Abstract

We present numerical simulations of multielectrode electrowetting devices used in a novel optical design to correct wavefront aberration. Our optical system consists of two multielectrode devices, preceded by a single fixed lens. The multielectrode elements function as adaptive optical devices that can be used to correct aberrations inherent in many imaging setups, biological samples, and the atmosphere. We are able to accurately simulate the liquid-liquid interface shape using computational fluid dynamics. Ray tracing analysis of these surfaces shows clear evidence of aberration correction. To demonstrate the strength of our design, we studied three different input aberrations mixtures that include astigmatism, coma, trefoil, and additional higher order aberration terms, with amplitudes as large as one wave at 633 nm.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon laser scanning microscopy with electrowetting-based prism scanning

Omkar D. Supekar, Baris N. Ozbay, Mo Zohrabi, Philip D. Nystrom, Gregory L. Futia, Diego Restrepo, Emily A. Gibson, Juliet T. Gopinath, and Victor M. Bright
Biomed. Opt. Express 8(12) 5412-5426 (2017)

Lidar system with nonmechanical electrowetting-based wide-angle beam steering

Mo Zohrabi, Wei Yang Lim, Robert H. Cormack, Omkar D. Supekar, Victor M. Bright, and Juliet T. Gopinath
Opt. Express 27(4) 4404-4415 (2019)

Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses

N. C. Lima, K. Mishra, and F. Mugele
Opt. Express 25(6) 6700-6711 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [Crossref] [PubMed]
  3. M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6552 (2004).
    [Crossref] [PubMed]
  4. C. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8, 450–459 (2003).
    [Crossref] [PubMed]
  5. A. L. A. Mascaro, L. Sacconi, and F. S. Pavone, “Multi-Photon nanosurgery in live brain,” Frontiers in Neuroenergetics 2, 21 (2010).
  6. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
    [Crossref] [PubMed]
  7. B. L. Ellerbroek, “First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes,” J. Opt. Soc. Am. A 11, 783–805 (1994).
    [Crossref]
  8. K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
    [Crossref] [PubMed]
  9. C. Wang and N. Ji, “Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics,” Opt. Express 21, 27142–27154 (2013).
    [Crossref] [PubMed]
  10. E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U.S.A. 1092919–2924 (2012).
    [Crossref] [PubMed]
  11. J. W. Hardy, Adaptive optics for astronomical telescopes (Oxford University Press, New York, 1988).
  12. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [Crossref]
  13. J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106–110 (2009).
    [Crossref] [PubMed]
  14. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003).
    [Crossref] [PubMed]
  15. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
    [Crossref] [PubMed]
  16. M. C. Roggeman, V. M. Bright, B. M. Welsh, Sh. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36, 1326–1338 (1997).
    [Crossref]
  17. M. T. Gruneisen, L. F. DeSandre, R. C. Dymale, J. R. Rotgé, and D. L. Lubin, “Compensated telescope system with programmable diffractive optic,” Opt. Eng. 44(2), 023201 (2005).
    [Crossref]
  18. W. C. Nelson and C. J. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26, 1747–1771 (2012).
  19. K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7, 102 (2016).
    [Crossref]
  20. G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494 (1875).
  21. B. H. W. Hendriks, S. Kuiper, M. A. J. VAN As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
    [Crossref]
  22. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [Crossref]
  23. B. N. Ozbay, J. T. Losacco, R. Cormack, R. Weir, V. M. Bright, J. T. Gopinath, D. Restrepo, and E. A. Gibson, “Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts,” Opt. Lett. 40, 2553–2556 (2015).
    [Crossref] [PubMed]
  24. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19, 15525–15531 (2011).
    [Crossref] [PubMed]
  25. R. D. Montoya, K. Underwood, S. Terrab, A. M. Watson, V. M. Bright, and J. T. Gopinath, “Large extinction ratio optical electrowetting shutter,” Opt. Express 24, 9660–9666 (2016).
    [Crossref] [PubMed]
  26. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14, 6557–6563 (2006).
    [Crossref] [PubMed]
  27. S. Terrab, A. M. Watson, C. Roath, J. T. Gopinath, and V. M. Bright, “Adaptive electrowetting lens-prism element,” Opt. Express 2325838–25845 (2015).
    [Crossref] [PubMed]
  28. D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Opt. 55, 2136–2142 (2016).
    [Crossref] [PubMed]
  29. D. Kopp and H. Zappe, “Tubular astigmatism-tunable fluidic lens,” Opt. Lett. 41, 2735–2738 (2016).
    [Crossref] [PubMed]
  30. N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24, 4210–4220 (2016).
    [Crossref] [PubMed]
  31. N. C. Lima, K. Mishra, and F. Mugele, “Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses,” Opt. Express 25, 6700–6711 (2017).
    [Crossref] [PubMed]
  32. R. Finn, Equilibrium capillary surfaces, (Springer-Verlag, 1986).
    [Crossref]
  33. S.-L. Lee and Ch.-F. Yang, “Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens,” Opt. Express 16, 19995–20007 (2008).
    [Crossref] [PubMed]
  34. T. Sarpkaya, “Vorticity, free surface and surfactants,” Annu. Rev. Fluid Mech. 28, 83–128 (1996).
    [Crossref]
  35. S.-L. Lee and H.-D. Lee, “Evolution of liquid meniscus shape in a capillary Tube,” ASME J. Fluids Eng. 129, 957–965 (2007).
    [Crossref]
  36. O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33, 4863–4869 (2017).
    [Crossref] [PubMed]
  37. O. D. Supekar, B. N. Ozbay, M. Zohrabi, Ph. D. Nystrom, G. L. Futia, D. Restrepo, E. A. Gibson, J. T. Gopinath, and V. M. Bright, “Two-photon laser scanning microscopy with electrowetting-based prism scanning,” Biomed. Opt. Express 8, 5412–5426 (2017).
    [Crossref]
  38. O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52–54 (2000).
    [Crossref]
  39. M. A. A. Neil, M. J. Booth, and T. Wilson, “Closed-loop aberration correction by use of a modal Zernike wave-front sensor,” Opt. Lett. 25, 1083–1085 (2000).
    [Crossref]
  40. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
    [Crossref] [PubMed]
  41. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
    [Crossref]
  42. W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
    [Crossref] [PubMed]

2017 (4)

N. C. Lima, K. Mishra, and F. Mugele, “Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses,” Opt. Express 25, 6700–6711 (2017).
[Crossref] [PubMed]

O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33, 4863–4869 (2017).
[Crossref] [PubMed]

O. D. Supekar, B. N. Ozbay, M. Zohrabi, Ph. D. Nystrom, G. L. Futia, D. Restrepo, E. A. Gibson, J. T. Gopinath, and V. M. Bright, “Two-photon laser scanning microscopy with electrowetting-based prism scanning,” Biomed. Opt. Express 8, 5412–5426 (2017).
[Crossref]

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (3)

2013 (1)

2012 (2)

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U.S.A. 1092919–2924 (2012).
[Crossref] [PubMed]

W. C. Nelson and C. J. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26, 1747–1771 (2012).

2011 (1)

2010 (2)

A. L. A. Mascaro, L. Sacconi, and F. S. Pavone, “Multi-Photon nanosurgery in live brain,” Frontiers in Neuroenergetics 2, 21 (2010).

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref] [PubMed]

2009 (1)

J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106–110 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

S.-L. Lee and H.-D. Lee, “Evolution of liquid meniscus shape in a capillary Tube,” ASME J. Fluids Eng. 129, 957–965 (2007).
[Crossref]

2006 (1)

2005 (2)

B. H. W. Hendriks, S. Kuiper, M. A. J. VAN As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

M. T. Gruneisen, L. F. DeSandre, R. C. Dymale, J. R. Rotgé, and D. L. Lubin, “Compensated telescope system with programmable diffractive optic,” Opt. Eng. 44(2), 023201 (2005).
[Crossref]

2004 (3)

2003 (3)

C. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8, 450–459 (2003).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003).
[Crossref] [PubMed]

2001 (2)

2000 (2)

1997 (1)

M. C. Roggeman, V. M. Bright, B. M. Welsh, Sh. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36, 1326–1338 (1997).
[Crossref]

1996 (1)

T. Sarpkaya, “Vorticity, free surface and surfactants,” Annu. Rev. Fluid Mech. 28, 83–128 (1996).
[Crossref]

1994 (2)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

1875 (1)

G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494 (1875).

Abeysinghe, D. C.

Albert, O.

Arnold, D. B.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Artal, P.

Betzig, E.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

Bille, J. F.

Booth, M. J.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U.S.A. 1092919–2924 (2012).
[Crossref] [PubMed]

M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6552 (2004).
[Crossref] [PubMed]

M. A. A. Neil, M. J. Booth, and T. Wilson, “Closed-loop aberration correction by use of a modal Zernike wave-front sensor,” Opt. Lett. 25, 1083–1085 (2000).
[Crossref]

Botcherby, E. J.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U.S.A. 1092919–2924 (2012).
[Crossref] [PubMed]

Bright, V. M.

Burns, D.

Carroll, J.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref] [PubMed]

Cavalli, A.

Chen, L.

Chitnis, A.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Christensen, R.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Comtois, J. H.

M. C. Roggeman, V. M. Bright, B. M. Welsh, Sh. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36, 1326–1338 (1997).
[Crossref]

Cormack, R.

Cowan, W. D.

M. C. Roggeman, V. M. Bright, B. M. Welsh, Sh. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36, 1326–1338 (1997).
[Crossref]

Cox, I. G.

Débarre, D.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U.S.A. 1092919–2924 (2012).
[Crossref] [PubMed]

Dempsey, W. P.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

DeSandre, L. F.

M. T. Gruneisen, L. F. DeSandre, R. C. Dymale, J. R. Rotgé, and D. L. Lubin, “Compensated telescope system with programmable diffractive optic,” Opt. Eng. 44(2), 023201 (2005).
[Crossref]

Dong, C.

C. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8, 450–459 (2003).
[Crossref] [PubMed]

Dubis, A. M.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref] [PubMed]

Duncan, J. L.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref] [PubMed]

Dymale, R. C.

M. T. Gruneisen, L. F. DeSandre, R. C. Dymale, J. R. Rotgé, and D. L. Lubin, “Compensated telescope system with programmable diffractive optic,” Opt. Eng. 44(2), 023201 (2005).
[Crossref]

Ellerbroek, B. L.

Fernández, E. J.

Finn, R.

R. Finn, Equilibrium capillary surfaces, (Springer-Verlag, 1986).
[Crossref]

Fischer, R.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Futia, G. L.

Gibson, E. A.

Girkin, J. M.

J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106–110 (2009).
[Crossref] [PubMed]

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003).
[Crossref] [PubMed]

Godara, P.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref] [PubMed]

Goelz, S.

Gopinath, J. T.

Grimm, B.

Gruneisen, M. T.

M. T. Gruneisen, L. F. DeSandre, R. C. Dymale, J. R. Rotgé, and D. L. Lubin, “Compensated telescope system with programmable diffractive optic,” Opt. Eng. 44(2), 023201 (2005).
[Crossref]

Guirao, A.

Hardy, J. W.

J. W. Hardy, Adaptive optics for astronomical telescopes (Oxford University Press, New York, 1988).

Harvey, B. K.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

Haus, J. W.

Heikenfeld, J.

Hendriks, B. H. W.

B. H. W. Hendriks, S. Kuiper, M. A. J. VAN As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Hick, Sh. R.

M. C. Roggeman, V. M. Bright, B. M. Welsh, Sh. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36, 1326–1338 (1997).
[Crossref]

Hofer, H.

Hong, A.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Ji, N.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

C. Wang and N. Ji, “Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics,” Opt. Express 21, 27142–27154 (2013).
[Crossref] [PubMed]

Juškaitis, R.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U.S.A. 1092919–2924 (2012).
[Crossref] [PubMed]

Kim, C. J.

W. C. Nelson and C. J. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26, 1747–1771 (2012).

Koenig, K.

C. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8, 450–459 (2003).
[Crossref] [PubMed]

Kohl, M. M.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U.S.A. 1092919–2924 (2012).
[Crossref] [PubMed]

Kopp, D.

Kuiper, S.

B. H. W. Hendriks, S. Kuiper, M. A. J. VAN As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Lee, H.-D.

S.-L. Lee and H.-D. Lee, “Evolution of liquid meniscus shape in a capillary Tube,” ASME J. Fluids Eng. 129, 957–965 (2007).
[Crossref]

Lee, S.-L.

Lehmann, L.

Liang, J.

Lima, N. C.

Lippmann, G.

G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494 (1875).

Losacco, J. T.

Lubin, D. L.

M. T. Gruneisen, L. F. DeSandre, R. C. Dymale, J. R. Rotgé, and D. L. Lubin, “Compensated telescope system with programmable diffractive optic,” Opt. Eng. 44(2), 023201 (2005).
[Crossref]

Manzanera, S.

Marsh, P. N.

Mascaro, A. L. A.

A. L. A. Mascaro, L. Sacconi, and F. S. Pavone, “Multi-Photon nanosurgery in live brain,” Frontiers in Neuroenergetics 2, 21 (2010).

McCormick, C.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Mishra, K.

Montoya, R. D.

Mourou, G.

Mugele, F.

Murade, C. U.

Neil, M. A. A.

Nelson, W. C.

W. C. Nelson and C. J. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26, 1747–1771 (2012).

Nogare, D. D.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Norris, T. B.

Nystrom, Ph. D.

Oh, J. M.

Ozbay, B. N.

Paulsen, O.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U.S.A. 1092919–2924 (2012).
[Crossref] [PubMed]

Pavone, F. S.

A. L. A. Mascaro, L. Sacconi, and F. S. Pavone, “Multi-Photon nanosurgery in live brain,” Frontiers in Neuroenergetics 2, 21 (2010).

Poland, S.

J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106–110 (2009).
[Crossref] [PubMed]

Porter, J.

Prieto, P. M.

Renders, C. A.

B. H. W. Hendriks, S. Kuiper, M. A. J. VAN As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

Restrepo, D.

Richie, C. T.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

Roath, C.

Roberts, P. C.

M. C. Roggeman, V. M. Bright, B. M. Welsh, Sh. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36, 1326–1338 (1997).
[Crossref]

Roggeman, M. C.

M. C. Roggeman, V. M. Bright, B. M. Welsh, Sh. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36, 1326–1338 (1997).
[Crossref]

Roorda, A.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref] [PubMed]

Rotgé, J. R.

M. T. Gruneisen, L. F. DeSandre, R. C. Dymale, J. R. Rotgé, and D. L. Lubin, “Compensated telescope system with programmable diffractive optic,” Opt. Eng. 44(2), 023201 (2005).
[Crossref]

Sacconi, L.

A. L. A. Mascaro, L. Sacconi, and F. S. Pavone, “Multi-Photon nanosurgery in live brain,” Frontiers in Neuroenergetics 2, 21 (2010).

Sarpkaya, T.

T. Sarpkaya, “Vorticity, free surface and surfactants,” Annu. Rev. Fluid Mech. 28, 83–128 (1996).
[Crossref]

Schwertner, M.

Sellers, J.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Sherman, L.

Shroff, H.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Singer, B.

Smith, C. W.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U.S.A. 1092919–2924 (2012).
[Crossref] [PubMed]

Smith, N. R.

So, P.

C. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8, 450–459 (2003).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Sun, W.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

Supekar, O. D.

Terrab, S.

Tukker, T. W.

B. H. W. Hendriks, S. Kuiper, M. A. J. VAN As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

Underwood, K.

VAN As, M. A. J.

B. H. W. Hendriks, S. Kuiper, M. A. J. VAN As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

van den Ende, D.

K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7, 102 (2016).
[Crossref]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19, 15525–15531 (2011).
[Crossref] [PubMed]

Vdovin, G.

Wang, C.

Wang, K.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

Waterman, C.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Watson, A. M.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Weir, R.

Welsh, B. M.

M. C. Roggeman, V. M. Bright, B. M. Welsh, Sh. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36, 1326–1338 (1997).
[Crossref]

Williams, D. R.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wilson, T.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U.S.A. 1092919–2924 (2012).
[Crossref] [PubMed]

M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6552 (2004).
[Crossref] [PubMed]

M. A. A. Neil, M. J. Booth, and T. Wilson, “Closed-loop aberration correction by use of a modal Zernike wave-front sensor,” Opt. Lett. 25, 1083–1085 (2000).
[Crossref]

Winter, P.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Wright, A. J.

J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106–110 (2009).
[Crossref] [PubMed]

Wu, Y.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Yamauchi, Y.

Yang, Ch.-F.

Yoon, G. Y.

Zappe, H.

Zheng, W.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Zimmerberg, J.

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Zohrabi, M.

Ann. Chim. Phys. (1)

G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494 (1875).

Annu. Rev. Fluid Mech. (1)

T. Sarpkaya, “Vorticity, free surface and surfactants,” Annu. Rev. Fluid Mech. 28, 83–128 (1996).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

ASME J. Fluids Eng. (1)

S.-L. Lee and H.-D. Lee, “Evolution of liquid meniscus shape in a capillary Tube,” ASME J. Fluids Eng. 129, 957–965 (2007).
[Crossref]

Biomed. Opt. Express (1)

Curr. Opin. Biotechnol. (1)

J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106–110 (2009).
[Crossref] [PubMed]

Frontiers in Neuroenergetics (1)

A. L. A. Mascaro, L. Sacconi, and F. S. Pavone, “Multi-Photon nanosurgery in live brain,” Frontiers in Neuroenergetics 2, 21 (2010).

J. Adhes. Sci. Technol. (1)

W. C. Nelson and C. J. Kim, “Droplet actuation by electrowetting-on-dielectric (EWOD): A review,” J. Adhes. Sci. Technol. 26, 1747–1771 (2012).

J. Biomed. Opt. (1)

C. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8, 450–459 (2003).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

Langmuir (1)

O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33, 4863–4869 (2017).
[Crossref] [PubMed]

Micromachines (1)

K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7, 102 (2016).
[Crossref]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

Nat. Methods (1)

W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14, 869–872 (2017).
[Crossref] [PubMed]

Opt. Eng. (2)

M. C. Roggeman, V. M. Bright, B. M. Welsh, Sh. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36, 1326–1338 (1997).
[Crossref]

M. T. Gruneisen, L. F. DeSandre, R. C. Dymale, J. R. Rotgé, and D. L. Lubin, “Compensated telescope system with programmable diffractive optic,” Opt. Eng. 44(2), 023201 (2005).
[Crossref]

Opt. Express (12)

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003).
[Crossref] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[Crossref] [PubMed]

C. Wang and N. Ji, “Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics,” Opt. Express 21, 27142–27154 (2013).
[Crossref] [PubMed]

M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540–6552 (2004).
[Crossref] [PubMed]

S.-L. Lee and Ch.-F. Yang, “Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens,” Opt. Express 16, 19995–20007 (2008).
[Crossref] [PubMed]

N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24, 4210–4220 (2016).
[Crossref] [PubMed]

N. C. Lima, K. Mishra, and F. Mugele, “Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses,” Opt. Express 25, 6700–6711 (2017).
[Crossref] [PubMed]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19, 15525–15531 (2011).
[Crossref] [PubMed]

R. D. Montoya, K. Underwood, S. Terrab, A. M. Watson, V. M. Bright, and J. T. Gopinath, “Large extinction ratio optical electrowetting shutter,” Opt. Express 24, 9660–9666 (2016).
[Crossref] [PubMed]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14, 6557–6563 (2006).
[Crossref] [PubMed]

S. Terrab, A. M. Watson, C. Roath, J. T. Gopinath, and V. M. Bright, “Adaptive electrowetting lens-prism element,” Opt. Express 2325838–25845 (2015).
[Crossref] [PubMed]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Rev. (1)

B. H. W. Hendriks, S. Kuiper, M. A. J. VAN As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

Optom. Vis. Sci. (1)

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U.S.A. 1092919–2924 (2012).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Other (2)

J. W. Hardy, Adaptive optics for astronomical telescopes (Oxford University Press, New York, 1988).

R. Finn, Equilibrium capillary surfaces, (Springer-Verlag, 1986).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Simulation setup for 8-electrode device. We model a 4-mm diameter cylindrical device filled with 1% SDS solution and oil. The electrodes are labeled by numbers. (b) Simulation of the 8-electrode device after applying 28 V to electrode 2, 8, and 5, while keeping other electrodes at 18 V. (c) Contour plot of the liquid-liquid interface extracted from the simulation. (d) and (e) Zernike polynomial least-squares fit and the corresponding coefficients of wavefront aberrations.
Fig. 2
Fig. 2 (a) Liquid-liquid interface calculated by solving Young-Laplace equation in MATLAB for a 8-electrode device, 2-mm diameter, and voltage configurations, V = [28, 20, 28, 20, 20, 20, 28, 20] V. The colors represent the height if the liquid-liquid interface in mm. (b) Liquid-liquid interface extracted from 3D computational fluid dynamics simulation in COMSOL for a similar device with the same voltage configuration. The two simulations agree well with each other. The residue of the two surfaces has a maximum relative error of 2% due to the two different meshes used in the simulations. The small differences are only at the edges of the circular meshes.
Fig. 3
Fig. 3 Schematic optical design for wavefront aberration correction, using two multielectrode EWOD devices, preceded by a single fixed lens (effective focal length 16.6 mm). The liquid-liquid interface is imported into Zemax through the Zemax grid sag function. Next, ray tracing is performed on the imported surfaces. The corresponding Strehl ratio and imaging efficiency are evaluated at the image plane. The fitness function, f i t n e s s = ( 1 S T R H ) 2 + ( 1 I M A E ) 2, is used as a feedback for the genetic algorithm in MATLAB. STRH: Strehl ratio. IMAE: Imaging efficiency. Imaging efficiency ensures that the input rays are not eliminated in the optimization process. Device 1 and 2 are two multielectrode devices in our design. In this example, device 1 and 2 have 2 electrodes each to show the tilt caused by these devices. The liquid-liquid surface in this example corresponds to sidewall voltages of 20 and 25 V on device 1. The voltages are reversed for device 2, as can be seen by the opposite tilt shown in the figure.
Fig. 4
Fig. 4 PSF, point spread function. (a) Input aberrations composed of 0° and 45° astigmatism with amplitude of 1 µm (1.57 wave at λ=633 nm). (b) The corresponding PSF after imaging the input aberration through a paraxial lens with a focal length of 2 mm. The Strehl ratio of an ideal diffraction limited beam is 1, however, the astigmatism introduced here results in a Strehl ratio of 0.086.
Fig. 5
Fig. 5 GA, genetic algorithm. PSF, point spread function. (a) Astigmatism aberrations shown in Fig. 4 are used as an input for our optical design. After GA optimization, the optimum liquid-liquid surfaces are shown for both 8-electrode devices. (b) The corresponding PSF is plotted on the imaging plane with a Strehl ratio of 0.95. The result shows good correction of the input aberration and reach diffraction-limited performance. (c) Evolution of the fitness score for every generation is graphed. (d) The corresponding optimum voltages after optimization are plotted versus electrode number for both devices.
Fig. 6
Fig. 6 PSF, point spread function. (a) Input aberration composed of two astigmatism, two coma, and two trefoil terms as well as one spherical aberration term (Z5 to Z11). (b) The corresponding the PSF is plotted after focusing through a paraxial lens with a focal length of 2 mm, with a Strehl ratio of 0.187. (c) The optimum liquid-liquid surfaces are shown for both 16-electrode devices. (d) The PSF is plotted on the imaging plane with a Strehl ratio of 0.834. The Strehl ratio shows a significant improvement of the PSF.
Fig. 7
Fig. 7 PSF, point spread function. (a) Input aberration composed of tip, tilt, defocus, astigmatism, trefoil, spherical, secondary astigmatism, and quadrafoil terms (Z2 to Z14). The amplitudes are taken from the measurements of Wang et al. [9] measurements of a 2 µm fluorescence bead at a working distance of −100 µm [red bars in Fig. 2(e)]. (b) The corresponding PSF is plotted after focusing through a paraxial lens with a focal length of 2 mm with Strehl ratio of 0.43. (c) The optimum liquid-liquid surfaces are shown for both 8-electrode devices. (d) The PSF is plotted on the imaging plane with a Strehl ratio of 0.85.

Metrics