Abstract

We report the development of microscopic size gradient index vortex masks using the modified stack-and-draw technique. The vortex mask has a form of flat surface all-glass plate. Its functionality is determined by an internal nanostructure composed of two types of soft glass nanorods. The generation of optical vortices with charges 1 and 2 is demonstrated.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast switchable optical vortex generator based on blue phase liquid crystal fork grating

Shi-Jun Ge, Wei Ji, Guo-Xin Cui, Bing-Yan Wei, Wei Hu, and Yan-Qing Lu
Opt. Mater. Express 4(12) 2535-2541 (2014)

Large diameter nanostructured gradient index lens

Jedrzej Nowosielski, Ryszard Buczynski, Andrew J. Waddie, Adam Filipkowski, Dariusz Pysz, Aongus McCarthy, Ryszard Stepien, and Mohammad R. Taghizadeh
Opt. Express 20(11) 11767-11777 (2012)

Direct patterning of vortex generators on a fiber tip using a focused ion beam

Pramitha Vayalamkuzhi, Shanti Bhattacharya, Ulrike Eigenthaler, Kahraman Keskinbora, C. T. Samlan, Michael Hirscher, Joachim P. Spatz, and Nirmal K. Viswanathan
Opt. Lett. 41(10) 2133-2136 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [PubMed]
  2. G. J. Gbur, Singular Optics (CRC, 2016).
  3. D. L. Andrews, ed., Structured Light and Its Applications (Elsevier, 2008).
  4. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
    [PubMed]
  5. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
    [PubMed]
  6. C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, “Materials processing with a tightly focused femtosecond laser vortex pulse,” Opt. Lett. 35(20), 3417–3419 (2010).
    [PubMed]
  7. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
    [PubMed]
  8. Z. J. Hu, P. S. Tan, S. W. Zhu, and X. C. Yuan, “Structured light for focusing surface plasmon polaritons,” Opt. Express 18(10), 10864–10870 (2010).
    [PubMed]
  9. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [PubMed]
  10. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, H. Elfstrom, and J. Turunen, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A 22(5), 849–861 (2005).
    [PubMed]
  11. M. Massari, G. Ruffato, M. Gintoli, F. Ricci, and F. Romanato, “Fabrication and characterization of high-quality spiral phase plates for optical applications,” Appl. Opt. 54, 4077–4083 (2015).
  12. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221 (1992).
    [PubMed]
  13. Z. S. Sacks, D. Rozas, and G. A. Swartzlander, “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15, 2226–2234 (1998).
  14. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100,” Opt. Lett. 27(15), 1351–1353 (2002).
    [PubMed]
  15. G. Campbell, B. Hage, B. Buchler, and P. K. Lam, “Generation of high-order optical vortices using directly machined spiral phase mirrors,” Appl. Opt. 51(7), 873–876 (2012).
    [PubMed]
  16. E. Brasselet, A. Royon, and L. Canionic, “Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass,” Appl. Phys. Lett. 100, 181901 (2012).
  17. A. Zukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103, 181122 (2013).
  18. K. Weber, F. Hütt, S. Thiele, T. Gissibl, A. Herkommer, and H. Giessen, “Single mode fiber based delivery of OAM light by 3D direct laser writing,” Opt. Express 25(17), 19672–19679 (2017).
    [PubMed]
  19. S. Lightman, G. Hurvitz, R. Gvishi, and A. Arie, “Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing,” Optica 4, 605–610 (2017).
  20. A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999).
  21. F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
    [PubMed]
  22. R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
    [PubMed]
  23. D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–683 (2014).
  24. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
    [PubMed]
  25. A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).
  26. V. Denisenko, V. Shvedov, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, A. Volyar, M. Soskin, and Y. S. Kivshar, “Determination of topological charges of polychromatic optical vortices,” Opt. Express 17(26), 23374–23379 (2009).
    [PubMed]
  27. V. G. Shvedov, C. Hnatovsky, W. Krolikowski, and A. V. Rode, “Efficient beam converter for the generation of high-power femtosecond vortices,” Opt. Lett. 35(15), 2660–2662 (2010).
    [PubMed]

2017 (2)

2015 (2)

2014 (1)

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–683 (2014).

2013 (2)

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[PubMed]

A. Zukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103, 181122 (2013).

2012 (2)

G. Campbell, B. Hage, B. Buchler, and P. K. Lam, “Generation of high-order optical vortices using directly machined spiral phase mirrors,” Appl. Opt. 51(7), 873–876 (2012).
[PubMed]

E. Brasselet, A. Royon, and L. Canionic, “Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass,” Appl. Phys. Lett. 100, 181901 (2012).

2010 (4)

2009 (2)

2005 (1)

2004 (1)

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).

2002 (1)

1998 (1)

1996 (1)

1994 (1)

1992 (2)

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221 (1992).
[PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

1983 (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Almazov, A. A.

Arie, A.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Ben-Yakar, A.

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).

Brasselet, E.

A. Zukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103, 181122 (2013).

E. Brasselet, A. Royon, and L. Canionic, “Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass,” Appl. Phys. Lett. 100, 181901 (2012).

Buchler, B.

Buczynski, R.

Buzniak, J.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–683 (2014).

Byer, R. L.

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).

Campbell, G.

Canionic, L.

E. Brasselet, A. Royon, and L. Canionic, “Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass,” Appl. Phys. Lett. 100, 181901 (2012).

Cimek, J.

Denisenko, V.

Desyatnikov, A. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[PubMed]

V. Denisenko, V. Shvedov, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, A. Volyar, M. Soskin, and Y. S. Kivshar, “Determination of topological charges of polychromatic optical vortices,” Opt. Express 17(26), 23374–23379 (2009).
[PubMed]

Elfstrom, H.

Filipkowski, A.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–683 (2014).

Franczyk, M.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–683 (2014).

Gahagan, K. T.

Gan, X.

Ganic, D.

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[PubMed]

Giessen, H.

Gintoli, M.

Gissibl, T.

Gu, M.

Gvishi, R.

Hage, B.

Hain, M.

Harasny, K.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–683 (2014).

Heckenberg, N. R.

Hell, S. W.

Herkommer, A.

Hnatovsky, C.

Hu, Z. J.

Hudelist, F.

Hurvitz, G.

Hütt, F.

Izdebskaya, Y. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[PubMed]

Kasztelanic, R.

Khonina, S. N.

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[PubMed]

Kivshar, Y. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[PubMed]

V. Denisenko, V. Shvedov, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, A. Volyar, M. Soskin, and Y. S. Kivshar, “Determination of topological charges of polychromatic optical vortices,” Opt. Express 17(26), 23374–23379 (2009).
[PubMed]

Klimczak, M.

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[PubMed]

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–683 (2014).

Kociszewski, L.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–683 (2014).

Kotlyar, V. V.

Krolikowski, W.

Kujawa, I.

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–683 (2014).

Lam, P. K.

Lightman, S.

Malinauskas, M.

A. Zukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103, 181122 (2013).

Massari, M.

McDuff, R.

Miyamoto, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[PubMed]

Morita, R.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[PubMed]

Neshev, D. N.

Omatsu, T.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[PubMed]

Pysz, D.

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[PubMed]

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–683 (2014).

Ricci, F.

Rode, A. V.

Romanato, F.

Royon, A.

E. Brasselet, A. Royon, and L. Canionic, “Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass,” Appl. Phys. Lett. 100, 181901 (2012).

Rozas, D.

Ruffato, G.

Sacks, Z. S.

Shvedov, V.

Shvedov, V. G.

Siwicki, B.

Smith, C. P.

Soifer, V. A.

Somalingam, S.

Soskin, M.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Stankovic, S.

Stefaniuk, T.

Stepien, R.

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[PubMed]

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–683 (2014).

Stepniewski, G.

Swartzlander, G. A.

Taghizadeh, M. R.

Takahashi, F.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[PubMed]

Takizawa, S.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[PubMed]

Tan, P. S.

Thiele, S.

Tokizane, Y.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[PubMed]

Toyoda, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[PubMed]

Tschudi, T.

Turunen, J.

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[PubMed]

Volyar, A.

Waddie, A. J.

Weber, K.

White, A. G.

Wichmann, J.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Yuan, X. C.

Zhu, S. W.

Zukauskas, A.

A. Zukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103, 181122 (2013).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

E. Brasselet, A. Royon, and L. Canionic, “Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass,” Appl. Phys. Lett. 100, 181901 (2012).

A. Zukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103, 181122 (2013).

Bull. Pol. Acad. Sci. Tech. Sci. (1)

D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–683 (2014).

J. Appl. Phys. (1)

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (6)

Optica (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Phys. Rev. Lett. (2)

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of Light Helicity to Nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[PubMed]

Science (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[PubMed]

Other (3)

G. J. Gbur, Singular Optics (CRC, 2016).

D. L. Andrews, ed., Structured Light and Its Applications (Elsevier, 2008).

A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Refractive index distribution in gradient index (a) and nanostructured (b) vortex all-glass mask structure. Black and yellow regions in (b) correspond to low and high refractive index glass, respectively.
Fig. 2
Fig. 2 Schematic of stack-and-draw process for vortex mask fabrication: (a) development of individual rods made of two types of thermally matched glasses, (b) assembly of initial preform according to calculated pattern, (c) drawing initial preform at fiber drawing tower, (d) assembly of intermediate preform, (e) drawing intermediate preform, (f) slicing the final fiber into individual vortex masks.
Fig. 3
Fig. 3 (a) Material dispersion of borosilicate glasses NC21 and NC32. (b) the mask thickness vs. beam wavelength for generation of the vortex with unit charge.
Fig. 4
Fig. 4 Fabricated vortex mask. (a) Scanning Electron Microscope (SEM) image of the end of the whole drawn fiber. Bright (dark) regions represent high (low) index glass. (b) SEM image of the vortex mask structure. (c) Magnified part of vortex structure with visible individual nanorods.
Fig. 5
Fig. 5 (a) Top row: Light intensity distribution and the orthogonal intensity profiles of the vortex formed after illuminating the vortex mask with femtosecond laser beam at λ0 = 890 nm. Bottom graph depicts the vortex intensity distribution after astigmatic transformation. Single dark stripe confirms charge m = 1 vortex. (b) numerically calculated far field (top row) and phase (bottom row) of the beam generated by vortex mask shown in Fig. 1(b) 500 μm distance behind the mask. The mask length is 36 μm. (c) numerically calculated far filed intensity (top) and phase (bottom) of the 10.2 micron long mask formed using high contrast glasses with refractive indices of n1 = 1.518 (NC21) and n2 = 1.605 (F2 lead-silicate glass).
Fig. 6
Fig. 6 Horizontal and vertical profiles of the optical vortex generated with λ = 890 nm CW beam. Measured intensity contrast in the vortex > 20:1.
Fig. 7
Fig. 7 (a) Light intensity distribution of the vortex formed after illuminating the nanostructured vortex mask with focused CW 532 nm beam. The donut like intensity pattern indicates presence of phase singularity-(b,c) interferometric diagnostic of generated optical vortex by using tilted and collinear (c) reference beam. The presence of the fork having two more black line at the bottom than at the top of the fork structure and a double spiral pattern indicates charge of 2. (d) the light intensity of the vortex beam after astigmatic transformation by tilted lens. The two dark regions confirm charge 2.
Fig. 8
Fig. 8 Horizontal and vertical profiles of the optical vortex generated with the CW 532 nm beam. Measured intensity contrast in the vortex >70:1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε e = ε m ε i (1+2δ) ε m (2δ2) ε m (2δ)+ ε i (1δ) ,

Metrics