Abstract

Direct laser writing (DLW) via two-photon absorption (TPA) has attracted much attention as a new microfabrication technique because it can be applied to fabricate complex, three-dimensional (3D) microstructures. In this study, 3D microstructures and micro-optical devices of micro-lens array on the micrometer scale are fabricated using the negative photoresist SU-8 through TPA with a femtosecond laser pulse under a microscope. The effects of the irradiation conditions on linewidths, such as laser power, writing speed, and writing cycles (a number of times a line is overwritten), are investigated before the fabrication of the 3D microstructures. Various microstructures such as woodpiles, hemisphere and microstructures, 3D micro-lens and micro-lens array for micro-optical devices are fabricated. The shape of the micro-lens is evaluated using the shape analysis mode of a laser microscope to calculate the working distance of the fabricated micro-lenses. The calculated working distance corresponds well to the experimentally measured value. The focusing performance of the fabricated micro-lens is confirmed by the TPA fluorescence of an isopropyl thioxanthone (ITX) ethanol solution excited by a Ti:sapphire femtosecond laser at 800 nm. Micro-lens array (assembled 9 micro-lenses) are fabricated. Nine independent woodpile structures are simultaneously manufactured by DLW via TPA to confirm the multi-focusing ability using the fabricated micro-lens array.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8

Henry E. Williams, Daniel J. Freppon, Stephen M. Kuebler, Raymond C. Rumpf, and Marco A. Melino
Opt. Express 19(23) 22910-22922 (2011)

Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces

Bian Hao, Hewei Liu, Feng Chen, Qing Yang, Pubo Qu, Guangqing Du, Jinhai Si, Xianhua Wang, and Xun Hou
Opt. Express 20(12) 12939-12948 (2012)

Fabrication of micro-axicons using direct-laser writing

He Huang, Shijie Chen, Hongmei Zou, Qing Li, Jian Fu, Feng Lin, and X. Wu
Opt. Express 22(9) 11035-11042 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. A. Zorman and R. J. Parro, “Micro- and nanomechanical structures for silicon carbide MEMS and NEMS,” Phys. Status Solidi 245(7), 1404–1424 (2008).
  2. W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steibock, and R. Heidinger, “Laser-assisted fabrication of monomode polymer waveguides and their optical characterization,” Materialwiss. Werkstofftech. 34, 904–911 (2003).
  3. S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
    [PubMed]
  4. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
  5. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
  6. M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
  7. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
    [PubMed]
  8. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [PubMed]
  9. Y. Yan, M. I. Rashad, E. J. Teo, H. Tanoto, J. Teng, and A. A. Bettiol, “Selective electroless silver plating of three dimensional SU-8 microstructures on silicon for metamaterials applications,” Opt. Mater. Express 1, 1548–1554 (2011).
  10. J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
    [PubMed]
  11. G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2, 287–294 (2015).
  12. S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2, 779–786 (2015).
  13. J. Kaschke and M. Wegener, “Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography,” Opt. Lett. 40(17), 3986–3989 (2015).
    [PubMed]
  14. J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).
  15. P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. 20, 4494–4498 (2008).
  16. M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 3009–3015 (2012).
    [PubMed]
  17. J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
    [PubMed]
  18. A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-engineered 3D scaffolds for cell culture studies,” Macromol. Biosci. 12(10), 1301–1314 (2012).
    [PubMed]
  19. K. C. Hribar, K. Meggs, J. Liu, W. Zhu, X. Qu, and S. Chen, “Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser,” Sci. Rep. 5, 17203 (2015).
    [PubMed]
  20. M. Mihailescu, I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, and M. Dinescu, “Laser-assisted fabrication and non-invasive imaging of 3D cell-seeding constructs for bone tissue engineering,” J. Mater. Sci. 51, 4262–4273 (2016).
  21. A. Marino, J. Barsotti, G. de Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, and G. Ciofani, “Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation,” ACS Appl. Mater. Interfaces 7(46), 25574–25579 (2015).
    [PubMed]
  22. I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, C. C. Mustaciosu, M. Mihailescu, and M. Dinescu, “Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering,” Appl. Surf. Sci. 392, 321–331 (2017).
  23. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
  24. T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
    [PubMed]
  25. Z. N. Tian, W. G. Yao, J. J. Xu, Y. H. Yu, Q. D. Chen, and H. B. Sun, “Focal varying microlens array,” Opt. Lett. 40(18), 4222–4225 (2015).
    [PubMed]
  26. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
  27. M. Blattmann, M. Ocker, H. Zappe, and A. Seifert, “Jet printing of convex and concave polymer micro-lenses,” Opt. Express 23(19), 24525–24536 (2015).
    [PubMed]
  28. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
    [PubMed]
  29. H. Z. Cao, M. L. Zheng, X. Z. Dong, F. Jin, Z. S. Zhao, and X. M. Duan, “Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing,” Appl. Phys. Lett. 102, 201108 (2013).

2017 (1)

I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, C. C. Mustaciosu, M. Mihailescu, and M. Dinescu, “Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering,” Appl. Surf. Sci. 392, 321–331 (2017).

2016 (4)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).

J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
[PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).

M. Mihailescu, I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, and M. Dinescu, “Laser-assisted fabrication and non-invasive imaging of 3D cell-seeding constructs for bone tissue engineering,” J. Mater. Sci. 51, 4262–4273 (2016).

2015 (9)

A. Marino, J. Barsotti, G. de Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, and G. Ciofani, “Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation,” ACS Appl. Mater. Interfaces 7(46), 25574–25579 (2015).
[PubMed]

K. C. Hribar, K. Meggs, J. Liu, W. Zhu, X. Qu, and S. Chen, “Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser,” Sci. Rep. 5, 17203 (2015).
[PubMed]

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[PubMed]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2, 287–294 (2015).

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2, 779–786 (2015).

J. Kaschke and M. Wegener, “Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography,” Opt. Lett. 40(17), 3986–3989 (2015).
[PubMed]

Z. N. Tian, W. G. Yao, J. J. Xu, Y. H. Yu, Q. D. Chen, and H. B. Sun, “Focal varying microlens array,” Opt. Lett. 40(18), 4222–4225 (2015).
[PubMed]

M. Blattmann, M. Ocker, H. Zappe, and A. Seifert, “Jet printing of convex and concave polymer micro-lenses,” Opt. Express 23(19), 24525–24536 (2015).
[PubMed]

2014 (1)

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[PubMed]

2013 (1)

H. Z. Cao, M. L. Zheng, X. Z. Dong, F. Jin, Z. S. Zhao, and X. M. Duan, “Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing,” Appl. Phys. Lett. 102, 201108 (2013).

2012 (3)

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-engineered 3D scaffolds for cell culture studies,” Macromol. Biosci. 12(10), 1301–1314 (2012).
[PubMed]

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 3009–3015 (2012).
[PubMed]

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[PubMed]

2011 (2)

2009 (2)

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

2008 (3)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[PubMed]

C. A. Zorman and R. J. Parro, “Micro- and nanomechanical structures for silicon carbide MEMS and NEMS,” Phys. Status Solidi 245(7), 1404–1424 (2008).

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. 20, 4494–4498 (2008).

2007 (1)

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).

2005 (1)

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).

2003 (1)

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steibock, and R. Heidinger, “Laser-assisted fabrication of monomode polymer waveguides and their optical characterization,” Materialwiss. Werkstofftech. 34, 904–911 (2003).

Acasandrei, A. M.

I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, C. C. Mustaciosu, M. Mihailescu, and M. Dinescu, “Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering,” Appl. Surf. Sci. 392, 321–331 (2017).

M. Mihailescu, I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, and M. Dinescu, “Laser-assisted fabrication and non-invasive imaging of 3D cell-seeding constructs for bone tissue engineering,” J. Mater. Sci. 51, 4262–4273 (2016).

Akil, S.

J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
[PubMed]

Bade, K.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

Bagheri, S.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2, 779–786 (2015).

Baldacchini, T.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. 20, 4494–4498 (2008).

Barsotti, J.

A. Marino, J. Barsotti, G. de Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, and G. Ciofani, “Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation,” ACS Appl. Mater. Interfaces 7(46), 25574–25579 (2015).
[PubMed]

Bastmeyer, M.

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-engineered 3D scaffolds for cell culture studies,” Macromol. Biosci. 12(10), 1301–1314 (2012).
[PubMed]

Battie, Y.

J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
[PubMed]

Bettiol, A. A.

Blattmann, M.

Blume, L.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).

Bratchikov, M.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[PubMed]

Bruyant, A.

J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
[PubMed]

Bückmann, T.

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[PubMed]

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).

Cao, H. Z.

H. Z. Cao, M. L. Zheng, X. Z. Dong, F. Jin, Z. S. Zhao, and X. M. Duan, “Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing,” Appl. Phys. Lett. 102, 201108 (2013).

Chan, T. M.

J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
[PubMed]

Chen, Q. D.

Chen, S.

K. C. Hribar, K. Meggs, J. Liu, W. Zhu, X. Qu, and S. Chen, “Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser,” Sci. Rep. 5, 17203 (2015).
[PubMed]

Chichkov, B. N.

Ciofani, G.

A. Marino, J. Barsotti, G. de Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, and G. Ciofani, “Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation,” ACS Appl. Mater. Interfaces 7(46), 25574–25579 (2015).
[PubMed]

Copic, D.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[PubMed]

Cousin, J.

J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
[PubMed]

Darinskas, A.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[PubMed]

Daunoras, G.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[PubMed]

de Vito, G.

A. Marino, J. Barsotti, G. de Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, and G. Ciofani, “Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation,” ACS Appl. Mater. Interfaces 7(46), 25574–25579 (2015).
[PubMed]

De Volder, M.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).

Deubel, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).

Deveikyte, M.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[PubMed]

Dinescu, M.

I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, C. C. Mustaciosu, M. Mihailescu, and M. Dinescu, “Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering,” Appl. Surf. Sci. 392, 321–331 (2017).

M. Mihailescu, I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, and M. Dinescu, “Laser-assisted fabrication and non-invasive imaging of 3D cell-seeding constructs for bone tissue engineering,” J. Mater. Sci. 51, 4262–4273 (2016).

Dong, X. Z.

H. Z. Cao, M. L. Zheng, X. Z. Dong, F. Jin, Z. S. Zhao, and X. M. Duan, “Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing,” Appl. Phys. Lett. 102, 201108 (2013).

Duan, X. M.

H. Z. Cao, M. L. Zheng, X. Z. Dong, F. Jin, Z. S. Zhao, and X. M. Duan, “Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing,” Appl. Phys. Lett. 102, 201108 (2013).

Economou, E. N.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2, 287–294 (2015).

Enoch, S.

J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
[PubMed]

Farsari, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2, 287–294 (2015).

Filippeschi, C.

A. Marino, J. Barsotti, G. de Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, and G. Ciofani, “Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation,” ACS Appl. Mater. Interfaces 7(46), 25574–25579 (2015).
[PubMed]

Finke, S.

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steibock, and R. Heidinger, “Laser-assisted fabrication of monomode polymer waveguides and their optical characterization,” Materialwiss. Werkstofftech. 34, 904–911 (2003).

Gaganidze, E.

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steibock, and R. Heidinger, “Laser-assisted fabrication of monomode polymer waveguides and their optical characterization,” Materialwiss. Werkstofftech. 34, 904–911 (2003).

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

Giessen, H.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2, 779–786 (2015).

Gissibl, T.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2, 779–786 (2015).

Gittard, S. D.

Greiner, A. M.

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-engineered 3D scaffolds for cell culture studies,” Macromol. Biosci. 12(10), 1301–1314 (2012).
[PubMed]

Gudas, R.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[PubMed]

Guenneau, S.

J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
[PubMed]

Hart, A. J.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[PubMed]

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).

Heidinger, R.

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steibock, and R. Heidinger, “Laser-assisted fabrication of monomode polymer waveguides and their optical characterization,” Materialwiss. Werkstofftech. 34, 904–911 (2003).

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).

Herro, Z.

J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
[PubMed]

Hölscher, H.

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 3009–3015 (2012).
[PubMed]

Hribar, K. C.

K. C. Hribar, K. Meggs, J. Liu, W. Zhu, X. Qu, and S. Chen, “Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser,” Sci. Rep. 5, 17203 (2015).
[PubMed]

Jin, F.

H. Z. Cao, M. L. Zheng, X. Z. Dong, F. Jin, Z. S. Zhao, and X. M. Duan, “Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing,” Appl. Phys. Lett. 102, 201108 (2013).

Joly, L.

J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
[PubMed]

Jradi, S.

J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
[PubMed]

Juodkazis, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).

Kadic, M.

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[PubMed]

Kafesaki, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2, 287–294 (2015).

Kaschke, J.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).

J. Kaschke and M. Wegener, “Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography,” Opt. Lett. 40(17), 3986–3989 (2015).
[PubMed]

Kenanakis, G.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2, 287–294 (2015).

Koroleva, A.

Labardi, M.

A. Marino, J. Barsotti, G. de Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, and G. Ciofani, “Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation,” ACS Appl. Mater. Interfaces 7(46), 25574–25579 (2015).
[PubMed]

Laurinaviciene, A.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[PubMed]

Laurinavicius, A.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[PubMed]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).

Litfin, K.

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steibock, and R. Heidinger, “Laser-assisted fabrication of monomode polymer waveguides and their optical characterization,” Materialwiss. Werkstofftech. 34, 904–911 (2003).

Liu, J.

K. C. Hribar, K. Meggs, J. Liu, W. Zhu, X. Qu, and S. Chen, “Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser,” Sci. Rep. 5, 17203 (2015).
[PubMed]

Luculescu, C. R.

I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, C. C. Mustaciosu, M. Mihailescu, and M. Dinescu, “Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering,” Appl. Surf. Sci. 392, 321–331 (2017).

M. Mihailescu, I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, and M. Dinescu, “Laser-assisted fabrication and non-invasive imaging of 3D cell-seeding constructs for bone tissue engineering,” J. Mater. Sci. 51, 4262–4273 (2016).

Maciulaitis, J.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[PubMed]

Maciulaitis, R.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[PubMed]

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[PubMed]

Marino, A.

A. Marino, J. Barsotti, G. de Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, and G. Ciofani, “Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation,” ACS Appl. Mater. Interfaces 7(46), 25574–25579 (2015).
[PubMed]

Matsuo, S.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).

Mattoli, V.

A. Marino, J. Barsotti, G. de Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, and G. Ciofani, “Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation,” ACS Appl. Mater. Interfaces 7(46), 25574–25579 (2015).
[PubMed]

Mazur, E.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. 20, 4494–4498 (2008).

Mazzolai, B.

A. Marino, J. Barsotti, G. de Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, and G. Ciofani, “Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation,” ACS Appl. Mater. Interfaces 7(46), 25574–25579 (2015).
[PubMed]

Meggs, K.

K. C. Hribar, K. Meggs, J. Liu, W. Zhu, X. Qu, and S. Chen, “Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser,” Sci. Rep. 5, 17203 (2015).
[PubMed]

Mendonca, C. R.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. 20, 4494–4498 (2008).

Mihailescu, M.

I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, C. C. Mustaciosu, M. Mihailescu, and M. Dinescu, “Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering,” Appl. Surf. Sci. 392, 321–331 (2017).

M. Mihailescu, I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, and M. Dinescu, “Laser-assisted fabrication and non-invasive imaging of 3D cell-seeding constructs for bone tissue engineering,” J. Mater. Sci. 51, 4262–4273 (2016).

Misawa, H.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).

Mooney, D. J.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. 20, 4494–4498 (2008).

Moughames, J.

J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
[PubMed]

Mustaciosu, C. C.

I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, C. C. Mustaciosu, M. Mihailescu, and M. Dinescu, “Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering,” Appl. Surf. Sci. 392, 321–331 (2017).

Naciri, A. E.

J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
[PubMed]

Narayan, R. J.

Neubrech, F.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2, 779–786 (2015).

Nguyen, A.

Obata, K.

Ocker, M.

Oliver, C. R.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[PubMed]

Park, S. J.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[PubMed]

Parro, R. J.

C. A. Zorman and R. J. Parro, “Micro- and nanomechanical structures for silicon carbide MEMS and NEMS,” Phys. Status Solidi 245(7), 1404–1424 (2008).

Paun, I. A.

I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, C. C. Mustaciosu, M. Mihailescu, and M. Dinescu, “Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering,” Appl. Surf. Sci. 392, 321–331 (2017).

M. Mihailescu, I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, and M. Dinescu, “Laser-assisted fabrication and non-invasive imaging of 3D cell-seeding constructs for bone tissue engineering,” J. Mater. Sci. 51, 4262–4273 (2016).

Pfleging, W.

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steibock, and R. Heidinger, “Laser-assisted fabrication of monomode polymer waveguides and their optical characterization,” Materialwiss. Werkstofftech. 34, 904–911 (2003).

Piazza, V.

A. Marino, J. Barsotti, G. de Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, and G. Ciofani, “Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation,” ACS Appl. Mater. Interfaces 7(46), 25574–25579 (2015).
[PubMed]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[PubMed]

Polsen, E. S.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[PubMed]

Qu, X.

K. C. Hribar, K. Meggs, J. Liu, W. Zhu, X. Qu, and S. Chen, “Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser,” Sci. Rep. 5, 17203 (2015).
[PubMed]

Rashad, M. I.

Rekštyte, S.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[PubMed]

Richter, B.

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-engineered 3D scaffolds for cell culture studies,” Macromol. Biosci. 12(10), 1301–1314 (2012).
[PubMed]

Rill, M. S.

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[PubMed]

Roberts, M. J.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[PubMed]

Röhrig, M.

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 3009–3015 (2012).
[PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

Schittny, R.

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[PubMed]

Seet, K. K.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).

Seifert, A.

Selimis, A.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2, 287–294 (2015).

Šimbelyte, A.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[PubMed]

Soukoulis, C. M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2, 287–294 (2015).

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[PubMed]

Steibock, L.

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steibock, and R. Heidinger, “Laser-assisted fabrication of monomode polymer waveguides and their optical characterization,” Materialwiss. Werkstofftech. 34, 904–911 (2003).

Sun, H. B.

Tanoto, H.

Tawfick, S.

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[PubMed]

Tayalia, P.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. 20, 4494–4498 (2008).

Teng, J.

Teo, E. J.

Thiel, M.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[PubMed]

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 3009–3015 (2012).
[PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).

Thiele, S.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).

Tian, Z. N.

Vamvakaki, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2, 287–294 (2015).

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).

Weber, K.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2, 779–786 (2015).

Wegener, M.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).

J. Kaschke and M. Wegener, “Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography,” Opt. Lett. 40(17), 3986–3989 (2015).
[PubMed]

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).

Weiss, T.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2, 779–786 (2015).

Worgull, M.

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 3009–3015 (2012).
[PubMed]

Wu, L.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).

Xomalis, A.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2, 287–294 (2015).

Xu, J. J.

Yan, Y.

Yang, Z.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).

Yao, W. G.

Yu, Y. H.

Zamfirescu, M.

I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, C. C. Mustaciosu, M. Mihailescu, and M. Dinescu, “Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering,” Appl. Surf. Sci. 392, 321–331 (2017).

M. Mihailescu, I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, and M. Dinescu, “Laser-assisted fabrication and non-invasive imaging of 3D cell-seeding constructs for bone tissue engineering,” J. Mater. Sci. 51, 4262–4273 (2016).

Zappe, H.

Zhao, Z. S.

H. Z. Cao, M. L. Zheng, X. Z. Dong, F. Jin, Z. S. Zhao, and X. M. Duan, “Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing,” Appl. Phys. Lett. 102, 201108 (2013).

Zheng, M. L.

H. Z. Cao, M. L. Zheng, X. Z. Dong, F. Jin, Z. S. Zhao, and X. M. Duan, “Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing,” Appl. Phys. Lett. 102, 201108 (2013).

Zhu, W.

K. C. Hribar, K. Meggs, J. Liu, W. Zhu, X. Qu, and S. Chen, “Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser,” Sci. Rep. 5, 17203 (2015).
[PubMed]

Zorman, C. A.

C. A. Zorman and R. J. Parro, “Micro- and nanomechanical structures for silicon carbide MEMS and NEMS,” Phys. Status Solidi 245(7), 1404–1424 (2008).

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).

ACS Appl. Mater. Interfaces (1)

A. Marino, J. Barsotti, G. de Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, and G. Ciofani, “Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation,” ACS Appl. Mater. Interfaces 7(46), 25574–25579 (2015).
[PubMed]

ACS Photonics (2)

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2, 287–294 (2015).

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2, 779–786 (2015).

Adv. Mater. (5)

S. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, and A. J. Hart, “Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties,” Adv. Mater. 24(13), 1628–1674 (2012).
[PubMed]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. 20, 4494–4498 (2008).

Adv. Opt. Mater. (1)

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3(10), 1411–1417 (2015).

Appl. Phys. Lett. (1)

H. Z. Cao, M. L. Zheng, X. Z. Dong, F. Jin, Z. S. Zhao, and X. M. Duan, “Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing,” Appl. Phys. Lett. 102, 201108 (2013).

Appl. Surf. Sci. (1)

I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, C. C. Mustaciosu, M. Mihailescu, and M. Dinescu, “Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering,” Appl. Surf. Sci. 392, 321–331 (2017).

Biofabrication (1)

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[PubMed]

Biomed. Opt. Express (1)

J. Mater. Sci. (1)

M. Mihailescu, I. A. Paun, M. Zamfirescu, C. R. Luculescu, A. M. Acasandrei, and M. Dinescu, “Laser-assisted fabrication and non-invasive imaging of 3D cell-seeding constructs for bone tissue engineering,” J. Mater. Sci. 51, 4262–4273 (2016).

Light Sci. Appl. (1)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).

Macromol. Biosci. (1)

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-engineered 3D scaffolds for cell culture studies,” Macromol. Biosci. 12(10), 1301–1314 (2012).
[PubMed]

Materialwiss. Werkstofftech. (1)

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steibock, and R. Heidinger, “Laser-assisted fabrication of monomode polymer waveguides and their optical characterization,” Materialwiss. Werkstofftech. 34, 904–911 (2003).

Nat. Commun. (1)

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[PubMed]

Nat. Mater. (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[PubMed]

Nat. Photonics (1)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Status Solidi (1)

C. A. Zorman and R. J. Parro, “Micro- and nanomechanical structures for silicon carbide MEMS and NEMS,” Phys. Status Solidi 245(7), 1404–1424 (2008).

Sci. Rep. (2)

J. Moughames, S. Jradi, T. M. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6, 33627 (2016).
[PubMed]

K. C. Hribar, K. Meggs, J. Liu, W. Zhu, X. Qu, and S. Chen, “Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser,” Sci. Rep. 5, 17203 (2015).
[PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

Small (1)

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 3009–3015 (2012).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of the DLW apparatus.
Fig. 2
Fig. 2 Plots of Plots of (a) linewidth and (b) line-depth as a function of ln( I 2 v 1 x) .
Fig. 3
Fig. 3 SEM images of various linear structures. (a) Woodpiles, (b) enlargement of (a), (c) assembly of cubic structures, and (d) pyramid structures. Writing speed: 20 μm s−1, laser power: 5.0 mW.
Fig. 4
Fig. 4 (a) and (d) show the writing patterns for the hemispherand. (b) and (c) (enlarged scale) show SEM images of the hemispherand fabricated using the writing pattern in (a). (e) and (f) (enlarged scale) show the SEM images of the hemispherand fabricated using the writing pattern in (d).
Fig. 5
Fig. 5 Simulated 3D writing patterns of the micro-lens structure; (a) shows the top view and (b) the enlarged image in the red square frame of (a) and (c) shows the side view.
Fig. 6
Fig. 6 Micro-lens image. (a) Laser microscope image of the micro-lens structure, (b) 3D image, (c) curvature profile measured along the red line in (a), (d) is SEM image of same micro-lens, and (e) is the enlarged SEM image of white rectangular area in (d).
Fig. 7
Fig. 7 After the cross-linking reaction inside the structure. (a) Laser microscope image of a micro-lens structure, (b) 3D image of the shape analysis and (c) curvature profile measured along the red line in (a), (d) shows the fitted multi-power function of the curvature, (e) shows the SEM images of the same micro-lens, and (f) is the enlarged SEM image of white rectangular area in (e).
Fig. 8
Fig. 8 Schematic apparatus for the working distance measurement of the fabricated micro-lens.
Fig. 9
Fig. 9 (a) Schematic of the apparatus for the two-photon excitation measurements. (b) Photographs of the optical system. The inset is the fluorescence of the ITX.
Fig. 10
Fig. 10 Laser microscope images (A – D) and 3D image (A’ – D’) of the micro-lenses when the writing speed is varied from 200 to 450 μm s−1. (A): 200, (B): 300 (C): 400 and (D): 450 μm s−1.
Fig. 11
Fig. 11 (a) Laser microscope image of the micro-lens array and (b) the 3D image in the red frame of (a).
Fig. 12
Fig. 12 Schematic diagram for the multi-focusing system using the micro-lens array.
Fig. 13
Fig. 13 SEM images of the woodpile structures fabricated using the micro-lens array. (a) × 100 (b) × 500 (central structure).

Tables (5)

Tables Icon

Table 1 Laser power dependence of linewidth and line-depth. Writing speed: 20 μm s−1

Tables Icon

Table 2 Writing speed dependence of linewidths and line-depth. Laser power: 10 mW

Tables Icon

Table 3 Writing cycle dependence of linewidth and line-depth for various laser power from 2.5 to 5.0 mW. Writing speed: 20 μm s−1 a) Laser power 2.5 mW

Tables Icon

Table 4 Conditions of laser intensity, writing speed, and working time.

Tables Icon

Table 5 Lateral length and height of the fabricated woodpile structures.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R= ( 1+f' ( a ) 2 ) 3 2 | f''(a) |    
f( x )=2× 10 13 x 6 2× 10 10 x 5 +6× 10 8 x 4 5× 10 6 x 3 0.0016 x 2 +0.4385x4.1376
WD= R n SU8 1 T lens n SU8 T glass tan θ 2 tan θ 1 tan θ 1
tan θ 1 = r R n SU8 1 T lens n SU8
tan θ 2 = n SU8 2 tan 2 θ 1 n glass 2 +( n glass 2 n SU8 2 ) tan 2 θ 1

Metrics