Abstract

In this work, we demonstrate the feasibility and performance of photon sieve diffractive optical elements fabricated via a direct laser ablation process. Pulses of 50 ns width and wavelength 1064 nm from an ytterbium fiber laser were focused to a spot diameter of approximately 35 µm. Using a galvanometric scan head writing at 100 mm/s, a 30.22 mm2 photon sieve operating at 633 nm wavelength with a focal length of 400 mm was fabricated. The optical performance of the sieve was characterized and is in strong agreement with numerical simulations, producing a focal spot size full-width at half-maximum (FWHM) of 45.12 ± 0.74 µm with a photon sieve minimum pinhole diameter of 62.2 µm. The total time to write the photon sieve pattern was 28 seconds as compared to many hours using photolithography methods. We also present, for the first time to our knowledge in the literature, thorough characterization of the influence of angle of incidence, temperature, and illumination wavelength on photon sieve performance. Thus, this work demonstrates the potential for a high speed, low cost fabrication method of photon sieves that is highly customizable and capable of producing sieves with low or high numerical apertures.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-large multi-region photon sieves

Zhifeng Chen, Chinhua Wang, Donglin Pu, Jin Hu, and Linsen Chen
Opt. Express 18(15) 16279-16288 (2010)

Flexible binary phase photon sieves on polyimide substrates by laser ablation

Matthew N. Julian, David G. MacDonnell, and Mool C. Gupta
Opt. Lett. 43(10) 2368-2371 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Roderick A. Hyde, “Eyeglass. 1. Very large aperture diffractive telescopes,” Appl. Opt. 38(19), 4198–4212 (1999).
    [Crossref]
  2. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-ray with photon sieves,” Nature 414, 184–188 (2001).
    [Crossref] [PubMed]
  3. G. Andersen, “Membrane photon sieve telescopes,” Appl. Opt. 49, 6391–6394 (2010).
    [Crossref] [PubMed]
  4. G. Andersen, “Large optical photon sieve,” Opt. Lett. 30, 2976–2978 (2005).
    [Crossref] [PubMed]
  5. G. Andersen and D. Tullson, “Broadband antihole photon sieve telescope,” Appl. Opt. 46, 3706–3708 (2007).
    [Crossref] [PubMed]
  6. J. M. Davila, “High-resolution solar imaging with a photon sieve,” Proc. SPIE 8148, 81480O (2011).
    [Crossref]
  7. W. Sun, Y. Hu, D. G. MacDonnell, C. Weimer, and R. R. Baize, “Technique to separate lidar signal and sunlight,” Opt. Express 24(12), 12949–12954 (2016).
    [Crossref] [PubMed]
  8. R. Menon, D. Gil, G. Barbastathis, and H. I. Smith, “Photon-sieve lithography,” J. Opt. Soc. Am. A 22, 342–345 (2005).
    [Crossref]
  9. J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008).
    [Crossref]
  10. X. Zhao, F. Xu, J. Hu, and C. Wang, “Broadband photon sieves imaging with wavefront coding,” Opt. Express 23(13), 16812–16822 (2015).
    [Crossref] [PubMed]
  11. F. S. Oktem, F. Kamalabadi, and J. M. Davila, “High-resolution computational spectral imaging with photon sieves,” in Proc. IEEE Int. Conf. on Image Processing (ICIP) (2014), pp. 5122–5126.
  12. A. Sabatyan and S. A. Hosseini, “Diffractive performance of a photon-sieve-based axilens,” Appl. Opt. 53, 7331–7336 (2014).
    [Crossref] [PubMed]
  13. R. Janeiro, R. Flores, P. Dahal, and J. Viegas, “Fabrication of a phase photon sieve on an optical fiber tip by focused ion beam nanomachining for improved fiber to silicon photonics waveguide light coupling,” Opt. Express 24(11), 11611–11625 (2016).
    [Crossref] [PubMed]
  14. A. Sabatyan and P. Roshaninejad, “Super-resolving random-Gaussian apodized photon sieve,” Appl. Opt. 51, 6315–6318 (2012).
    [Crossref] [PubMed]
  15. W. N. Parker, A. D. Brodie, and J. H. McCoy, “High-throughput NGL electron-beam direct-write lithography system,” Proc. SPIE 3997, 713–720 (2000).
    [Crossref]
  16. M. C. Gupta and D. Carlson, “Laser processing of materials for renewable energy applications,” MRS Energy Sustainability 2, E2 (2015).
    [Crossref]
  17. B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010).
    [Crossref]
  18. P. O. Caffrey, B. K. Nayak, and M. C. Gupta, “Ultrafast laser-induced microstructure/nanostructure replication and optical properties,” Appl. Opt. 51, 604–609 (2012).
    [Crossref] [PubMed]
  19. M. El-Bandrawy and M. C. Gupta, “Femtosecond laser micromachining of submicron features,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2003), paper CFF7.
  20. M. Castillejo, P. M. Ossi, and L. Zhigilei, Lasers in Materials Science (Springer, 2014).
    [Crossref]
  21. P. P Pronko, S. K Dutta, J Squier, J. V Rudd, D Du, and G Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1), 106–110 (1995).
    [Crossref]
  22. F. Brizuela, H. Bravo, G. Vaschenko, C. S. Menoni, J. J. Rocca, O. Hemberg, B. Frazer, S. Bloom, W. Chao, E. H. Anderson, and D. T. Attwood, “Ablation of nanometer-scale features using a table-top soft x-ray laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JSuA21.
    [Crossref]
  23. Y. Tang, S. Hu, Y. Yang, and Y. He, “Focusing property of high numerical aperture photon sieves based on vector diffraction,” Opt. Commun. 295, 1–4 (2013).
    [Crossref]
  24. M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H. P. Huber, and M. Schmidt, “Understanding thin film laser ablation: the role of the effective penetration depth and the film thickness,” Physics Procedia 56, 1007–1014 (2014).
    [Crossref]
  25. Y. J. Liu, H. T. Dai, X. W. Sun, and T. J. Huang, “Electrically switchable phase-type fractal zone plates and fractal photon sieves,” Opt. Express 17 (15), 12418–12423 (2009).
    [Crossref] [PubMed]

2016 (2)

2015 (2)

X. Zhao, F. Xu, J. Hu, and C. Wang, “Broadband photon sieves imaging with wavefront coding,” Opt. Express 23(13), 16812–16822 (2015).
[Crossref] [PubMed]

M. C. Gupta and D. Carlson, “Laser processing of materials for renewable energy applications,” MRS Energy Sustainability 2, E2 (2015).
[Crossref]

2014 (2)

A. Sabatyan and S. A. Hosseini, “Diffractive performance of a photon-sieve-based axilens,” Appl. Opt. 53, 7331–7336 (2014).
[Crossref] [PubMed]

M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H. P. Huber, and M. Schmidt, “Understanding thin film laser ablation: the role of the effective penetration depth and the film thickness,” Physics Procedia 56, 1007–1014 (2014).
[Crossref]

2013 (1)

Y. Tang, S. Hu, Y. Yang, and Y. He, “Focusing property of high numerical aperture photon sieves based on vector diffraction,” Opt. Commun. 295, 1–4 (2013).
[Crossref]

2012 (2)

2011 (1)

J. M. Davila, “High-resolution solar imaging with a photon sieve,” Proc. SPIE 8148, 81480O (2011).
[Crossref]

2010 (2)

G. Andersen, “Membrane photon sieve telescopes,” Appl. Opt. 49, 6391–6394 (2010).
[Crossref] [PubMed]

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010).
[Crossref]

2009 (1)

2008 (1)

J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008).
[Crossref]

2007 (1)

2005 (2)

2001 (1)

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-ray with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

2000 (1)

W. N. Parker, A. D. Brodie, and J. H. McCoy, “High-throughput NGL electron-beam direct-write lithography system,” Proc. SPIE 3997, 713–720 (2000).
[Crossref]

1999 (1)

1995 (1)

P. P Pronko, S. K Dutta, J Squier, J. V Rudd, D Du, and G Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1), 106–110 (1995).
[Crossref]

Adelung, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-ray with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

Andersen, G.

Anderson, E. H.

F. Brizuela, H. Bravo, G. Vaschenko, C. S. Menoni, J. J. Rocca, O. Hemberg, B. Frazer, S. Bloom, W. Chao, E. H. Anderson, and D. T. Attwood, “Ablation of nanometer-scale features using a table-top soft x-ray laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JSuA21.
[Crossref]

Attwood, D. T.

F. Brizuela, H. Bravo, G. Vaschenko, C. S. Menoni, J. J. Rocca, O. Hemberg, B. Frazer, S. Bloom, W. Chao, E. H. Anderson, and D. T. Attwood, “Ablation of nanometer-scale features using a table-top soft x-ray laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JSuA21.
[Crossref]

Baize, R. R.

Barbastathis, G.

Berndt, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-ray with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

Bloom, S.

F. Brizuela, H. Bravo, G. Vaschenko, C. S. Menoni, J. J. Rocca, O. Hemberg, B. Frazer, S. Bloom, W. Chao, E. H. Anderson, and D. T. Attwood, “Ablation of nanometer-scale features using a table-top soft x-ray laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JSuA21.
[Crossref]

Bravo, H.

F. Brizuela, H. Bravo, G. Vaschenko, C. S. Menoni, J. J. Rocca, O. Hemberg, B. Frazer, S. Bloom, W. Chao, E. H. Anderson, and D. T. Attwood, “Ablation of nanometer-scale features using a table-top soft x-ray laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JSuA21.
[Crossref]

Brizuela, F.

F. Brizuela, H. Bravo, G. Vaschenko, C. S. Menoni, J. J. Rocca, O. Hemberg, B. Frazer, S. Bloom, W. Chao, E. H. Anderson, and D. T. Attwood, “Ablation of nanometer-scale features using a table-top soft x-ray laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JSuA21.
[Crossref]

Brodie, A. D.

W. N. Parker, A. D. Brodie, and J. H. McCoy, “High-throughput NGL electron-beam direct-write lithography system,” Proc. SPIE 3997, 713–720 (2000).
[Crossref]

Caffrey, P. O.

Carlson, D.

M. C. Gupta and D. Carlson, “Laser processing of materials for renewable energy applications,” MRS Energy Sustainability 2, E2 (2015).
[Crossref]

Castillejo, M.

M. Castillejo, P. M. Ossi, and L. Zhigilei, Lasers in Materials Science (Springer, 2014).
[Crossref]

Chao, W.

F. Brizuela, H. Bravo, G. Vaschenko, C. S. Menoni, J. J. Rocca, O. Hemberg, B. Frazer, S. Bloom, W. Chao, E. H. Anderson, and D. T. Attwood, “Ablation of nanometer-scale features using a table-top soft x-ray laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JSuA21.
[Crossref]

Dahal, P.

Dai, H. T.

Davila, J. M.

J. M. Davila, “High-resolution solar imaging with a photon sieve,” Proc. SPIE 8148, 81480O (2011).
[Crossref]

F. S. Oktem, F. Kamalabadi, and J. M. Davila, “High-resolution computational spectral imaging with photon sieves,” in Proc. IEEE Int. Conf. on Image Processing (ICIP) (2014), pp. 5122–5126.

Domke, M.

M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H. P. Huber, and M. Schmidt, “Understanding thin film laser ablation: the role of the effective penetration depth and the film thickness,” Physics Procedia 56, 1007–1014 (2014).
[Crossref]

Du, D

P. P Pronko, S. K Dutta, J Squier, J. V Rudd, D Du, and G Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1), 106–110 (1995).
[Crossref]

Dutta, S. K

P. P Pronko, S. K Dutta, J Squier, J. V Rudd, D Du, and G Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1), 106–110 (1995).
[Crossref]

Eiselen, S.

M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H. P. Huber, and M. Schmidt, “Understanding thin film laser ablation: the role of the effective penetration depth and the film thickness,” Physics Procedia 56, 1007–1014 (2014).
[Crossref]

El-Bandrawy, M.

M. El-Bandrawy and M. C. Gupta, “Femtosecond laser micromachining of submicron features,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2003), paper CFF7.

Flores, R.

Frazer, B.

F. Brizuela, H. Bravo, G. Vaschenko, C. S. Menoni, J. J. Rocca, O. Hemberg, B. Frazer, S. Bloom, W. Chao, E. H. Anderson, and D. T. Attwood, “Ablation of nanometer-scale features using a table-top soft x-ray laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JSuA21.
[Crossref]

Gil, D.

Gupta, M. C.

M. C. Gupta and D. Carlson, “Laser processing of materials for renewable energy applications,” MRS Energy Sustainability 2, E2 (2015).
[Crossref]

P. O. Caffrey, B. K. Nayak, and M. C. Gupta, “Ultrafast laser-induced microstructure/nanostructure replication and optical properties,” Appl. Opt. 51, 604–609 (2012).
[Crossref] [PubMed]

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010).
[Crossref]

M. El-Bandrawy and M. C. Gupta, “Femtosecond laser micromachining of submicron features,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2003), paper CFF7.

Harm, S.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-ray with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

He, Y.

Y. Tang, S. Hu, Y. Yang, and Y. He, “Focusing property of high numerical aperture photon sieves based on vector diffraction,” Opt. Commun. 295, 1–4 (2013).
[Crossref]

Hemberg, O.

F. Brizuela, H. Bravo, G. Vaschenko, C. S. Menoni, J. J. Rocca, O. Hemberg, B. Frazer, S. Bloom, W. Chao, E. H. Anderson, and D. T. Attwood, “Ablation of nanometer-scale features using a table-top soft x-ray laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JSuA21.
[Crossref]

Hosseini, S. A.

Hu, J.

Hu, S.

Y. Tang, S. Hu, Y. Yang, and Y. He, “Focusing property of high numerical aperture photon sieves based on vector diffraction,” Opt. Commun. 295, 1–4 (2013).
[Crossref]

Hu, Y.

Huang, T. J.

Huber, H. P.

M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H. P. Huber, and M. Schmidt, “Understanding thin film laser ablation: the role of the effective penetration depth and the film thickness,” Physics Procedia 56, 1007–1014 (2014).
[Crossref]

Hyde, Roderick A.

Janeiro, R.

Jia, J.

J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008).
[Crossref]

Jiang, J.

J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008).
[Crossref]

Johnson, R. L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-ray with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

Kamalabadi, F.

F. S. Oktem, F. Kamalabadi, and J. M. Davila, “High-resolution computational spectral imaging with photon sieves,” in Proc. IEEE Int. Conf. on Image Processing (ICIP) (2014), pp. 5122–5126.

Kipp, L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-ray with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

Liu, M.

J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008).
[Crossref]

Liu, Y. J.

MacDonnell, D. G.

McCoy, J. H.

W. N. Parker, A. D. Brodie, and J. H. McCoy, “High-throughput NGL electron-beam direct-write lithography system,” Proc. SPIE 3997, 713–720 (2000).
[Crossref]

Menon, R.

Menoni, C. S.

F. Brizuela, H. Bravo, G. Vaschenko, C. S. Menoni, J. J. Rocca, O. Hemberg, B. Frazer, S. Bloom, W. Chao, E. H. Anderson, and D. T. Attwood, “Ablation of nanometer-scale features using a table-top soft x-ray laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JSuA21.
[Crossref]

Mourou, G

P. P Pronko, S. K Dutta, J Squier, J. V Rudd, D Du, and G Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1), 106–110 (1995).
[Crossref]

Nayak, B. K.

P. O. Caffrey, B. K. Nayak, and M. C. Gupta, “Ultrafast laser-induced microstructure/nanostructure replication and optical properties,” Appl. Opt. 51, 604–609 (2012).
[Crossref] [PubMed]

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010).
[Crossref]

Nobile, L.

M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H. P. Huber, and M. Schmidt, “Understanding thin film laser ablation: the role of the effective penetration depth and the film thickness,” Physics Procedia 56, 1007–1014 (2014).
[Crossref]

Oktem, F. S.

F. S. Oktem, F. Kamalabadi, and J. M. Davila, “High-resolution computational spectral imaging with photon sieves,” in Proc. IEEE Int. Conf. on Image Processing (ICIP) (2014), pp. 5122–5126.

Ossi, P. M.

M. Castillejo, P. M. Ossi, and L. Zhigilei, Lasers in Materials Science (Springer, 2014).
[Crossref]

Parker, W. N.

W. N. Parker, A. D. Brodie, and J. H. McCoy, “High-throughput NGL electron-beam direct-write lithography system,” Proc. SPIE 3997, 713–720 (2000).
[Crossref]

Pronko, P. P

P. P Pronko, S. K Dutta, J Squier, J. V Rudd, D Du, and G Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1), 106–110 (1995).
[Crossref]

Rapp, S.

M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H. P. Huber, and M. Schmidt, “Understanding thin film laser ablation: the role of the effective penetration depth and the film thickness,” Physics Procedia 56, 1007–1014 (2014).
[Crossref]

Rocca, J. J.

F. Brizuela, H. Bravo, G. Vaschenko, C. S. Menoni, J. J. Rocca, O. Hemberg, B. Frazer, S. Bloom, W. Chao, E. H. Anderson, and D. T. Attwood, “Ablation of nanometer-scale features using a table-top soft x-ray laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JSuA21.
[Crossref]

Roshaninejad, P.

Rudd, J. V

P. P Pronko, S. K Dutta, J Squier, J. V Rudd, D Du, and G Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1), 106–110 (1995).
[Crossref]

Sabatyan, A.

Schmidt, M.

M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H. P. Huber, and M. Schmidt, “Understanding thin film laser ablation: the role of the effective penetration depth and the film thickness,” Physics Procedia 56, 1007–1014 (2014).
[Crossref]

Seemann, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-ray with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

Skibowski, M.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-ray with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

Smith, H. I.

Sotrop, J.

M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H. P. Huber, and M. Schmidt, “Understanding thin film laser ablation: the role of the effective penetration depth and the film thickness,” Physics Procedia 56, 1007–1014 (2014).
[Crossref]

Squier, J

P. P Pronko, S. K Dutta, J Squier, J. V Rudd, D Du, and G Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1), 106–110 (1995).
[Crossref]

Sun, W.

Sun, X. W.

Tang, Y.

Y. Tang, S. Hu, Y. Yang, and Y. He, “Focusing property of high numerical aperture photon sieves based on vector diffraction,” Opt. Commun. 295, 1–4 (2013).
[Crossref]

Tullson, D.

Vaschenko, G.

F. Brizuela, H. Bravo, G. Vaschenko, C. S. Menoni, J. J. Rocca, O. Hemberg, B. Frazer, S. Bloom, W. Chao, E. H. Anderson, and D. T. Attwood, “Ablation of nanometer-scale features using a table-top soft x-ray laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JSuA21.
[Crossref]

Viegas, J.

Wang, C.

Weimer, C.

Xie, C.

J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008).
[Crossref]

Xu, F.

Yang, Y.

Y. Tang, S. Hu, Y. Yang, and Y. He, “Focusing property of high numerical aperture photon sieves based on vector diffraction,” Opt. Commun. 295, 1–4 (2013).
[Crossref]

Zhao, X.

Zhigilei, L.

M. Castillejo, P. M. Ossi, and L. Zhigilei, Lasers in Materials Science (Springer, 2014).
[Crossref]

Appl. Opt. (6)

J. Opt. Soc. Am. A (1)

MRS Energy Sustainability (1)

M. C. Gupta and D. Carlson, “Laser processing of materials for renewable energy applications,” MRS Energy Sustainability 2, E2 (2015).
[Crossref]

Nature (1)

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-ray with photon sieves,” Nature 414, 184–188 (2001).
[Crossref] [PubMed]

Opt. Commun. (3)

J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008).
[Crossref]

P. P Pronko, S. K Dutta, J Squier, J. V Rudd, D Du, and G Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1), 106–110 (1995).
[Crossref]

Y. Tang, S. Hu, Y. Yang, and Y. He, “Focusing property of high numerical aperture photon sieves based on vector diffraction,” Opt. Commun. 295, 1–4 (2013).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (1)

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010).
[Crossref]

Opt. Lett. (1)

Physics Procedia (1)

M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H. P. Huber, and M. Schmidt, “Understanding thin film laser ablation: the role of the effective penetration depth and the film thickness,” Physics Procedia 56, 1007–1014 (2014).
[Crossref]

Proc. SPIE (2)

W. N. Parker, A. D. Brodie, and J. H. McCoy, “High-throughput NGL electron-beam direct-write lithography system,” Proc. SPIE 3997, 713–720 (2000).
[Crossref]

J. M. Davila, “High-resolution solar imaging with a photon sieve,” Proc. SPIE 8148, 81480O (2011).
[Crossref]

Other (4)

F. S. Oktem, F. Kamalabadi, and J. M. Davila, “High-resolution computational spectral imaging with photon sieves,” in Proc. IEEE Int. Conf. on Image Processing (ICIP) (2014), pp. 5122–5126.

F. Brizuela, H. Bravo, G. Vaschenko, C. S. Menoni, J. J. Rocca, O. Hemberg, B. Frazer, S. Bloom, W. Chao, E. H. Anderson, and D. T. Attwood, “Ablation of nanometer-scale features using a table-top soft x-ray laser,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JSuA21.
[Crossref]

M. El-Bandrawy and M. C. Gupta, “Femtosecond laser micromachining of submicron features,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2003), paper CFF7.

M. Castillejo, P. M. Ossi, and L. Zhigilei, Lasers in Materials Science (Springer, 2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the laser direct writing setup used in this study.
Fig. 2
Fig. 2 SEM image of the laser fabricated photon sieve.
Fig. 3
Fig. 3 SEM image of photon sieve pinhole edge morphology. Characterization results suggest that the imperfections as explained above do not affect device performance.
Fig. 4
Fig. 4 Schematic of the photon sieve characterization setup.
Fig. 5
Fig. 5 Simulated and measured photon sieve focal point x-axis intensity profiles (normalized). Both subtracted and un-subtracted data are shown, as well as the background measurement.
Fig. 6
Fig. 6 Plot of the relative change in x-axis FWHM vs. angle of incidence.
Fig. 7
Fig. 7 Plot of the relative change in focal point intensity vs. angle of incidence.
Fig. 8
Fig. 8 Images of focal point showing 2D intensity profile at different angles of incidence (a) 0°, (b) 4°, (c) 10°, and (d) 25°(Intensity scale at far left of image).
Fig. 9
Fig. 9 Effect of illumination wavelength on focal point properties.
Fig. 10
Fig. 10 Photon sieve performance at various temperatures.

Metrics