Abstract

This work reports on the fabrication and characterization of a graphene based variable optical attenuator integrated on a photonic Si3N4 waveguide and operating at 855 nm wavelength. The variable optical attenuator utilizes the gate voltage dependent optical absorption of a graphene layer, located in the evanescent field of the waveguide. A maximum attenuation of 17 dB is obtained at −3 V gate voltages for a device length of 700 µm. The measured voltage dependent absorption was found to be in good agreement with theoretical simulations, taking into account inter- and intra-band optical conductivity of graphene. An outlook is given on possible margins for increasing the operation speed and reducing the insertion loss of the device, using an optimized layout and improved fabrication processes.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide

Meiyong Fan, Huimin Yang, Pengfei Zheng, Guohua Hu, Binfeng Yun, and Yiping Cui
Opt. Express 25(18) 21619-21629 (2017)

Attojoule-efficient graphene optical modulators

Rubab Amin, Zhizhen Ma, Rishi Maiti, Sikandar Khan, Jacob B. Khurgin, Hamed Dalir, and Volker J. Sorger
Appl. Opt. 57(18) D130-D140 (2018)

Design optimization of single and double layer Graphene phase modulators in SOI

Vito Sorianello, Michele Midrio, and Marco Romagnoli
Opt. Express 23(5) 6478-6490 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang, M. Arabaci, F. Yaman, I. B. Djordjevic, L. Xu, T. Wang, Y. Inada, T. Ogata, and Y. Aoki, “Experimental study of non-binary LDPC coding for long-haul coherent optical QPSK transmissions,” Opt. Express 19(20), 19042–19049 (2011).
    [PubMed]
  2. B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
    [PubMed]
  3. G. Galliano, P. Motta, and F. Montalti, “Features in spectral attenuation measurement and performances of plug-in optical fixed attenuators,” in Proceedings of IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE, 2002), pp. 189–194.
  4. Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).
  5. K. Sato, T. Aoki, Y. Watanabe, Y. Oguri, N. Shibata, T. Nishiwaki, M. Oike, and T. Ohta, “Development of a variable optical attenuator,” Furukawa Electric Review, 15–20 (2001).
  6. The Fiber Optic Association, http://www.thefoa.org/tech/ref/appln/attenuators.html .
  7. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [PubMed]
  8. E. H. Hwang, S. Adam, and S. D. Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett. 98(18), 186806 (2007).
    [PubMed]
  9. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109 (2009).
  10. T. Ando, “The electronic properties of graphene and carbon nanotubes,” NPG Asia Mater. 1(1), 17–21 (2009).
  11. M. F. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, “Tuneable electronic properties in graphene,” Nano Today 6(1), 42–60 (2011).
  12. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
    [PubMed]
  13. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. IOP Publishing 129(1), 012004 (2008).
  14. S. J. Koester and M. Li, “Waveguide-coupled graphene optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 84–94 (2014).
  15. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [PubMed]
  16. D. Schall, C. Porschatis, M. Otto, and D. Neumaier, “Graphene photodetectors with a bandwidth >76 GHz fabricated in a 6″ wafer process line,” J. Phys. D Appl. Phys. 50(12), 124004 (2017).
  17. M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
    [PubMed]
  18. M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
    [PubMed]
  19. X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
  20. A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
  21. D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).
  22. D. Schall, M. Mohsin, A. A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. L. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24(8), 7871–7878 (2016).
    [PubMed]
  23. J. L. Benítez and D. Mendoza, “Modulation of the optical transmittance in multilayer graphene by an electrical signal,” Appl. Phys. Lett. 103(8), 083116 (2013).
  24. H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and polarization-independent variable optical attenuator based on a silicon wire waveguide with a carrier injection structure,” Jpn. J. Appl. Phys. 49(4S), 04DG20 (2010).
  25. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
  26. S. Choi, M. J. Word, V. Kumar, and I. Adesida, “Comparative study of thermally cured and electron-beam-exposed hydrogen silsesquioxane resists,” J. Vac. Sci. Technol. B 26(5), 1654–1659 (2008).
  27. C. C. Yang and W. C. Chen, “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing,” J. Mater. Chem. 12(4), 1138–1141 (2002).
  28. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
    [PubMed]
  29. C. A. Chavarin, A. A. Sagade, D. Neumaier, G. Bacher, and W. Mertin, “On the origin of contact resistances in graphene devices fabricated by optical lithography,” Appl. Phys., A Mater. Sci. Process. 122(2), 58 (2016).
  30. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Visible wavelength silicon nitride focusing grating coupler with AlCu/TiN reflector,” Opt. Lett. 38(14), 2521–2523 (2013).
    [PubMed]
  31. M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
    [PubMed]
  32. K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Applications of low-loss silicon photonic wire waveguides with carrier injection structures,” in 4th IEEE Int. Conf. on Group IV Photonics (IEEE, 2007), pp. 1–3.
  33. M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of wafer-scale graphene films,” 2D Materials 4(3), 1–10 (2017).
  34. R. Ifuku, K. Nagashio, T. Nishimura, and A. Toriumi, “The density of states of graphene underneath a metal electrode and its correlation with the contact resistivity,” Appl. Phys. Lett. 103(3), 033514 (2013).
  35. C. Neusel and G. A. Schneider, “Size-dependence of the dielectric breakdown strength from nano-to millimeter scale,” J. Mech. Phys. Solids 63, 201–213 (2014).
  36. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
  37. L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
    [PubMed]

2017 (2)

D. Schall, C. Porschatis, M. Otto, and D. Neumaier, “Graphene photodetectors with a bandwidth >76 GHz fabricated in a 6″ wafer process line,” J. Phys. D Appl. Phys. 50(12), 124004 (2017).

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of wafer-scale graphene films,” 2D Materials 4(3), 1–10 (2017).

2016 (2)

C. A. Chavarin, A. A. Sagade, D. Neumaier, G. Bacher, and W. Mertin, “On the origin of contact resistances in graphene devices fabricated by optical lithography,” Appl. Phys., A Mater. Sci. Process. 122(2), 58 (2016).

D. Schall, M. Mohsin, A. A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. L. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24(8), 7871–7878 (2016).
[PubMed]

2015 (2)

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[PubMed]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[PubMed]

2014 (4)

S. J. Koester and M. Li, “Waveguide-coupled graphene optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 84–94 (2014).

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

C. Neusel and G. A. Schneider, “Size-dependence of the dielectric breakdown strength from nano-to millimeter scale,” J. Mech. Phys. Solids 63, 201–213 (2014).

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[PubMed]

2013 (7)

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Visible wavelength silicon nitride focusing grating coupler with AlCu/TiN reflector,” Opt. Lett. 38(14), 2521–2523 (2013).
[PubMed]

R. Ifuku, K. Nagashio, T. Nishimura, and A. Toriumi, “The density of states of graphene underneath a metal electrode and its correlation with the contact resistivity,” Appl. Phys. Lett. 103(3), 033514 (2013).

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).

J. L. Benítez and D. Mendoza, “Modulation of the optical transmittance in multilayer graphene by an electrical signal,” Appl. Phys. Lett. 103(8), 083116 (2013).

2012 (1)

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[PubMed]

2011 (2)

2010 (1)

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and polarization-independent variable optical attenuator based on a silicon wire waveguide with a carrier injection structure,” Jpn. J. Appl. Phys. 49(4S), 04DG20 (2010).

2009 (4)

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109 (2009).

T. Ando, “The electronic properties of graphene and carbon nanotubes,” NPG Asia Mater. 1(1), 17–21 (2009).

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

2008 (5)

S. Choi, M. J. Word, V. Kumar, and I. Adesida, “Comparative study of thermally cured and electron-beam-exposed hydrogen silsesquioxane resists,” J. Vac. Sci. Technol. B 26(5), 1654–1659 (2008).

A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[PubMed]

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. IOP Publishing 129(1), 012004 (2008).

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[PubMed]

2007 (1)

E. H. Hwang, S. Adam, and S. D. Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett. 98(18), 186806 (2007).
[PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[PubMed]

2002 (1)

C. C. Yang and W. C. Chen, “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing,” J. Mater. Chem. 12(4), 1138–1141 (2002).

Adam, S.

E. H. Hwang, S. Adam, and S. D. Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett. 98(18), 186806 (2007).
[PubMed]

Adesida, I.

S. Choi, M. J. Word, V. Kumar, and I. Adesida, “Comparative study of thermally cured and electron-beam-exposed hydrogen silsesquioxane resists,” J. Vac. Sci. Technol. B 26(5), 1654–1659 (2008).

An, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

Ando, T.

T. Ando, “The electronic properties of graphene and carbon nanotubes,” NPG Asia Mater. 1(1), 17–21 (2009).

Aoki, Y.

Arabaci, M.

Assefa, S.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).

Bacher, G.

C. A. Chavarin, A. A. Sagade, D. Neumaier, G. Bacher, and W. Mertin, “On the origin of contact resistances in graphene devices fabricated by optical lithography,” Appl. Phys., A Mater. Sci. Process. 122(2), 58 (2016).

Bachmann, D.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).

Baets, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Banerjee, S. K.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

Benítez, J. L.

J. L. Benítez and D. Mendoza, “Modulation of the optical transmittance in multilayer graphene by an electrical signal,” Appl. Phys. Lett. 103(8), 083116 (2013).

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[PubMed]

Bolten, J.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[PubMed]

Cai, W.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

Campos, L. M.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

Chavarin, C. A.

C. A. Chavarin, A. A. Sagade, D. Neumaier, G. Bacher, and W. Mertin, “On the origin of contact resistances in graphene devices fabricated by optical lithography,” Appl. Phys., A Mater. Sci. Process. 122(2), 58 (2016).

Chen, W. C.

C. C. Yang and W. C. Chen, “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing,” J. Mater. Chem. 12(4), 1138–1141 (2002).

Chmielak, B.

D. Schall, M. Mohsin, A. A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. L. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24(8), 7871–7878 (2016).
[PubMed]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

Choi, S.

S. Choi, M. J. Word, V. Kumar, and I. Adesida, “Comparative study of thermally cured and electron-beam-exposed hydrogen silsesquioxane resists,” J. Vac. Sci. Technol. B 26(5), 1654–1659 (2008).

Claes, T.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Colombo, L.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

Craciun, M. F.

M. F. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, “Tuneable electronic properties in graphene,” Nano Today 6(1), 42–60 (2011).

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[PubMed]

Dean, C. R.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

Deng, L.

Deshpande, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Dhakal, A.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Djordjevic, I. B.

Du Bois, B.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[PubMed]

Englund, D.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. IOP Publishing 129(1), 012004 (2008).

Fallahkhair, A. B.

Fang, Q.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).

Feng, Z.

Finkelstein, H.

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[PubMed]

Fromherz, T.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).

Fu, S.

Fukuda, H.

K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Applications of low-loss silicon photonic wire waveguides with carrier injection structures,” in 4th IEEE Int. Conf. on Group IV Photonics (IEEE, 2007), pp. 1–3.

Furchi, M. M.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).

Galliano, G.

G. Galliano, P. Motta, and F. Montalti, “Features in spectral attenuation measurement and performances of plug-in optical fixed attenuators,” in Proceedings of IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE, 2002), pp. 189–194.

Gan, X.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).

Gao, Q.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

Gao, Y.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).

Geim, A. K.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109 (2009).

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[PubMed]

Giesecke, A. L.

D. Schall, M. Mohsin, A. A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. L. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24(8), 7871–7878 (2016).
[PubMed]

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[PubMed]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

Girit, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[PubMed]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[PubMed]

Guider, R.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).

Guinea, F.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109 (2009).

Guo, J.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

Heinz, T. F.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).

Helin, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Hone, J.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

Huang, P. Y.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

Humer, M.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).

Hwang, E. H.

E. H. Hwang, S. Adam, and S. D. Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett. 98(18), 186806 (2007).
[PubMed]

Ifuku, R.

R. Ifuku, K. Nagashio, T. Nishimura, and A. Toriumi, “The density of states of graphene underneath a metal electrode and its correlation with the contact resistivity,” Appl. Phys. Lett. 103(3), 033514 (2013).

Inada, Y.

Itabashi, S.

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and polarization-independent variable optical attenuator based on a silicon wire waveguide with a carrier injection structure,” Jpn. J. Appl. Phys. 49(4S), 04DG20 (2010).

K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Applications of low-loss silicon photonic wire waveguides with carrier injection structures,” in 4th IEEE Int. Conf. on Group IV Photonics (IEEE, 2007), pp. 1–3.

Jansen, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[PubMed]

Jung, I.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

Junginger, B.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

Kim, M.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of wafer-scale graphene films,” 2D Materials 4(3), 1–10 (2017).

Kim, P.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

Kim, S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

Koester, S. J.

S. J. Koester and M. Li, “Waveguide-coupled graphene optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 84–94 (2014).

Kuebart, W.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

Kumar, V.

S. Choi, M. J. Word, V. Kumar, and I. Adesida, “Comparative study of thermally cured and electron-beam-exposed hydrogen silsesquioxane resists,” J. Vac. Sci. Technol. B 26(5), 1654–1659 (2008).

Kurz, H.

D. Schall, M. Mohsin, A. A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. L. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24(8), 7871–7878 (2016).
[PubMed]

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[PubMed]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[PubMed]

Kwong, D. L.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).

Leyssens, K.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Li, B.

Li, C.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of wafer-scale graphene films,” 2D Materials 4(3), 1–10 (2017).

Li, K. S.

Li, M.

S. J. Koester and M. Li, “Waveguide-coupled graphene optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 84–94 (2014).

Li, X.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

Lipsanen, H.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of wafer-scale graphene films,” 2D Materials 4(3), 1–10 (2017).

Liu, M.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[PubMed]

Liu, S.

Liu, Y.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).

Lo, G. Q.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).

Manoocheri, F.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of wafer-scale graphene films,” 2D Materials 4(3), 1–10 (2017).

Matheisen, C.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[PubMed]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

Mendoza, D.

J. L. Benítez and D. Mendoza, “Modulation of the optical transmittance in multilayer graphene by an electrical signal,” Appl. Phys. Lett. 103(8), 083116 (2013).

Merget, F.

Meric, I.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).

Mertin, W.

C. A. Chavarin, A. A. Sagade, D. Neumaier, G. Bacher, and W. Mertin, “On the origin of contact resistances in graphene devices fabricated by optical lithography,” Appl. Phys., A Mater. Sci. Process. 122(2), 58 (2016).

Mohsin, M.

D. Schall, M. Mohsin, A. A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. L. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24(8), 7871–7878 (2016).
[PubMed]

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[PubMed]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[PubMed]

Montalti, F.

G. Galliano, P. Motta, and F. Montalti, “Features in spectral attenuation measurement and performances of plug-in optical fixed attenuators,” in Proceedings of IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE, 2002), pp. 189–194.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[PubMed]

Motta, P.

G. Galliano, P. Motta, and F. Montalti, “Features in spectral attenuation measurement and performances of plug-in optical fixed attenuators,” in Proceedings of IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE, 2002), pp. 189–194.

Mueller, T.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).

Muller, D. A.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

Murphy, T. E.

Mustonen, P.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of wafer-scale graphene films,” 2D Materials 4(3), 1–10 (2017).

Nagashio, K.

R. Ifuku, K. Nagashio, T. Nishimura, and A. Toriumi, “The density of states of graphene underneath a metal electrode and its correlation with the contact resistivity,” Appl. Phys. Lett. 103(3), 033514 (2013).

Nah, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[PubMed]

Neto, A. H. C.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109 (2009).

Neumaier, D.

D. Schall, C. Porschatis, M. Otto, and D. Neumaier, “Graphene photodetectors with a bandwidth >76 GHz fabricated in a 6″ wafer process line,” J. Phys. D Appl. Phys. 50(12), 124004 (2017).

C. A. Chavarin, A. A. Sagade, D. Neumaier, G. Bacher, and W. Mertin, “On the origin of contact resistances in graphene devices fabricated by optical lithography,” Appl. Phys., A Mater. Sci. Process. 122(2), 58 (2016).

D. Schall, M. Mohsin, A. A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. L. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24(8), 7871–7878 (2016).
[PubMed]

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[PubMed]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[PubMed]

Neusel, C.

C. Neusel and G. A. Schneider, “Size-dependence of the dielectric breakdown strength from nano-to millimeter scale,” J. Mech. Phys. Solids 63, 201–213 (2014).

Neutens, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Nishi, H.

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and polarization-independent variable optical attenuator based on a silicon wire waveguide with a carrier injection structure,” Jpn. J. Appl. Phys. 49(4S), 04DG20 (2010).

Nishimura, T.

R. Ifuku, K. Nagashio, T. Nishimura, and A. Toriumi, “The density of states of graphene underneath a metal electrode and its correlation with the contact resistivity,” Appl. Phys. Lett. 103(3), 033514 (2013).

Noculak, A.

Novoselov, K. S.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109 (2009).

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[PubMed]

Ogata, T.

Otto, M.

D. Schall, C. Porschatis, M. Otto, and D. Neumaier, “Graphene photodetectors with a bandwidth >76 GHz fabricated in a 6″ wafer process line,” J. Phys. D Appl. Phys. 50(12), 124004 (2017).

D. Schall, M. Mohsin, A. A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. L. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24(8), 7871–7878 (2016).
[PubMed]

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[PubMed]

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[PubMed]

Peres, N. M.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[PubMed]

Peres, N. M. R.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109 (2009).

Peyskens, F.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Piner, R.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

Porschatis, C.

D. Schall, C. Porschatis, M. Otto, and D. Neumaier, “Graphene photodetectors with a bandwidth >76 GHz fabricated in a 6″ wafer process line,” J. Phys. D Appl. Phys. 50(12), 124004 (2017).

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

Pospischil, A.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).

Prinzen, A.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

Riikonen, J.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of wafer-scale graphene films,” 2D Materials 4(3), 1–10 (2017).

Romero-García, S.

Rottenberg, X.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Ruoff, R. S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

Russo, S.

M. F. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, “Tuneable electronic properties in graphene,” Nano Today 6(1), 42–60 (2011).

Sagade, A. A.

C. A. Chavarin, A. A. Sagade, D. Neumaier, G. Bacher, and W. Mertin, “On the origin of contact resistances in graphene devices fabricated by optical lithography,” Appl. Phys., A Mater. Sci. Process. 122(2), 58 (2016).

D. Schall, M. Mohsin, A. A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. L. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24(8), 7871–7878 (2016).
[PubMed]

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[PubMed]

Sarma, S. D.

E. H. Hwang, S. Adam, and S. D. Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett. 98(18), 186806 (2007).
[PubMed]

Schall, D.

D. Schall, C. Porschatis, M. Otto, and D. Neumaier, “Graphene photodetectors with a bandwidth >76 GHz fabricated in a 6″ wafer process line,” J. Phys. D Appl. Phys. 50(12), 124004 (2017).

D. Schall, M. Mohsin, A. A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. L. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24(8), 7871–7878 (2016).
[PubMed]

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[PubMed]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[PubMed]

Schneider, G. A.

C. Neusel and G. A. Schneider, “Size-dependence of the dielectric breakdown strength from nano-to millimeter scale,” J. Mech. Phys. Solids 63, 201–213 (2014).

Selvaraja, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Severi, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Shah, A.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of wafer-scale graphene films,” 2D Materials 4(3), 1–10 (2017).

Shen, Y. R.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[PubMed]

Shepard, K.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).

Shepard, K. L.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

Shinojima, H.

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and polarization-independent variable optical attenuator based on a silicon wire waveguide with a carrier injection structure,” Jpn. J. Appl. Phys. 49(4S), 04DG20 (2010).

K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Applications of low-loss silicon photonic wire waveguides with carrier injection structures,” in 4th IEEE Int. Conf. on Group IV Photonics (IEEE, 2007), pp. 1–3.

Shiue, R. J.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).

Shum, P. P.

Song, J.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[PubMed]

Subramanian, A. Z.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Suckow, S.

Susoma, J.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of wafer-scale graphene films,” 2D Materials 4(3), 1–10 (2017).

Tang, M.

Taniguchi, T.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

Tarucha, S.

M. F. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, “Tuneable electronic properties in graphene,” Nano Today 6(1), 42–60 (2011).

Templ, W.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[PubMed]

Tong, W.

Toriumi, A.

R. Ifuku, K. Nagashio, T. Nishimura, and A. Toriumi, “The density of states of graphene underneath a metal electrode and its correlation with the contact resistivity,” Appl. Phys. Lett. 103(3), 033514 (2013).

Tran, H.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

Tsuchizawa, T.

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and polarization-independent variable optical attenuator based on a silicon wire waveguide with a carrier injection structure,” Jpn. J. Appl. Phys. 49(4S), 04DG20 (2010).

K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Applications of low-loss silicon photonic wire waveguides with carrier injection structures,” in 4th IEEE Int. Conf. on Group IV Photonics (IEEE, 2007), pp. 1–3.

Tutuc, E.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

Van Dorpe, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

Velamakanni, A.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

Wang, F.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[PubMed]

Wang, L.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

Wang, T.

Watanabe, K.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

Watanabe, T.

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and polarization-independent variable optical attenuator based on a silicon wire waveguide with a carrier injection structure,” Jpn. J. Appl. Phys. 49(4S), 04DG20 (2010).

K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Applications of low-loss silicon photonic wire waveguides with carrier injection structures,” in 4th IEEE Int. Conf. on Group IV Photonics (IEEE, 2007), pp. 1–3.

Witzens, J.

Word, M. J.

S. Choi, M. J. Word, V. Kumar, and I. Adesida, “Comparative study of thermally cured and electron-beam-exposed hydrogen silsesquioxane resists,” J. Vac. Sci. Technol. B 26(5), 1654–1659 (2008).

Wu, Q.

Xu, L.

Xu, Z.

Yamada, K.

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and polarization-independent variable optical attenuator based on a silicon wire waveguide with a carrier injection structure,” Jpn. J. Appl. Phys. 49(4S), 04DG20 (2010).

K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Applications of low-loss silicon photonic wire waveguides with carrier injection structures,” in 4th IEEE Int. Conf. on Group IV Photonics (IEEE, 2007), pp. 1–3.

Yamamoto, M.

M. F. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, “Tuneable electronic properties in graphene,” Nano Today 6(1), 42–60 (2011).

Yaman, F.

Yang, C. C.

C. C. Yang and W. C. Chen, “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing,” J. Mater. Chem. 12(4), 1138–1141 (2002).

Yang, D.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

Yin, X.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[PubMed]

Yu, M.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).

Zettl, A.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[PubMed]

Zhang, G.

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).

Zhang, S.

Zhang, X.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[PubMed]

Zhang, Y.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[PubMed]

Zhong, F.

2D Materials (1)

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of wafer-scale graphene films,” 2D Materials 4(3), 1–10 (2017).

ACS Photonics (1)

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photonics 1(9), 781–784 (2014).

Appl. Phys. Lett. (2)

J. L. Benítez and D. Mendoza, “Modulation of the optical transmittance in multilayer graphene by an electrical signal,” Appl. Phys. Lett. 103(8), 083116 (2013).

R. Ifuku, K. Nagashio, T. Nishimura, and A. Toriumi, “The density of states of graphene underneath a metal electrode and its correlation with the contact resistivity,” Appl. Phys. Lett. 103(3), 033514 (2013).

Appl. Phys., A Mater. Sci. Process. (1)

C. A. Chavarin, A. A. Sagade, D. Neumaier, G. Bacher, and W. Mertin, “On the origin of contact resistances in graphene devices fabricated by optical lithography,” Appl. Phys., A Mater. Sci. Process. 122(2), 58 (2016).

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Koester and M. Li, “Waveguide-coupled graphene optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 84–94 (2014).

IEEE Photonics J. (1)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).

IEEE Photonics Technol. Lett. (1)

Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photonics Technol. Lett. 21(5), 319–321 (2009).

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

C. C. Yang and W. C. Chen, “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing,” J. Mater. Chem. 12(4), 1138–1141 (2002).

J. Mech. Phys. Solids (1)

C. Neusel and G. A. Schneider, “Size-dependence of the dielectric breakdown strength from nano-to millimeter scale,” J. Mech. Phys. Solids 63, 201–213 (2014).

J. Phys. Conf. Ser. IOP Publishing (1)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. IOP Publishing 129(1), 012004 (2008).

J. Phys. D Appl. Phys. (1)

D. Schall, C. Porschatis, M. Otto, and D. Neumaier, “Graphene photodetectors with a bandwidth >76 GHz fabricated in a 6″ wafer process line,” J. Phys. D Appl. Phys. 50(12), 124004 (2017).

J. Vac. Sci. Technol. B (1)

S. Choi, M. J. Word, V. Kumar, and I. Adesida, “Comparative study of thermally cured and electron-beam-exposed hydrogen silsesquioxane resists,” J. Vac. Sci. Technol. B 26(5), 1654–1659 (2008).

Jpn. J. Appl. Phys. (1)

H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and polarization-independent variable optical attenuator based on a silicon wire waveguide with a carrier injection structure,” Jpn. J. Appl. Phys. 49(4S), 04DG20 (2010).

Nano Lett. (1)

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[PubMed]

Nano Today (1)

M. F. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, “Tuneable electronic properties in graphene,” Nano Today 6(1), 42–60 (2011).

Nat. Photonics (2)

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).

NPG Asia Mater. (1)

T. Ando, “The electronic properties of graphene and carbon nanotubes,” NPG Asia Mater. 1(1), 17–21 (2009).

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

E. H. Hwang, S. Adam, and S. D. Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett. 98(18), 186806 (2007).
[PubMed]

Rev. Mod. Phys. (1)

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109 (2009).

Sci. Rep. (1)

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[PubMed]

Science (5)

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[PubMed]

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342(6158), 614–617 (2013).
[PubMed]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[PubMed]

Other (4)

K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Applications of low-loss silicon photonic wire waveguides with carrier injection structures,” in 4th IEEE Int. Conf. on Group IV Photonics (IEEE, 2007), pp. 1–3.

G. Galliano, P. Motta, and F. Montalti, “Features in spectral attenuation measurement and performances of plug-in optical fixed attenuators,” in Proceedings of IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE, 2002), pp. 189–194.

K. Sato, T. Aoki, Y. Watanabe, Y. Oguri, N. Shibata, T. Nishiwaki, M. Oike, and T. Ohta, “Development of a variable optical attenuator,” Furukawa Electric Review, 15–20 (2001).

The Fiber Optic Association, http://www.thefoa.org/tech/ref/appln/attenuators.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the VOA, including top view (left), three-dimensional visualization (top right) and cross-sectional view (bottom right). The ionic liquid (shown in green) covers the whole chip, however for clarity purposes, it is shown only in the relevant region above the waveguide in this schematic.
Fig. 2
Fig. 2 (a) Cross-sectional SEM image of the Si3N4 waveguide. The HSQ + Al2O3 profile along the waveguide edges is also visible. (b) Top view SEM image of the final device with Ni contacts. The metal contacts are each 5 μm apart from the waveguide and hence do not interact with the evanescent field in the waveguide.
Fig. 3
Fig. 3 Two-probe resistance of the graphene layer and fiber-to-fiber optical transmission in the 400 µm long VOA as a function of Vgate.
Fig. 4
Fig. 4 (a) Transmission change from Vgate = 0 to −3 V as a function of VOA length. A length specific transmission modulation of 0.024 dB/µm is extracted from the slope. (b) Measured fiber-to-fiber transmission for Vgate = 0 V (red symbols) and −3V (black symbols). At Vgate = 0V, graphene is absorbing and its length specific absorption is 0.028 dB/µm. At Vgate = −3V, the graphene is transparent and the residual insertion loss is 0.005 dB/µm. In both cases, the y-intercept of 17.5 dB corresponds to the sum of grating couplers and Si3N4 waveguide propagation losses.
Fig. 5
Fig. 5 Optical response for an electrical square signal of 3 V amplitude (0 to −3 V) and 1 Hz frequency applied to the gate electrode. The extracted rise and fall time (10%-90%) is 100 ms and 60 ms, respectively. Measurements are shown for a VOA with 300 µm long graphene.
Fig. 6
Fig. 6 Simplified device cross-section used in the simulations along with refractive indices for different materials.
Fig. 7
Fig. 7 (a) Simulated absorption of graphene as a function of distance from the top of the Si3N4 waveguide. For this simulation, the HSQ thickness is varied while the thickness of the Al2O3 layer is fixed at 5 nm on top of HSQ. A distance of 35 nm gives the absorption value measured in the experiment. (b) Experimental (solid line) and simulated (dashed lines) for graphene absorption as a function of the chemical potential. The simulations are shown for three different scattering rates. For a scattering rate of 5x1013 sec−1, the simulated values are consistent with experimentally obtained result. In (b), we used 35 nm (30 nm HSQ + 5 nm Al2O3) as the distance between graphene and top of waveguide as the absorption of 0.028 dB/μm at μ c = 0 eV matches the experimental measurements. In the inset the FOM, which is defined as the ratio of graphene absorption at 0 eV to insertion loss at 1 eV, is shown as a function of the scattering rates.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ intra = ie 2 k B T π 2 ( ω+i2Γ ) ( μ c k B T +2ln( e μ c / k B T +1 ) )
σ inter = ie 2 ( ω+i2Γ ) π 2 0 f d ( ξ ) f d ( ξ ) ( ω+i2Γ ) 2 4 ( ξ/ ) 2
f d ( ξ )= 1 ( e ( ξ μ c )/ k B T +1 )
n g =  ε g =  1+  ωt g ε 0
 × ( ϵ 1  ×  × H )  ω 2 μ 0 H=0
 × H=ϵE

Metrics