abramczyk and J. Kroh, “Absorption spectrum of the solvated electron. 2. Numerical calculations of the profiles of the electron in water and methanol at 300 K,” J. Phys. Chem. 95(16), 6155–6159 (1991).
  39. W. Siebrand, M.Z. Zgierski, Excited states, (1979), Chapter1.
  40. S. Ahmad and A. Iles, “Pre-resonance Raman excitation profile of the 3400 cm− 1 mode of liquid water,” J. Raman Spectrosc. 32(8), 649–655 (2001).
  41. Z. U. A. Warsi, Fluid Dynamics: Theoretical and Computational Approaches (CRC, Boca Raton, FL, 1998), pp. 752–754.
  42. A. Rybakov and I. Rybakov, “Polymorphism of shocked water,” Eur. J. Mech. BFluids 14(3), 323–332 (1995).
  43. M. Vedadi, A. Choubey, K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, and A. C. van Duin, “Structure and dynamics of shock-induced nanobubble collapse in water,” Phys. Rev. Lett. 105(1), 014503 (2010).
    [PubMed]
  44. R. W. Boyd, Nonlinear Optics (University of Rochester, 1992), pp. 365–389.
  45. S. Wang, W. Fang, T. Li, F. Li, C. Sun, Z. Li, and Z. Men, “Controlling cross pumping between C-N and C-H vibration in nitromethane by selective fluorescence-enhanced stimulated Raman scattering,” Opt. Express 24(9), 10132–10141 (2016).
    [PubMed]

2017 (1)

2016 (7)

S. Wang, W. Fang, T. Li, F. Li, C. Sun, Z. Li, Y. Huang, and Z. Men, “An insight into liquid water networks through hydrogen bonding halide anion: Stimulated Raman scattering,” J. Appl. Phys. 119, 163104 (2016).

T. Li, F. Li, Z. Li, C. Sun, J. Tong, W. Fang, and Z. Men, “Influence of strong and weak hydrogen bonds in ices on stimulated Raman scattering,” Opt. Lett. 41(6), 1297–1300 (2016).
[PubMed]

S. Wang, W. Fang, T. Li, F. Li, C. Sun, Z. Li, and Z. Men, “Controlling cross pumping between C-N and C-H vibration in nitromethane by selective fluorescence-enhanced stimulated Raman scattering,” Opt. Express 24(9), 10132–10141 (2016).
[PubMed]

V. R. Kumar and P. P. Kiran, “Transformation of liquid water to ice VII during propagation of picosecond laser pulses: effects of wavelength and polarization,” J. Opt. Soc. Am. B 33(6), 1157–1168 (2016).

H. Yuan, B. Gai, J. Liu, J. Guo, H. Li, S. Hu, L. Deng, Y. Jin, and F. Sang, “Phase-interfacial stimulated Raman scattering generated in strongly pumped water,” Opt. Lett. 41(14), 3335–3338 (2016).
[PubMed]

B. Hafizi, J. P. Palastro, J. R. Peñano, T. G. Jones, L. A. Johnson, M. H. Helle, D. Kaganovich, Y. H. Chen, and A. B. Stamm, “Stimulated Raman and Brillouin scattering, nonlinear focusing, thermal blooming, and optical breakdown of a laser beam propagating in water,” J. Opt. Soc. Am. B 33(10), 2062–2072 (2016).

F. Saglimbeni, S. Bianchi, G. Gibson, R. Bowman, M. Padgett, and R. Di Leonardo, “Holographic tracking and sizing of optically trapped microprobes in diamond anvil cells,” Opt. Express 24(23), 27009–27015 (2016).
[PubMed]

2015 (6)

2014 (3)

V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: processes and analytical aspects,” Spectrochim. Acta B At. Spectrosc. 101, 288–311 (2014).

Z. Men, W. Fang, D. Li, Z. Li, and C. Sun, “Raman spectra from symmetric hydrogen bonds in water by high-intensity laser-induced breakdown,” Sci. Rep. 4, 4606 (2014).
[PubMed]

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “Femtosecond pump–probe spectroscopy of graphene oxide in water,” J. Phys. D Appl. Phys. 47, 094008 (2014).

2013 (2)

H. Abramczyk, B. Brozek-Pluska, M. Tondusson, and E. Freysz, “Ultrafast Dynamics of Metal Complexes of Tetrasulfonated Phthalocyanines at Biological Interfaces: Comparison between Photochemistry in Solutions, Films, and Noncancerous and Cancerous Human Breast Tissues,” J. Phys. Chem. C 117(10), 4999–5013 (2013).

W. Fang, Z. Li, D. Li, Z. Li, M. Zhou, Z. Men, and C. Sun, “Stimulated Raman scattering from sulfur-II produced by laser decomposition of liquid carbon disulfide,” Opt. Lett. 38(6), 950–952 (2013).
[PubMed]

2012 (2)

Z. Li, Z. Li, M. Zhou, Y. Wang, Z. Men, and C. Sun, “Stimulated Raman scattering of lattice translational modes in liquid heavy water,” Opt. Lett. 37(8), 1319–1321 (2012).
[PubMed]

Z. Men, Z. Li, M. Zhou, G. Lu, B. Zou, Z. Li, and C. Sun, “Stimulated Raman scattering from ice-VIII by shock-induced compression in liquid water,” Phys. Rev. B 85, 092101 (2012).

2011 (2)

A. Fedotov-Gefen, S. Efimov, L. Gilburd, G. Bazalitski, V. T. Gurovich, and Y. E. Krasik, “Generation of a 400 GPa pressure in water using converging strong shock waves,” Phys. Plasmas 18, 062701 (2011).

H. Yui, T. Tomai, M. Sawada, and K. Terashima, “Generation of laser-induced plasma in supercritical water and vibrational spectroscopic study of accompanying stimulated Raman scattering,” Appl. Phys. Lett. 99, 091504 (2011).

2010 (1)

M. Vedadi, A. Choubey, K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, and A. C. van Duin, “Structure and dynamics of shock-induced nanobubble collapse in water,” Phys. Rev. Lett. 105(1), 014503 (2010).
[PubMed]

2008 (1)

M. D. Knudson, M. P. Desjarlais, and D. H. Dolan, “Shock-wave exploration of the high-pressure phases of carbon,” Science 322(5909), 1822–1825 (2008).
[PubMed]

2006 (2)

H. Abramczyk, B. Brozek-Płuska, K. Kurczewski, M. Kurczewska, I. Szymczyk, P. Krzyczmonik, T. Błaszczyk, H. Scholl, and W. Czajkowski, “Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions,” J. Phys. Chem. A 110(28), 8627–8636 (2006).
[PubMed]

P. Zazakowny, M. Makowski, and M. T. Pawlikowski, “The vibronic effects in the excited 11 E u state of (CO) 4 dianion in terms of time dependent (TD) density functional theory: The resonance and pre-resonance Raman studies,” Chem. Phys. Lett. 418(4), 555–560 (2006).

2004 (1)

H. Abramczyk, “Femtosecond primary events in bacteriorhodopsin and its retinal modified analogs: revision of commonly accepted interpretation of electronic spectra of transient intermediates in the bacteriorhodopsin photocycle,” J. Chem. Phys. 120(23), 11120–11132 (2004).
[PubMed]

2003 (2)

M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, and K. Aoki, “Infrared investigation on ice VIII and the phase diagram of dense ices,” Phys. Rev. B 68, 014106 (2003).

P. Cao, R. Gu, L. Qiu, R. Sun, B. Ren, and Z. Tian, “SERS investigation of interfacial water at a silver electrode in acetonitrile solutions,” Surf. Sci. 531(3), 217–225 (2003).

2002 (2)

H. Yui, H. Fujiwara, and T. Sawada, “Spectroscopic analysis of total-internal-reflection stimulated Raman scattering from the air/water interface under the strong focusing condition,” Chem. Phys. Lett. 360(1), 53–58 (2002).

S. Meng, L. F. Xu, E. G. Wang, and S. Gao, “Vibrational recognition of hydrogen-bonded water networks on a metal surface,” Phys. Rev. Lett. 89(17), 176104 (2002).
[PubMed]

2001 (1)

S. Ahmad and A. Iles, “Pre-resonance Raman excitation profile of the 3400 cm− 1 mode of liquid water,” J. Raman Spectrosc. 32(8), 649–655 (2001).

2000 (1)

H. Yui and T. Sawada, “Interaction of excess electrons with water molecules at the early stage of laser-induced plasma generation in water,” Phys. Rev. Lett. 85(16), 3512–3515 (2000).
[PubMed]

1999 (1)

H. Yui, Y. Yoneda, T. Kitamori, and T. Sawada, “Spectroscopic analysis of stimulated Raman scattering in the early stage of laser-induced breakdown in water,” Phys. Rev. Lett. 82, 4110 (1999).

1998 (1)

I. M. Chou, J. G. Blank, A. F. Goncharov, H. Mao, and R. J. Hemley, “In situ observations of a high-pressure phase of H2O Ice,” Science 281(5378), 809–812 (1998).
[PubMed]

1996 (2)

A. Rybakov, “Phase transformation of water under shock compression,” J. Appl. Mech. Tech. Phys. 37(5), 629–633 (1996).

S. Siano, R. Pini, R. Salimbeni, and M. Vannini, “A diagnostic set-up for time-resolved imaging of laser-induced ablation,” Opt. Lasers Eng. 25(1), 1–12 (1996).

1995 (1)

A. Rybakov and I. Rybakov, “Polymorphism of shocked water,” Eur. J. Mech. BFluids 14(3), 323–332 (1995).

1991 (1)

H. Abramczyk and J. Kroh, “Absorption spectrum of the solvated electron. 2. Numerical calculations of the profiles of the electron in water and methanol at 300 K,” J. Phys. Chem. 95(16), 6155–6159 (1991).

1986 (1)

K. Hirsch and W. Holzapfel, “Effect of high pressure on the Raman spectra of ice VIII and evidence for ice X,” J. Chem. Phys. 84(5), 2771–2775 (1986).

1984 (1)

Abramczyk, H.

H. Abramczyk, B. Brozek-Pluska, M. Tondusson, and E. Freysz, “Ultrafast Dynamics of Metal Complexes of Tetrasulfonated Phthalocyanines at Biological Interfaces: Comparison between Photochemistry in Solutions, Films, and Noncancerous and Cancerous Human Breast Tissues,” J. Phys. Chem. C 117(10), 4999–5013 (2013).

H. Abramczyk, B. Brozek-Płuska, K. Kurczewski, M. Kurczewska, I. Szymczyk, P. Krzyczmonik, T. Błaszczyk, H. Scholl, and W. Czajkowski, “Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions,” J. Phys. Chem. A 110(28), 8627–8636 (2006).
[PubMed]

H. Abramczyk, “Femtosecond primary events in bacteriorhodopsin and its retinal modified analogs: revision of commonly accepted interpretation of electronic spectra of transient intermediates in the bacteriorhodopsin photocycle,” J. Chem. Phys. 120(23), 11120–11132 (2004).
[PubMed]

H. Abramczyk and J. Kroh, “Absorption spectrum of the solvated electron. 2. Numerical calculations of the profiles of the electron in water and methanol at 300 K,” J. Phys. Chem. 95(16), 6155–6159 (1991).

Ahmad, S.

S. Ahmad and A. Iles, “Pre-resonance Raman excitation profile of the 3400 cm− 1 mode of liquid water,” J. Raman Spectrosc. 32(8), 649–655 (2001).

Ai, W.

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “Femtosecond pump–probe spectroscopy of graphene oxide in water,” J. Phys. D Appl. Phys. 47, 094008 (2014).

Aoki, K.

M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, and K. Aoki, “Infrared investigation on ice VIII and the phase diagram of dense ices,” Phys. Rev. B 68, 014106 (2003).

Bazalitski, G.

A. Fedotov-Gefen, S. Efimov, L. Gilburd, G. Bazalitski, V. T. Gurovich, and Y. E. Krasik, “Generation of a 400 GPa pressure in water using converging strong shock waves,” Phys. Plasmas 18, 062701 (2011).

Bianchi, S.

Blank, J. G.

I. M. Chou, J. G. Blank, A. F. Goncharov, H. Mao, and R. J. Hemley, “In situ observations of a high-pressure phase of H2O Ice,” Science 281(5378), 809–812 (1998).
[PubMed]

Blaszczyk, T.

H. Abramczyk, B. Brozek-Płuska, K. Kurczewski, M. Kurczewska, I. Szymczyk, P. Krzyczmonik, T. Błaszczyk, H. Scholl, and W. Czajkowski, “Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions,” J. Phys. Chem. A 110(28), 8627–8636 (2006).
[PubMed]

Bowman, R.

Brozek-Pluska, B.

H. Abramczyk, B. Brozek-Pluska, M. Tondusson, and E. Freysz, “Ultrafast Dynamics of Metal Complexes of Tetrasulfonated Phthalocyanines at Biological Interfaces: Comparison between Photochemistry in Solutions, Films, and Noncancerous and Cancerous Human Breast Tissues,” J. Phys. Chem. C 117(10), 4999–5013 (2013).

H. Abramczyk, B. Brozek-Płuska, K. Kurczewski, M. Kurczewska, I. Szymczyk, P. Krzyczmonik, T. Błaszczyk, H. Scholl, and W. Czajkowski, “Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions,” J. Phys. Chem. A 110(28), 8627–8636 (2006).
[PubMed]

Cao, P.

P. Cao, R. Gu, L. Qiu, R. Sun, B. Ren, and Z. Tian, “SERS investigation of interfacial water at a silver electrode in acetonitrile solutions,” Surf. Sci. 531(3), 217–225 (2003).

Cao, Y.

Chen, Y. H.

Chou, I. M.

I. M. Chou, J. G. Blank, A. F. Goncharov, H. Mao, and R. J. Hemley, “In situ observations of a high-pressure phase of H2O Ice,” Science 281(5378), 809–812 (1998).
[PubMed]

Choubey, A.

M. Vedadi, A. Choubey, K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, and A. C. van Duin, “Structure and dynamics of shock-induced nanobubble collapse in water,” Phys. Rev. Lett. 105(1), 014503 (2010).
[PubMed]

Cremers, D. A.

Czajkowski, W.

H. Abramczyk, B. Brozek-Płuska, K. Kurczewski, M. Kurczewska, I. Szymczyk, P. Krzyczmonik, T. Błaszczyk, H. Scholl, and W. Czajkowski, “Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions,” J. Phys. Chem. A 110(28), 8627–8636 (2006).
[PubMed]

Deng, L.

Desjarlais, M. P.

M. D. Knudson, M. P. Desjarlais, and D. H. Dolan, “Shock-wave exploration of the high-pressure phases of carbon,” Science 322(5909), 1822–1825 (2008).
[PubMed]

Di Leonardo, R.

Dolan, D. H.

M. D. Knudson, M. P. Desjarlais, and D. H. Dolan, “Shock-wave exploration of the high-pressure phases of carbon,” Science 322(5909), 1822–1825 (2008).
[PubMed]

Efimov, S.

A. Fedotov-Gefen, S. Efimov, L. Gilburd, G. Bazalitski, V. T. Gurovich, and Y. E. Krasik, “Generation of a 400 GPa pressure in water using converging strong shock waves,” Phys. Plasmas 18, 062701 (2011).

Fang, W.

S. Wang, W. Fang, T. Li, F. Li, C. Sun, Z. Li, and Z. Men, “Controlling cross pumping between C-N and C-H vibration in nitromethane by selective fluorescence-enhanced stimulated Raman scattering,” Opt. Express 24(9), 10132–10141 (2016).
[PubMed]

T. Li, F. Li, Z. Li, C. Sun, J. Tong, W. Fang, and Z. Men, “Influence of strong and weak hydrogen bonds in ices on stimulated Raman scattering,” Opt. Lett. 41(6), 1297–1300 (2016).
[PubMed]

S. Wang, W. Fang, T. Li, F. Li, C. Sun, Z. Li, Y. Huang, and Z. Men, “An insight into liquid water networks through hydrogen bonding halide anion: Stimulated Raman scattering,” J. Appl. Phys. 119, 163104 (2016).

Z. Li, H. Li, W. Fang, S. Wang, C. Sun, Z. Li, and Z. Men, “Pre-resonance-stimulated Raman scattering for water bilayer structure on laser-induced plasma bubble surface,” Opt. Lett. 40(14), 3253–3255 (2015).
[PubMed]

Z. Men, W. Fang, Z. Li, C. Sun, Z. Li, and X. Wang, “Hydrated-electron resonance enhancement O-H stretching vibration of water hexamer at air-water interface,” Opt. Lett. 40(7), 1434–1437 (2015).
[PubMed]

Z. Li, H. Li, W. Fang, S. Wang, C. Sun, and Z. Men, “Nanoshock wave resonance enhancement on stimulated Raman scattering of H2O2 in liquid water,” Opt. Lett. 40(21), 5023–5025 (2015).
[PubMed]

Z. Men, W. Fang, D. Li, Z. Li, and C. Sun, “Raman spectra from symmetric hydrogen bonds in water by high-intensity laser-induced breakdown,” Sci. Rep. 4, 4606 (2014).
[PubMed]

W. Fang, Z. Li, D. Li, Z. Li, M. Zhou, Z. Men, and C. Sun, “Stimulated Raman scattering from sulfur-II produced by laser decomposition of liquid carbon disulfide,” Opt. Lett. 38(6), 950–952 (2013).
[PubMed]

Fedotov-Gefen, A.

A. Fedotov-Gefen, S. Efimov, L. Gilburd, G. Bazalitski, V. T. Gurovich, and Y. E. Krasik, “Generation of a 400 GPa pressure in water using converging strong shock waves,” Phys. Plasmas 18, 062701 (2011).

Freysz, E.

H. Abramczyk, B. Brozek-Pluska, M. Tondusson, and E. Freysz, “Ultrafast Dynamics of Metal Complexes of Tetrasulfonated Phthalocyanines at Biological Interfaces: Comparison between Photochemistry in Solutions, Films, and Noncancerous and Cancerous Human Breast Tissues,” J. Phys. Chem. C 117(10), 4999–5013 (2013).

Fujihisa, H.

M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, and K. Aoki, “Infrared investigation on ice VIII and the phase diagram of dense ices,” Phys. Rev. B 68, 014106 (2003).

Fujiwara, H.

H. Yui, H. Fujiwara, and T. Sawada, “Spectroscopic analysis of total-internal-reflection stimulated Raman scattering from the air/water interface under the strong focusing condition,” Chem. Phys. Lett. 360(1), 53–58 (2002).

Gai, B.

Gao, S.

S. Meng, L. F. Xu, E. G. Wang, and S. Gao, “Vibrational recognition of hydrogen-bonded water networks on a metal surface,” Phys. Rev. Lett. 89(17), 176104 (2002).
[PubMed]

Gibson, G.

Gilburd, L.

A. Fedotov-Gefen, S. Efimov, L. Gilburd, G. Bazalitski, V. T. Gurovich, and Y. E. Krasik, “Generation of a 400 GPa pressure in water using converging strong shock waves,” Phys. Plasmas 18, 062701 (2011).

Goncharov, A. F.

I. M. Chou, J. G. Blank, A. F. Goncharov, H. Mao, and R. J. Hemley, “In situ observations of a high-pressure phase of H2O Ice,” Science 281(5378), 809–812 (1998).
[PubMed]

Gordon, D. F.

Griffin, R. J.

Gu, R.

P. Cao, R. Gu, L. Qiu, R. Sun, B. Ren, and Z. Tian, “SERS investigation of interfacial water at a silver electrode in acetonitrile solutions,” Surf. Sci. 531(3), 217–225 (2003).

Guo, J.

Gurovich, V. T.

A. Fedotov-Gefen, S. Efimov, L. Gilburd, G. Bazalitski, V. T. Gurovich, and Y. E. Krasik, “Generation of a 400 GPa pressure in water using converging strong shock waves,” Phys. Plasmas 18, 062701 (2011).

Gurzadyan, G. G.

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “Femtosecond pump–probe spectroscopy of graphene oxide in water,” J. Phys. D Appl. Phys. 47, 094008 (2014).

Hafizi, B.

Helle, M. H.

Hemley, R. J.

I. M. Chou, J. G. Blank, A. F. Goncharov, H. Mao, and R. J. Hemley, “In situ observations of a high-pressure phase of H2O Ice,” Science 281(5378), 809–812 (1998).
[PubMed]

Hirsch, K.

K. Hirsch and W. Holzapfel, “Effect of high pressure on the Raman spectra of ice VIII and evidence for ice X,” J. Chem. Phys. 84(5), 2771–2775 (1986).

Holzapfel, W.

K. Hirsch and W. Holzapfel, “Effect of high pressure on the Raman spectra of ice VIII and evidence for ice X,” J. Chem. Phys. 84(5), 2771–2775 (1986).

Hu, S.

Huang, Y.

S. Wang, W. Fang, T. Li, F. Li, C. Sun, Z. Li, Y. Huang, and Z. Men, “An insight into liquid water networks through hydrogen bonding halide anion: Stimulated Raman scattering,” J. Appl. Phys. 119, 163104 (2016).

Hughes, L. C.

Iles, A.

S. Ahmad and A. Iles, “Pre-resonance Raman excitation profile of the 3400 cm− 1 mode of liquid water,” J. Raman Spectrosc. 32(8), 649–655 (2001).

Jiang, W.

Jin, Y.

Johnson, L. A.

Jones, T. G.

Jovicevic, S.

V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: processes and analytical aspects,” Spectrochim. Acta B At. Spectrosc. 101, 288–311 (2014).

Kaganovich, D.

Kalia, R. K.

M. Vedadi, A. Choubey, K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, and A. C. van Duin, “Structure and dynamics of shock-induced nanobubble collapse in water,” Phys. Rev. Lett. 105(1), 014503 (2010).
[PubMed]

Kiran, P. P.

Kitamori, T.

H. Yui, Y. Yoneda, T. Kitamori, and T. Sawada, “Spectroscopic analysis of stimulated Raman scattering in the early stage of laser-induced breakdown in water,” Phys. Rev. Lett. 82, 4110 (1999).

Knudson, M. D.

M. D. Knudson, M. P. Desjarlais, and D. H. Dolan, “Shock-wave exploration of the high-pressure phases of carbon,” Science 322(5909), 1822–1825 (2008).
[PubMed]

Krasik, Y. E.

A. Fedotov-Gefen, S. Efimov, L. Gilburd, G. Bazalitski, V. T. Gurovich, and Y. E. Krasik, “Generation of a 400 GPa pressure in water using converging strong shock waves,” Phys. Plasmas 18, 062701 (2011).

Kroh, J.

H. Abramczyk and J. Kroh, “Absorption spectrum of the solvated electron. 2. Numerical calculations of the profiles of the electron in water and methanol at 300 K,” J. Phys. Chem. 95(16), 6155–6159 (1991).

Krzyczmonik, P.

H. Abramczyk, B. Brozek-Płuska, K. Kurczewski, M. Kurczewska, I. Szymczyk, P. Krzyczmonik, T. Błaszczyk, H. Scholl, and W. Czajkowski, “Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions,” J. Phys. Chem. A 110(28), 8627–8636 (2006).
[PubMed]

Kumar, V. R.

Kurczewska, M.

H. Abramczyk, B. Brozek-Płuska, K. Kurczewski, M. Kurczewska, I. Szymczyk, P. Krzyczmonik, T. Błaszczyk, H. Scholl, and W. Czajkowski, “Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions,” J. Phys. Chem. A 110(28), 8627–8636 (2006).
[PubMed]

Kurczewski, K.

H. Abramczyk, B. Brozek-Płuska, K. Kurczewski, M. Kurczewska, I. Szymczyk, P. Krzyczmonik, T. Błaszczyk, H. Scholl, and W. Czajkowski, “Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions,” J. Phys. Chem. A 110(28), 8627–8636 (2006).
[PubMed]

Lazic, V.

V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: processes and analytical aspects,” Spectrochim. Acta B At. Spectrosc. 101, 288–311 (2014).

Li, D.

Z. Men, W. Fang, D. Li, Z. Li, and C. Sun, “Raman spectra from symmetric hydrogen bonds in water by high-intensity laser-induced breakdown,” Sci. Rep. 4, 4606 (2014).
[PubMed]

W. Fang, Z. Li, D. Li, Z. Li, M. Zhou, Z. Men, and C. Sun, “Stimulated Raman scattering from sulfur-II produced by laser decomposition of liquid carbon disulfide,” Opt. Lett. 38(6), 950–952 (2013).
[PubMed]

Li, F.

Li, H.

Li, J.

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “Femtosecond pump–probe spectroscopy of graphene oxide in water,” J. Phys. D Appl. Phys. 47, 094008 (2014).

Li, T.

Li, Y. M.

Li, Z.

T. Li, F. Li, Z. Li, C. Sun, J. Tong, W. Fang, and Z. Men, “Influence of strong and weak hydrogen bonds in ices on stimulated Raman scattering,” Opt. Lett. 41(6), 1297–1300 (2016).
[PubMed]

S. Wang, W. Fang, T. Li, F. Li, C. Sun, Z. Li, Y. Huang, and Z. Men, “An insight into liquid water networks through hydrogen bonding halide anion: Stimulated Raman scattering,” J. Appl. Phys. 119, 163104 (2016).

S. Wang, W. Fang, T. Li, F. Li, C. Sun, Z. Li, and Z. Men, “Controlling cross pumping between C-N and C-H vibration in nitromethane by selective fluorescence-enhanced stimulated Raman scattering,” Opt. Express 24(9), 10132–10141 (2016).
[PubMed]

Z. Li, H. Li, W. Fang, S. Wang, C. Sun, Z. Li, and Z. Men, “Pre-resonance-stimulated Raman scattering for water bilayer structure on laser-induced plasma bubble surface,” Opt. Lett. 40(14), 3253–3255 (2015).
[PubMed]

Z. Li, H. Li, W. Fang, S. Wang, C. Sun, Z. Li, and Z. Men, “Pre-resonance-stimulated Raman scattering for water bilayer structure on laser-induced plasma bubble surface,” Opt. Lett. 40(14), 3253–3255 (2015).
[PubMed]

Z. Li, H. Li, W. Fang, S. Wang, C. Sun, and Z. Men, “Nanoshock wave resonance enhancement on stimulated Raman scattering of H2O2 in liquid water,” Opt. Lett. 40(21), 5023–5025 (2015).
[PubMed]

Z. Men, W. Fang, Z. Li, C. Sun, Z. Li, and X. Wang, “Hydrated-electron resonance enhancement O-H stretching vibration of water hexamer at air-water interface,” Opt. Lett. 40(7), 1434–1437 (2015).
[PubMed]

Z. Men, W. Fang, Z. Li, C. Sun, Z. Li, and X. Wang, “Hydrated-electron resonance enhancement O-H stretching vibration of water hexamer at air-water interface,” Opt. Lett. 40(7), 1434–1437 (2015).
[PubMed]

Z. Men, W. Fang, D. Li, Z. Li, and C. Sun, “Raman spectra from symmetric hydrogen bonds in water by high-intensity laser-induced breakdown,” Sci. Rep. 4, 4606 (2014).
[PubMed]

W. Fang, Z. Li, D. Li, Z. Li, M. Zhou, Z. Men, and C. Sun, “Stimulated Raman scattering from sulfur-II produced by laser decomposition of liquid carbon disulfide,” Opt. Lett. 38(6), 950–952 (2013).
[PubMed]

W. Fang, Z. Li, D. Li, Z. Li, M. Zhou, Z. Men, and C. Sun, “Stimulated Raman scattering from sulfur-II produced by laser decomposition of liquid carbon disulfide,” Opt. Lett. 38(6), 950–952 (2013).
[PubMed]

Z. Men, Z. Li, M. Zhou, G. Lu, B. Zou, Z. Li, and C. Sun, “Stimulated Raman scattering from ice-VIII by shock-induced compression in liquid water,” Phys. Rev. B 85, 092101 (2012).

Z. Men, Z. Li, M. Zhou, G. Lu, B. Zou, Z. Li, and C. Sun, “Stimulated Raman scattering from ice-VIII by shock-induced compression in liquid water,” Phys. Rev. B 85, 092101 (2012).

Z. Li, Z. Li, M. Zhou, Y. Wang, Z. Men, and C. Sun, “Stimulated Raman scattering of lattice translational modes in liquid heavy water,” Opt. Lett. 37(8), 1319–1321 (2012).
[PubMed]

Z. Li, Z. Li, M. Zhou, Y. Wang, Z. Men, and C. Sun, “Stimulated Raman scattering of lattice translational modes in liquid heavy water,” Opt. Lett. 37(8), 1319–1321 (2012).
[PubMed]

Liu, J.

Loree, T. R.

Lu, G.

Z. Men, Z. Li, M. Zhou, G. Lu, B. Zou, Z. Li, and C. Sun, “Stimulated Raman scattering from ice-VIII by shock-induced compression in liquid water,” Phys. Rev. B 85, 092101 (2012).

Ma, L.

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “Femtosecond pump–probe spectroscopy of graphene oxide in water,” J. Phys. D Appl. Phys. 47, 094008 (2014).

Makowski, M.

P. Zazakowny, M. Makowski, and M. T. Pawlikowski, “The vibronic effects in the excited 11 E u state of (CO) 4 dianion in terms of time dependent (TD) density functional theory: The resonance and pre-resonance Raman studies,” Chem. Phys. Lett. 418(4), 555–560 (2006).

Mao, H.

I. M. Chou, J. G. Blank, A. F. Goncharov, H. Mao, and R. J. Hemley, “In situ observations of a high-pressure phase of H2O Ice,” Science 281(5378), 809–812 (1998).
[PubMed]

Men, Z.

S. Wang, W. Fang, T. Li, F. Li, C. Sun, Z. Li, and Z. Men, “Controlling cross pumping between C-N and C-H vibration in nitromethane by selective fluorescence-enhanced stimulated Raman scattering,” Opt. Express 24(9), 10132–10141 (2016).
[PubMed]

S. Wang, W. Fang, T. Li, F. Li, C. Sun, Z. Li, Y. Huang, and Z. Men, “An insight into liquid water networks through hydrogen bonding halide anion: Stimulated Raman scattering,” J. Appl. Phys. 119, 163104 (2016).

T. Li, F. Li, Z. Li, C. Sun, J. Tong, W. Fang, and Z. Men, “Influence of strong and weak hydrogen bonds in ices on stimulated Raman scattering,” Opt. Lett. 41(6), 1297–1300 (2016).
[PubMed]

Z. Li, H. Li, W. Fang, S. Wang, C. Sun, Z. Li, and Z. Men, “Pre-resonance-stimulated Raman scattering for water bilayer structure on laser-induced plasma bubble surface,” Opt. Lett. 40(14), 3253–3255 (2015).
[PubMed]

Z. Men, W. Fang, Z. Li, C. Sun, Z. Li, and X. Wang, “Hydrated-electron resonance enhancement O-H stretching vibration of water hexamer at air-water interface,” Opt. Lett. 40(7), 1434–1437 (2015).
[PubMed]

Z. Li, H. Li, W. Fang, S. Wang, C. Sun, and Z. Men, “Nanoshock wave resonance enhancement on stimulated Raman scattering of H2O2 in liquid water,” Opt. Lett. 40(21), 5023–5025 (2015).
[PubMed]

Z. Men, W. Fang, D. Li, Z. Li, and C. Sun, “Raman spectra from symmetric hydrogen bonds in water by high-intensity laser-induced breakdown,” Sci. Rep. 4, 4606 (2014).
[PubMed]

W. Fang, Z. Li, D. Li, Z. Li, M. Zhou, Z. Men, and C. Sun, “Stimulated Raman scattering from sulfur-II produced by laser decomposition of liquid carbon disulfide,” Opt. Lett. 38(6), 950–952 (2013).
[PubMed]

Z. Men, Z. Li, M. Zhou, G. Lu, B. Zou, Z. Li, and C. Sun, “Stimulated Raman scattering from ice-VIII by shock-induced compression in liquid water,” Phys. Rev. B 85, 092101 (2012).

Z. Li, Z. Li, M. Zhou, Y. Wang, Z. Men, and C. Sun, “Stimulated Raman scattering of lattice translational modes in liquid heavy water,” Opt. Lett. 37(8), 1319–1321 (2012).
[PubMed]

Meng, S.

S. Meng, L. F. Xu, E. G. Wang, and S. Gao, “Vibrational recognition of hydrogen-bonded water networks on a metal surface,” Phys. Rev. Lett. 89(17), 176104 (2002).
[PubMed]

Nakano, A.

M. Vedadi, A. Choubey, K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, and A. C. van Duin, “Structure and dynamics of shock-induced nanobubble collapse in water,” Phys. Rev. Lett. 105(1), 014503 (2010).
[PubMed]

Nomura, K.

M. Vedadi, A. Choubey, K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, and A. C. van Duin, “Structure and dynamics of shock-induced nanobubble collapse in water,” Phys. Rev. Lett. 105(1), 014503 (2010).
[PubMed]

Padgett, M.

Palastro, J. P.

Pawlikowski, M. T.

P. Zazakowny, M. Makowski, and M. T. Pawlikowski, “The vibronic effects in the excited 11 E u state of (CO) 4 dianion in terms of time dependent (TD) density functional theory: The resonance and pre-resonance Raman studies,” Chem. Phys. Lett. 418(4), 555–560 (2006).

Peñano, J. R.

Pini, R.

S. Siano, R. Pini, R. Salimbeni, and M. Vannini, “A diagnostic set-up for time-resolved imaging of laser-induced ablation,” Opt. Lasers Eng. 25(1), 1–12 (1996).

Prem Kiran, P.

Qiu, L.

P. Cao, R. Gu, L. Qiu, R. Sun, B. Ren, and Z. Tian, “SERS investigation of interfacial water at a silver electrode in acetonitrile solutions,” Surf. Sci. 531(3), 217–225 (2003).

Radziemski, L. J.

Rakesh Kumar, V.

Ren, B.

P. Cao, R. Gu, L. Qiu, R. Sun, B. Ren, and Z. Tian, “SERS investigation of interfacial water at a silver electrode in acetonitrile solutions,” Surf. Sci. 531(3), 217–225 (2003).

Rybakov, A.

A. Rybakov, “Phase transformation of water under shock compression,” J. Appl. Mech. Tech. Phys. 37(5), 629–633 (1996).

A. Rybakov and I. Rybakov, “Polymorphism of shocked water,” Eur. J. Mech. BFluids 14(3), 323–332 (1995).

Rybakov, I.

A. Rybakov and I. Rybakov, “Polymorphism of shocked water,” Eur. J. Mech. BFluids 14(3), 323–332 (1995).

Saglimbeni, F.

Sakashita, M.

M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, and K. Aoki, “Infrared investigation on ice VIII and the phase diagram of dense ices,” Phys. Rev. B 68, 014106 (2003).

Salimbeni, R.

S. Siano, R. Pini, R. Salimbeni, and M. Vannini, “A diagnostic set-up for time-resolved imaging of laser-induced ablation,” Opt. Lasers Eng. 25(1), 1–12 (1996).

Sanchez, N. P.

Sang, F.

Sawada, M.

H. Yui, T. Tomai, M. Sawada, and K. Terashima, “Generation of laser-induced plasma in supercritical water and vibrational spectroscopic study of accompanying stimulated Raman scattering,” Appl. Phys. Lett. 99, 091504 (2011).

Sawada, T.

H. Yui, H. Fujiwara, and T. Sawada, “Spectroscopic analysis of total-internal-reflection stimulated Raman scattering from the air/water interface under the strong focusing condition,” Chem. Phys. Lett. 360(1), 53–58 (2002).

H. Yui and T. Sawada, “Interaction of excess electrons with water molecules at the early stage of laser-induced plasma generation in water,” Phys. Rev. Lett. 85(16), 3512–3515 (2000).
[PubMed]

H. Yui, Y. Yoneda, T. Kitamori, and T. Sawada, “Spectroscopic analysis of stimulated Raman scattering in the early stage of laser-induced breakdown in water,” Phys. Rev. Lett. 82, 4110 (1999).

Scholl, H.

H. Abramczyk, B. Brozek-Płuska, K. Kurczewski, M. Kurczewska, I. Szymczyk, P. Krzyczmonik, T. Błaszczyk, H. Scholl, and W. Czajkowski, “Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions,” J. Phys. Chem. A 110(28), 8627–8636 (2006).
[PubMed]

Shang, J.

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “Femtosecond pump–probe spectroscopy of graphene oxide in water,” J. Phys. D Appl. Phys. 47, 094008 (2014).

Siano, S.

S. Siano, R. Pini, R. Salimbeni, and M. Vannini, “A diagnostic set-up for time-resolved imaging of laser-induced ablation,” Opt. Lasers Eng. 25(1), 1–12 (1996).

Song, M.

M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, and K. Aoki, “Infrared investigation on ice VIII and the phase diagram of dense ices,” Phys. Rev. B 68, 014106 (2003).

Stamm, A. B.

Sun, C.

S. Wang, W. Fang, T. Li, F. Li, C. Sun, Z. Li, Y. Huang, and Z. Men, “An insight into liquid water networks through hydrogen bonding halide anion: Stimulated Raman scattering,” J. Appl. Phys. 119, 163104 (2016).

T. Li, F. Li, Z. Li, C. Sun, J. Tong, W. Fang, and Z. Men, “Influence of strong and weak hydrogen bonds in ices on stimulated Raman scattering,” Opt. Lett. 41(6), 1297–1300 (2016).
[PubMed]

S. Wang, W. Fang, T. Li, F. Li, C. Sun, Z. Li, and Z. Men, “Controlling cross pumping between C-N and C-H vibration in nitromethane by selective fluorescence-enhanced stimulated Raman scattering,” Opt. Express 24(9), 10132–10141 (2016).
[PubMed]

Z. Li, H. Li, W. Fang, S. Wang, C. Sun, Z. Li, and Z. Men, “Pre-resonance-stimulated Raman scattering for water bilayer structure on laser-induced plasma bubble surface,” Opt. Lett. 40(14), 3253–3255 (2015).
[PubMed]

Z. Men, W. Fang, Z. Li, C. Sun, Z. Li, and X. Wang, “Hydrated-electron resonance enhancement O-H stretching vibration of water hexamer at air-water interface,” Opt. Lett. 40(7), 1434–1437 (2015).
[PubMed]

Z. Li, H. Li, W. Fang, S. Wang, C. Sun, and Z. Men, “Nanoshock wave resonance enhancement on stimulated Raman scattering of H2O2 in liquid water,” Opt. Lett. 40(21), 5023–5025 (2015).
[PubMed]

Z. Men, W. Fang, D. Li, Z. Li, and C. Sun, “Raman spectra from symmetric hydrogen bonds in water by high-intensity laser-induced breakdown,” Sci. Rep. 4, 4606 (2014).
[PubMed]

W. Fang, Z. Li, D. Li, Z. Li, M. Zhou, Z. Men, and C. Sun, “Stimulated Raman scattering from sulfur-II produced by laser decomposition of liquid carbon disulfide,” Opt. Lett. 38(6), 950–952 (2013).
[PubMed]

Z. Men, Z. Li, M. Zhou, G. Lu, B. Zou, Z. Li, and C. Sun, “Stimulated Raman scattering from ice-VIII by shock-induced compression in liquid water,” Phys. Rev. B 85, 092101 (2012).

Z. Li, Z. Li, M. Zhou, Y. Wang, Z. Men, and C. Sun, “Stimulated Raman scattering of lattice translational modes in liquid heavy water,” Opt. Lett. 37(8), 1319–1321 (2012).
[PubMed]

Sun, R.

P. Cao, R. Gu, L. Qiu, R. Sun, B. Ren, and Z. Tian, “SERS investigation of interfacial water at a silver electrode in acetonitrile solutions,” Surf. Sci. 531(3), 217–225 (2003).

Szymczyk, I.

H. Abramczyk, B. Brozek-Płuska, K. Kurczewski, M. Kurczewska, I. Szymczyk, P. Krzyczmonik, T. Błaszczyk, H. Scholl, and W. Czajkowski, “Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions,” J. Phys. Chem. A 110(28), 8627–8636 (2006).
[PubMed]

Terashima, K.

H. Yui, T. Tomai, M. Sawada, and K. Terashima, “Generation of laser-induced plasma in supercritical water and vibrational spectroscopic study of accompanying stimulated Raman scattering,” Appl. Phys. Lett. 99, 091504 (2011).

Tian, Z.

P. Cao, R. Gu, L. Qiu, R. Sun, B. Ren, and Z. Tian, “SERS investigation of interfacial water at a silver electrode in acetonitrile solutions,” Surf. Sci. 531(3), 217–225 (2003).

Tittel, F. K.

Tomai, T.

H. Yui, T. Tomai, M. Sawada, and K. Terashima, “Generation of laser-induced plasma in supercritical water and vibrational spectroscopic study of accompanying stimulated Raman scattering,” Appl. Phys. Lett. 99, 091504 (2011).

Tondusson, M.

H. Abramczyk, B. Brozek-Pluska, M. Tondusson, and E. Freysz, “Ultrafast Dynamics of Metal Complexes of Tetrasulfonated Phthalocyanines at Biological Interfaces: Comparison between Photochemistry in Solutions, Films, and Noncancerous and Cancerous Human Breast Tissues,” J. Phys. Chem. C 117(10), 4999–5013 (2013).

Tong, J.

van Duin, A. C.

M. Vedadi, A. Choubey, K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, and A. C. van Duin, “Structure and dynamics of shock-induced nanobubble collapse in water,” Phys. Rev. Lett. 105(1), 014503 (2010).
[PubMed]

Vannini, M.

S. Siano, R. Pini, R. Salimbeni, and M. Vannini, “A diagnostic set-up for time-resolved imaging of laser-induced ablation,” Opt. Lasers Eng. 25(1), 1–12 (1996).

Vashishta, P.

M. Vedadi, A. Choubey, K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, and A. C. van Duin, “Structure and dynamics of shock-induced nanobubble collapse in water,” Phys. Rev. Lett. 105(1), 014503 (2010).
[PubMed]

Vedadi, M.

M. Vedadi, A. Choubey, K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, and A. C. van Duin, “Structure and dynamics of shock-induced nanobubble collapse in water,” Phys. Rev. Lett. 105(1), 014503 (2010).
[PubMed]

Wang, E. G.

S. Meng, L. F. Xu, E. G. Wang, and S. Gao, “Vibrational recognition of hydrogen-bonded water networks on a metal surface,” Phys. Rev. Lett. 89(17), 176104 (2002).
[PubMed]

Wang, S.

Wang, X.

Wang, Y.

Wang, Z. Q.

Xie, F.

Xu, L. F.

S. Meng, L. F. Xu, E. G. Wang, and S. Gao, “Vibrational recognition of hydrogen-bonded water networks on a metal surface,” Phys. Rev. Lett. 89(17), 176104 (2002).
[PubMed]

Yamawaki, H.

M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, and K. Aoki, “Infrared investigation on ice VIII and the phase diagram of dense ices,” Phys. Rev. B 68, 014106 (2003).

Yoneda, Y.

H. Yui, Y. Yoneda, T. Kitamori, and T. Sawada, “Spectroscopic analysis of stimulated Raman scattering in the early stage of laser-induced breakdown in water,” Phys. Rev. Lett. 82, 4110 (1999).

Yu, T.

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “Femtosecond pump–probe spectroscopy of graphene oxide in water,” J. Phys. D Appl. Phys. 47, 094008 (2014).

Yuan, H.

Yui, H.

H. Yui, T. Tomai, M. Sawada, and K. Terashima, “Generation of laser-induced plasma in supercritical water and vibrational spectroscopic study of accompanying stimulated Raman scattering,” Appl. Phys. Lett. 99, 091504 (2011).

H. Yui, H. Fujiwara, and T. Sawada, “Spectroscopic analysis of total-internal-reflection stimulated Raman scattering from the air/water interface under the strong focusing condition,” Chem. Phys. Lett. 360(1), 53–58 (2002).

H. Yui and T. Sawada, “Interaction of excess electrons with water molecules at the early stage of laser-induced plasma generation in water,” Phys. Rev. Lett. 85(16), 3512–3515 (2000).
[PubMed]

H. Yui, Y. Yoneda, T. Kitamori, and T. Sawada, “Spectroscopic analysis of stimulated Raman scattering in the early stage of laser-induced breakdown in water,” Phys. Rev. Lett. 82, 4110 (1999).

Zah, C. E.

Zazakowny, P.

P. Zazakowny, M. Makowski, and M. T. Pawlikowski, “The vibronic effects in the excited 11 E u state of (CO) 4 dianion in terms of time dependent (TD) density functional theory: The resonance and pre-resonance Raman studies,” Chem. Phys. Lett. 418(4), 555–560 (2006).

Zhong, M. C.

Zhou, M.

Zou, B.

Z. Men, Z. Li, M. Zhou, G. Lu, B. Zou, Z. Li, and C. Sun, “Stimulated Raman scattering from ice-VIII by shock-induced compression in liquid water,” Phys. Rev. B 85, 092101 (2012).

Appl. Phys. Lett. (1)

H. Yui, T. Tomai, M. Sawada, and K. Terashima, “Generation of laser-induced plasma in supercritical water and vibrational spectroscopic study of accompanying stimulated Raman scattering,” Appl. Phys. Lett. 99, 091504 (2011).

Appl. Spectrosc. (1)

Chem. Phys. Lett. (2)

P. Zazakowny, M. Makowski, and M. T. Pawlikowski, “The vibronic effects in the excited 11 E u state of (CO) 4 dianion in terms of time dependent (TD) density functional theory: The resonance and pre-resonance Raman studies,” Chem. Phys. Lett. 418(4), 555–560 (2006).

H. Yui, H. Fujiwara, and T. Sawada, “Spectroscopic analysis of total-internal-reflection stimulated Raman scattering from the air/water interface under the strong focusing condition,” Chem. Phys. Lett. 360(1), 53–58 (2002).

Eur. J. Mech. BFluids (1)

A. Rybakov and I. Rybakov, “Polymorphism of shocked water,” Eur. J. Mech. BFluids 14(3), 323–332 (1995).

J. Appl. Mech. Tech. Phys. (1)

A. Rybakov, “Phase transformation of water under shock compression,” J. Appl. Mech. Tech. Phys. 37(5), 629–633 (1996).

J. Appl. Phys. (1)

S. Wang, W. Fang, T. Li, F. Li, C. Sun, Z. Li, Y. Huang, and Z. Men, “An insight into liquid water networks through hydrogen bonding halide anion: Stimulated Raman scattering,” J. Appl. Phys. 119, 163104 (2016).

J. Chem. Phys. (2)

K. Hirsch and W. Holzapfel, “Effect of high pressure on the Raman spectra of ice VIII and evidence for ice X,” J. Chem. Phys. 84(5), 2771–2775 (1986).

H. Abramczyk, “Femtosecond primary events in bacteriorhodopsin and its retinal modified analogs: revision of commonly accepted interpretation of electronic spectra of transient intermediates in the bacteriorhodopsin photocycle,” J. Chem. Phys. 120(23), 11120–11132 (2004).
[PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

H. Abramczyk and J. Kroh, “Absorption spectrum of the solvated electron. 2. Numerical calculations of the profiles of the electron in water and methanol at 300 K,” J. Phys. Chem. 95(16), 6155–6159 (1991).

J. Phys. Chem. A (1)

H. Abramczyk, B. Brozek-Płuska, K. Kurczewski, M. Kurczewska, I. Szymczyk, P. Krzyczmonik, T. Błaszczyk, H. Scholl, and W. Czajkowski, “Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions,” J. Phys. Chem. A 110(28), 8627–8636 (2006).
[PubMed]

J. Phys. Chem. C (1)

H. Abramczyk, B. Brozek-Pluska, M. Tondusson, and E. Freysz, “Ultrafast Dynamics of Metal Complexes of Tetrasulfonated Phthalocyanines at Biological Interfaces: Comparison between Photochemistry in Solutions, Films, and Noncancerous and Cancerous Human Breast Tissues,” J. Phys. Chem. C 117(10), 4999–5013 (2013).

J. Phys. D Appl. Phys. (1)

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “Femtosecond pump–probe spectroscopy of graphene oxide in water,” J. Phys. D Appl. Phys. 47, 094008 (2014).

J. Raman Spectrosc. (1)

S. Ahmad and A. Iles, “Pre-resonance Raman excitation profile of the 3400 cm− 1 mode of liquid water,” J. Raman Spectrosc. 32(8), 649–655 (2001).

Opt. Express (4)

Opt. Lasers Eng. (1)

S. Siano, R. Pini, R. Salimbeni, and M. Vannini, “A diagnostic set-up for time-resolved imaging of laser-induced ablation,” Opt. Lasers Eng. 25(1), 1–12 (1996).

Opt. Lett. (9)

Z. Men, W. Fang, Z. Li, C. Sun, Z. Li, and X. Wang, “Hydrated-electron resonance enhancement O-H stretching vibration of water hexamer at air-water interface,” Opt. Lett. 40(7), 1434–1437 (2015).
[PubMed]

B. Hafizi, J. P. Palastro, J. R. Peñano, D. F. Gordon, T. G. Jones, M. H. Helle, and D. Kaganovich, “Stimulated Raman scattering and nonlinear focusing of high-power laser beams propagating in water,” Opt. Lett. 40(7), 1556–1558 (2015).
[PubMed]

V. Rakesh Kumar and P. Prem Kiran, “Onset of ice VII phase of liquid water: Role of filamentation in stimulated Raman scattering,” Opt. Lett. 40(12), 2802–2805 (2015).
[PubMed]

Z. Li, H. Li, W. Fang, S. Wang, C. Sun, Z. Li, and Z. Men, “Pre-resonance-stimulated Raman scattering for water bilayer structure on laser-induced plasma bubble surface,” Opt. Lett. 40(14), 3253–3255 (2015).
[PubMed]

Z. Li, H. Li, W. Fang, S. Wang, C. Sun, and Z. Men, “Nanoshock wave resonance enhancement on stimulated Raman scattering of H2O2 in liquid water,” Opt. Lett. 40(21), 5023–5025 (2015).
[PubMed]

T. Li, F. Li, Z. Li, C. Sun, J. Tong, W. Fang, and Z. Men, “Influence of strong and weak hydrogen bonds in ices on stimulated Raman scattering,” Opt. Lett. 41(6), 1297–1300 (2016).
[PubMed]

H. Yuan, B. Gai, J. Liu, J. Guo, H. Li, S. Hu, L. Deng, Y. Jin, and F. Sang, “Phase-interfacial stimulated Raman scattering generated in strongly pumped water,” Opt. Lett. 41(14), 3335–3338 (2016).
[PubMed]

Z. Li, Z. Li, M. Zhou, Y. Wang, Z. Men, and C. Sun, “Stimulated Raman scattering of lattice translational modes in liquid heavy water,” Opt. Lett. 37(8), 1319–1321 (2012).
[PubMed]

W. Fang, Z. Li, D. Li, Z. Li, M. Zhou, Z. Men, and C. Sun, “Stimulated Raman scattering from sulfur-II produced by laser decomposition of liquid carbon disulfide,” Opt. Lett. 38(6), 950–952 (2013).
[PubMed]

Phys. Plasmas (1)

A. Fedotov-Gefen, S. Efimov, L. Gilburd, G. Bazalitski, V. T. Gurovich, and Y. E. Krasik, “Generation of a 400 GPa pressure in water using converging strong shock waves,” Phys. Plasmas 18, 062701 (2011).

Phys. Rev. B (2)

Z. Men, Z. Li, M. Zhou, G. Lu, B. Zou, Z. Li, and C. Sun, “Stimulated Raman scattering from ice-VIII by shock-induced compression in liquid water,” Phys. Rev. B 85, 092101 (2012).

M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, and K. Aoki, “Infrared investigation on ice VIII and the phase diagram of dense ices,” Phys. Rev. B 68, 014106 (2003).

Phys. Rev. Lett. (4)

H. Yui, Y. Yoneda, T. Kitamori, and T. Sawada, “Spectroscopic analysis of stimulated Raman scattering in the early stage of laser-induced breakdown in water,” Phys. Rev. Lett. 82, 4110 (1999).

S. Meng, L. F. Xu, E. G. Wang, and S. Gao, “Vibrational recognition of hydrogen-bonded water networks on a metal surface,” Phys. Rev. Lett. 89(17), 176104 (2002).
[PubMed]

H. Yui and T. Sawada, “Interaction of excess electrons with water molecules at the early stage of laser-induced plasma generation in water,” Phys. Rev. Lett. 85(16), 3512–3515 (2000).
[PubMed]

M. Vedadi, A. Choubey, K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, and A. C. van Duin, “Structure and dynamics of shock-induced nanobubble collapse in water,” Phys. Rev. Lett. 105(1), 014503 (2010).
[PubMed]

Sci. Rep. (1)

Z. Men, W. Fang, D. Li, Z. Li, and C. Sun, “Raman spectra from symmetric hydrogen bonds in water by high-intensity laser-induced breakdown,” Sci. Rep. 4, 4606 (2014).
[PubMed]

Science (2)

I. M. Chou, J. G. Blank, A. F. Goncharov, H. Mao, and R. J. Hemley, “In situ observations of a high-pressure phase of H2O Ice,” Science 281(5378), 809–812 (1998).
[PubMed]

M. D. Knudson, M. P. Desjarlais, and D. H. Dolan, “Shock-wave exploration of the high-pressure phases of carbon,” Science 322(5909), 1822–1825 (2008).
[PubMed]

Spectrochim. Acta B At. Spectrosc. (1)

V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: processes and analytical aspects,” Spectrochim. Acta B At. Spectrosc. 101, 288–311 (2014).

Surf. Sci. (1)

P. Cao, R. Gu, L. Qiu, R. Sun, B. Ren, and Z. Tian, “SERS investigation of interfacial water at a silver electrode in acetonitrile solutions,” Surf. Sci. 531(3), 217–225 (2003).

Other (3)

R. W. Boyd, Nonlinear Optics (University of Rochester, 1992), pp. 365–389.

Z. U. A. Warsi, Fluid Dynamics: Theoretical and Computational Approaches (CRC, Boca Raton, FL, 1998), pp. 752–754.

W. Siebrand, M.Z. Zgierski, Excited states, (1979), Chapter1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experiment setup of generating laser induced plasma and collecting FSRS signal.

Fig. 2
Fig. 2

FSRS spectra of liquid water at input energies of (a) 12mJ, (b) 17 mJ, (c) 22 mJ, (d) 27 mJ, (e) 32 mJ.

Fig. 3
Fig. 3

Peak fitting (in solid line) and negative numerical second derivative (in dot line) results of Raman spectrum under 17mJ (a), 22 mJ (b), 27 mJ (c).

Fig. 4
Fig. 4

Schematic of (a) laser induced plasma cloud and transient nanobubbles and (b) strong and weak hydrogen bond network between water molecules

Fig. 5
Fig. 5

Forward and backward SRS spectra of liquid water excited by 532 nm laser with input energy over 110 mJ.