Abstract

The generation of extreme intensity pulses in an optically injected semiconductor laser is studied numerically by using a well-known rate equation model. We show that step-up perturbations of the laser pump current can trigger extreme pulses. We study the perturbation parameters (amplitude, duration) that are more likely to trigger a extreme pulse, and compare the properties of the generated extreme pulses with those spontaneous emitted, which are due to the intrinsic deterministic dynamics of the laser. We study how the phase of the optical field evolves during the pulses and compare both types of pulses (generated by external perturbations and generated by intrinsic nonlinear dynamics). We find that in both cases the phase dynamics is similar with an abrupt rise and fall: as an extreme pulse begins, the phase grows abruptly and reaches a local maximum at the peak of the pulse, then, when the pulse is over, the phase falls down to a value which is similar to the one before the pulse started.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Extreme events in chaotic lasers with modulated parameter

C. Metayer, A. Serres, E. J. Rosero, W. A. S. Barbosa, F. M. de Aguiar, J. R. Rios Leite, and J. R. Tredicce
Opt. Express 22(17) 19850-19859 (2014)

Random optical pulse generation with bistable semiconductor ring lasers

Satoshi Sunada, Takahisa Harayama, Kenichi Arai, Kazuyuki Yoshimura, Ken Tsuzuki, Atsushi Uchida, and Peter Davis
Opt. Express 19(8) 7439-7450 (2011)

Homoclinic orbits and chaos in a multimode laser

D. Y. Tang and N. R. Heckenberg
J. Opt. Soc. Am. B 14(11) 2930-2935 (1997)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, ‘Optical rogue waves,” Nature 450, 1054–1057 (2007).
    [Crossref] [PubMed]
  2. A. N. Pisarchik, R. Jaimes-Reategui, R. Sevilla-Escoboza, G. Huerta-Cuellar, and M. Taki, “Rogue waves in a multistable system,” Phys. Rev. Lett. 107, 274101 (2011).
    [Crossref]
  3. M. G. Kovalsky, A. A. Hnilo, and J. R. Tredicce, “Extreme events in the Ti:sapphire laser,” Opt. Lett. 36, 4449–4451 (2011).
    [Crossref] [PubMed]
  4. K. Schires, A. Hurtado, I.D. Henning, and M.J. Adams, “Rare disruptive events in the polarisation-resolved dynamics of optically-injected 1550nm-VCSELs,” Electron. Lett. 48, 872–874 (2012).
    [Crossref]
  5. C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
    [Crossref] [PubMed]
  6. A. Karsaklian Dal Bosco, D. Wolfersberger, and M. Sciamanna, “Extreme events in time-delayed nonlinear optics,” Opt. Lett. 38, 703–705 (2013).
    [Crossref]
  7. C. Metayer, A. Serres, E. J. Rosero, W. A. S. Barbosa, F. M. de Aguiar, J. R. Rios Leite, and J. R. Tredicce, “Extreme events in chaotic lasers with modulated parameter,” Opt. Express 22, 19850 (2014).
    [Crossref] [PubMed]
  8. M. W. Lee, F. Baladi, J. R. Burie, M. A. Bettiati, A. Boudrioua, and A. P. A. Fischer, “Demonstration of optical rogue waves using a laser diode emitting at 980 nm and a fiber Bragg grating,” Opt. Lett. 41, 4476 (2016).
    [Crossref] [PubMed]
  9. N. Akhmediev, B. Kibler, F. Baronio, and et al., “Roadmap on optical rogue waves and extreme events,” J. Opt. 18, 063001 (2016).
    [Crossref]
  10. N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A 373, 675 (2009).
    [Crossref]
  11. C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009).
  12. C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. Rios Leite, and J. R. Tredicce, “Deterministic optical rogue waves,” Phys. Rev. Lett. 107, 053901 (2011).
    [Crossref] [PubMed]
  13. J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici, J. R. Rios Leite, C. Masoller, and J. R. Tredicce, ”Rogue waves in optically injected lasers: origin, predictability, and suppression,” Phys. Rev. A. 87, 035802 (2013).
    [Crossref]
  14. S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
    [Crossref]
  15. D. O’Shea, S. Osborne, N. Blackbeard, D. Goulding, B. Kelleher, and A. Amann, “Experimental classification of dynamical regimes in optically injected lasers,” Opt. Express 22, 21701 (2014).
    [Crossref]
  16. M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Phot. 9, 151 (2015).
    [Crossref]
  17. R. Karnatak, G. Ansmann, U. Feudel, and K. Lehnertz, “Route to extreme events in excitable systems,” Phys. Rev. E 90, 022917 (2014).
    [Crossref]
  18. A Saha and U. Feudel, “Extreme events in FitzHugh-Nagumo oscillators coupled with two time delays”, Phys. Rev. E 95, 062219 (2017).
    [Crossref] [PubMed]
  19. C. Bonazzola, A. Hnilo, M. Kovalsky, and J. R. Tredicce, “Optical rogue waves in an all-solid state laser with saturable absorber: importance of spatial effects,” J. Opt. 15, 064004 (2013).
    [Crossref]
  20. C. Rimoldi, S. Barland, F. Prati, and G. Tissoni, “Spatiotemporal extreme events in a laser with a saturable absorber,” Phys. Rev. A 95, 023841 (2017).
    [Crossref]
  21. S. Coulibaly, M. G. Clerc, F. Selmi, and S. Barbay, “Extreme events following bifurcation to spatiotemporal chaos in a spatially extended microcavity laser,” Phys. Rev. A 95, 023816 (2017).
    [Crossref]
  22. N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “How to excite a rogue wave,” Phys. Rev. A 80, 043818 (2009).
    [Crossref]
  23. D. Pierangeli, G. Musarra, F. Di Mei, G. Di Domenico, A. J. Agranat, C. Conti, and E. DelRe, “Enhancing optical extreme events through input wave disorder,” Phys. Rev. A 94, 063833 (2016).
    [Crossref]
  24. M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E 88, 022923 (2013).
    [Crossref]
  25. B. Garbin, A. Dolcemascolo, F. Prati, J. Javaloyes, G. Tissoni, and S. Barland, “Refractory period of an excitable semiconductor laser with optical injection,” Phys. Rev. E 95, 012214 (2017).
    [Crossref] [PubMed]
  26. A. Hurtado and J. Javaloyes, “Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems,” Appl. Phys. Lett. 107, 241103 (2015).
    [Crossref]
  27. J. Robertson, T. Deng, J. Javaloyes, and A. Hurtado, “Controlled inhibition of spiking dynamics in VCSELs for neuromorphic photonics: theory and experiments,” Opt. Lett. 42, 1560–1563 (2017).
    [Crossref] [PubMed]
  28. S. Perrone, R. Vilaseca, J. Zamora-Munt, and C. Masoller, “Controlling the likelihood of rogue waves in an optically injected semiconductor laser via direct current modulation,” Phys. Rev. A 89, 033804 (2014).
    [Crossref]
  29. J. Ahuja, D. Bhiku Nalawade, J. Zamora-Munt, R. Vilaseca, and C. Masoller, “Rogue waves in injected semiconductor lasers with current modulation: role of the modulation phase,” Opt. Express 22, 28377 (2014).
    [Crossref] [PubMed]
  30. B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175 (2010).
    [Crossref]
  31. B. Kelleher, D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
    [Crossref]

2017 (5)

A Saha and U. Feudel, “Extreme events in FitzHugh-Nagumo oscillators coupled with two time delays”, Phys. Rev. E 95, 062219 (2017).
[Crossref] [PubMed]

C. Rimoldi, S. Barland, F. Prati, and G. Tissoni, “Spatiotemporal extreme events in a laser with a saturable absorber,” Phys. Rev. A 95, 023841 (2017).
[Crossref]

S. Coulibaly, M. G. Clerc, F. Selmi, and S. Barbay, “Extreme events following bifurcation to spatiotemporal chaos in a spatially extended microcavity laser,” Phys. Rev. A 95, 023816 (2017).
[Crossref]

B. Garbin, A. Dolcemascolo, F. Prati, J. Javaloyes, G. Tissoni, and S. Barland, “Refractory period of an excitable semiconductor laser with optical injection,” Phys. Rev. E 95, 012214 (2017).
[Crossref] [PubMed]

J. Robertson, T. Deng, J. Javaloyes, and A. Hurtado, “Controlled inhibition of spiking dynamics in VCSELs for neuromorphic photonics: theory and experiments,” Opt. Lett. 42, 1560–1563 (2017).
[Crossref] [PubMed]

2016 (3)

M. W. Lee, F. Baladi, J. R. Burie, M. A. Bettiati, A. Boudrioua, and A. P. A. Fischer, “Demonstration of optical rogue waves using a laser diode emitting at 980 nm and a fiber Bragg grating,” Opt. Lett. 41, 4476 (2016).
[Crossref] [PubMed]

D. Pierangeli, G. Musarra, F. Di Mei, G. Di Domenico, A. J. Agranat, C. Conti, and E. DelRe, “Enhancing optical extreme events through input wave disorder,” Phys. Rev. A 94, 063833 (2016).
[Crossref]

N. Akhmediev, B. Kibler, F. Baronio, and et al., “Roadmap on optical rogue waves and extreme events,” J. Opt. 18, 063001 (2016).
[Crossref]

2015 (2)

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Phot. 9, 151 (2015).
[Crossref]

A. Hurtado and J. Javaloyes, “Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems,” Appl. Phys. Lett. 107, 241103 (2015).
[Crossref]

2014 (5)

2013 (4)

A. Karsaklian Dal Bosco, D. Wolfersberger, and M. Sciamanna, “Extreme events in time-delayed nonlinear optics,” Opt. Lett. 38, 703–705 (2013).
[Crossref]

J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici, J. R. Rios Leite, C. Masoller, and J. R. Tredicce, ”Rogue waves in optically injected lasers: origin, predictability, and suppression,” Phys. Rev. A. 87, 035802 (2013).
[Crossref]

M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E 88, 022923 (2013).
[Crossref]

C. Bonazzola, A. Hnilo, M. Kovalsky, and J. R. Tredicce, “Optical rogue waves in an all-solid state laser with saturable absorber: importance of spatial effects,” J. Opt. 15, 064004 (2013).
[Crossref]

2012 (3)

K. Schires, A. Hurtado, I.D. Henning, and M.J. Adams, “Rare disruptive events in the polarisation-resolved dynamics of optically-injected 1550nm-VCSELs,” Electron. Lett. 48, 872–874 (2012).
[Crossref]

C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref] [PubMed]

B. Kelleher, D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
[Crossref]

2011 (3)

M. G. Kovalsky, A. A. Hnilo, and J. R. Tredicce, “Extreme events in the Ti:sapphire laser,” Opt. Lett. 36, 4449–4451 (2011).
[Crossref] [PubMed]

C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. Rios Leite, and J. R. Tredicce, “Deterministic optical rogue waves,” Phys. Rev. Lett. 107, 053901 (2011).
[Crossref] [PubMed]

A. N. Pisarchik, R. Jaimes-Reategui, R. Sevilla-Escoboza, G. Huerta-Cuellar, and M. Taki, “Rogue waves in a multistable system,” Phys. Rev. Lett. 107, 274101 (2011).
[Crossref]

2010 (1)

B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175 (2010).
[Crossref]

2009 (2)

N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A 373, 675 (2009).
[Crossref]

N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “How to excite a rogue wave,” Phys. Rev. A 80, 043818 (2009).
[Crossref]

2007 (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, ‘Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref] [PubMed]

2005 (1)

S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[Crossref]

Adams, M.J.

K. Schires, A. Hurtado, I.D. Henning, and M.J. Adams, “Rare disruptive events in the polarisation-resolved dynamics of optically-injected 1550nm-VCSELs,” Electron. Lett. 48, 872–874 (2012).
[Crossref]

Agranat, A. J.

D. Pierangeli, G. Musarra, F. Di Mei, G. Di Domenico, A. J. Agranat, C. Conti, and E. DelRe, “Enhancing optical extreme events through input wave disorder,” Phys. Rev. A 94, 063833 (2016).
[Crossref]

Ahuja, J.

Akhmediev, N.

N. Akhmediev, B. Kibler, F. Baronio, and et al., “Roadmap on optical rogue waves and extreme events,” J. Opt. 18, 063001 (2016).
[Crossref]

C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref] [PubMed]

N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “How to excite a rogue wave,” Phys. Rev. A 80, 043818 (2009).
[Crossref]

N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A 373, 675 (2009).
[Crossref]

Amann, A.

Ankiewicz, A.

N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “How to excite a rogue wave,” Phys. Rev. A 80, 043818 (2009).
[Crossref]

N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A 373, 675 (2009).
[Crossref]

Ansmann, G.

R. Karnatak, G. Ansmann, U. Feudel, and K. Lehnertz, “Route to extreme events in excitable systems,” Phys. Rev. E 90, 022917 (2014).
[Crossref]

Baladi, F.

Barbay, S.

S. Coulibaly, M. G. Clerc, F. Selmi, and S. Barbay, “Extreme events following bifurcation to spatiotemporal chaos in a spatially extended microcavity laser,” Phys. Rev. A 95, 023816 (2017).
[Crossref]

Barbosa, W. A. S.

Barland, S.

C. Rimoldi, S. Barland, F. Prati, and G. Tissoni, “Spatiotemporal extreme events in a laser with a saturable absorber,” Phys. Rev. A 95, 023841 (2017).
[Crossref]

B. Garbin, A. Dolcemascolo, F. Prati, J. Javaloyes, G. Tissoni, and S. Barland, “Refractory period of an excitable semiconductor laser with optical injection,” Phys. Rev. E 95, 012214 (2017).
[Crossref] [PubMed]

J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici, J. R. Rios Leite, C. Masoller, and J. R. Tredicce, ”Rogue waves in optically injected lasers: origin, predictability, and suppression,” Phys. Rev. A. 87, 035802 (2013).
[Crossref]

M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E 88, 022923 (2013).
[Crossref]

C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. Rios Leite, and J. R. Tredicce, “Deterministic optical rogue waves,” Phys. Rev. Lett. 107, 053901 (2011).
[Crossref] [PubMed]

Baronio, F.

N. Akhmediev, B. Kibler, F. Baronio, and et al., “Roadmap on optical rogue waves and extreme events,” J. Opt. 18, 063001 (2016).
[Crossref]

Baselga Pascual, B.

B. Kelleher, D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
[Crossref]

B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175 (2010).
[Crossref]

Bettiati, M. A.

Bhiku Nalawade, D.

Blackbeard, N.

Bonatto, C.

C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. Rios Leite, and J. R. Tredicce, “Deterministic optical rogue waves,” Phys. Rev. Lett. 107, 053901 (2011).
[Crossref] [PubMed]

Bonazzola, C.

C. Bonazzola, A. Hnilo, M. Kovalsky, and J. R. Tredicce, “Optical rogue waves in an all-solid state laser with saturable absorber: importance of spatial effects,” J. Opt. 15, 064004 (2013).
[Crossref]

Boudrioua, A.

Burie, J. R.

Clerc, M. G.

S. Coulibaly, M. G. Clerc, F. Selmi, and S. Barbay, “Extreme events following bifurcation to spatiotemporal chaos in a spatially extended microcavity laser,” Phys. Rev. A 95, 023816 (2017).
[Crossref]

Conti, C.

D. Pierangeli, G. Musarra, F. Di Mei, G. Di Domenico, A. J. Agranat, C. Conti, and E. DelRe, “Enhancing optical extreme events through input wave disorder,” Phys. Rev. A 94, 063833 (2016).
[Crossref]

Coulibaly, S.

S. Coulibaly, M. G. Clerc, F. Selmi, and S. Barbay, “Extreme events following bifurcation to spatiotemporal chaos in a spatially extended microcavity laser,” Phys. Rev. A 95, 023816 (2017).
[Crossref]

de Aguiar, F. M.

DelRe, E.

D. Pierangeli, G. Musarra, F. Di Mei, G. Di Domenico, A. J. Agranat, C. Conti, and E. DelRe, “Enhancing optical extreme events through input wave disorder,” Phys. Rev. A 94, 063833 (2016).
[Crossref]

Deng, T.

Di Domenico, G.

D. Pierangeli, G. Musarra, F. Di Mei, G. Di Domenico, A. J. Agranat, C. Conti, and E. DelRe, “Enhancing optical extreme events through input wave disorder,” Phys. Rev. A 94, 063833 (2016).
[Crossref]

Di Mei, F.

D. Pierangeli, G. Musarra, F. Di Mei, G. Di Domenico, A. J. Agranat, C. Conti, and E. DelRe, “Enhancing optical extreme events through input wave disorder,” Phys. Rev. A 94, 063833 (2016).
[Crossref]

Dolcemascolo, A.

B. Garbin, A. Dolcemascolo, F. Prati, J. Javaloyes, G. Tissoni, and S. Barland, “Refractory period of an excitable semiconductor laser with optical injection,” Phys. Rev. E 95, 012214 (2017).
[Crossref] [PubMed]

Feudel, U.

A Saha and U. Feudel, “Extreme events in FitzHugh-Nagumo oscillators coupled with two time delays”, Phys. Rev. E 95, 062219 (2017).
[Crossref] [PubMed]

R. Karnatak, G. Ansmann, U. Feudel, and K. Lehnertz, “Route to extreme events in excitable systems,” Phys. Rev. E 90, 022917 (2014).
[Crossref]

Feyereisen, M.

M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E 88, 022923 (2013).
[Crossref]

C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. Rios Leite, and J. R. Tredicce, “Deterministic optical rogue waves,” Phys. Rev. Lett. 107, 053901 (2011).
[Crossref] [PubMed]

Fischer, A. P. A.

Garbin, B.

B. Garbin, A. Dolcemascolo, F. Prati, J. Javaloyes, G. Tissoni, and S. Barland, “Refractory period of an excitable semiconductor laser with optical injection,” Phys. Rev. E 95, 012214 (2017).
[Crossref] [PubMed]

M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E 88, 022923 (2013).
[Crossref]

J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici, J. R. Rios Leite, C. Masoller, and J. R. Tredicce, ”Rogue waves in optically injected lasers: origin, predictability, and suppression,” Phys. Rev. A. 87, 035802 (2013).
[Crossref]

Giudici, M.

J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici, J. R. Rios Leite, C. Masoller, and J. R. Tredicce, ”Rogue waves in optically injected lasers: origin, predictability, and suppression,” Phys. Rev. A. 87, 035802 (2013).
[Crossref]

M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E 88, 022923 (2013).
[Crossref]

C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. Rios Leite, and J. R. Tredicce, “Deterministic optical rogue waves,” Phys. Rev. Lett. 107, 053901 (2011).
[Crossref] [PubMed]

Goulding, D.

D. O’Shea, S. Osborne, N. Blackbeard, D. Goulding, B. Kelleher, and A. Amann, “Experimental classification of dynamical regimes in optically injected lasers,” Opt. Express 22, 21701 (2014).
[Crossref]

B. Kelleher, D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
[Crossref]

B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175 (2010).
[Crossref]

Grelu, Ph.

C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref] [PubMed]

Hegarty, S. P.

B. Kelleher, D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
[Crossref]

Hegarty, S.P.

B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175 (2010).
[Crossref]

Henning, I.D.

K. Schires, A. Hurtado, I.D. Henning, and M.J. Adams, “Rare disruptive events in the polarisation-resolved dynamics of optically-injected 1550nm-VCSELs,” Electron. Lett. 48, 872–874 (2012).
[Crossref]

Hnilo, A.

C. Bonazzola, A. Hnilo, M. Kovalsky, and J. R. Tredicce, “Optical rogue waves in an all-solid state laser with saturable absorber: importance of spatial effects,” J. Opt. 15, 064004 (2013).
[Crossref]

Hnilo, A. A.

Huerta-Cuellar, G.

A. N. Pisarchik, R. Jaimes-Reategui, R. Sevilla-Escoboza, G. Huerta-Cuellar, and M. Taki, “Rogue waves in a multistable system,” Phys. Rev. Lett. 107, 274101 (2011).
[Crossref]

Hurtado, A.

J. Robertson, T. Deng, J. Javaloyes, and A. Hurtado, “Controlled inhibition of spiking dynamics in VCSELs for neuromorphic photonics: theory and experiments,” Opt. Lett. 42, 1560–1563 (2017).
[Crossref] [PubMed]

A. Hurtado and J. Javaloyes, “Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems,” Appl. Phys. Lett. 107, 241103 (2015).
[Crossref]

K. Schires, A. Hurtado, I.D. Henning, and M.J. Adams, “Rare disruptive events in the polarisation-resolved dynamics of optically-injected 1550nm-VCSELs,” Electron. Lett. 48, 872–874 (2012).
[Crossref]

Huyet, G.

B. Kelleher, D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
[Crossref]

B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175 (2010).
[Crossref]

Jaimes-Reategui, R.

A. N. Pisarchik, R. Jaimes-Reategui, R. Sevilla-Escoboza, G. Huerta-Cuellar, and M. Taki, “Rogue waves in a multistable system,” Phys. Rev. Lett. 107, 274101 (2011).
[Crossref]

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, ‘Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref] [PubMed]

Javaloyes, J.

B. Garbin, A. Dolcemascolo, F. Prati, J. Javaloyes, G. Tissoni, and S. Barland, “Refractory period of an excitable semiconductor laser with optical injection,” Phys. Rev. E 95, 012214 (2017).
[Crossref] [PubMed]

J. Robertson, T. Deng, J. Javaloyes, and A. Hurtado, “Controlled inhibition of spiking dynamics in VCSELs for neuromorphic photonics: theory and experiments,” Opt. Lett. 42, 1560–1563 (2017).
[Crossref] [PubMed]

A. Hurtado and J. Javaloyes, “Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems,” Appl. Phys. Lett. 107, 241103 (2015).
[Crossref]

Karnatak, R.

R. Karnatak, G. Ansmann, U. Feudel, and K. Lehnertz, “Route to extreme events in excitable systems,” Phys. Rev. E 90, 022917 (2014).
[Crossref]

Karsaklian Dal Bosco, A.

Kelleher, B.

D. O’Shea, S. Osborne, N. Blackbeard, D. Goulding, B. Kelleher, and A. Amann, “Experimental classification of dynamical regimes in optically injected lasers,” Opt. Express 22, 21701 (2014).
[Crossref]

B. Kelleher, D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
[Crossref]

B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175 (2010).
[Crossref]

Kharif, C.

C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009).

Kibler, B.

N. Akhmediev, B. Kibler, F. Baronio, and et al., “Roadmap on optical rogue waves and extreme events,” J. Opt. 18, 063001 (2016).
[Crossref]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, ‘Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref] [PubMed]

Kovalsky, M.

C. Bonazzola, A. Hnilo, M. Kovalsky, and J. R. Tredicce, “Optical rogue waves in an all-solid state laser with saturable absorber: importance of spatial effects,” J. Opt. 15, 064004 (2013).
[Crossref]

Kovalsky, M. G.

Krauskopf, B.

S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[Crossref]

Lecaplain, C.

C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref] [PubMed]

Lee, M. W.

Lehnertz, K.

R. Karnatak, G. Ansmann, U. Feudel, and K. Lehnertz, “Route to extreme events in excitable systems,” Phys. Rev. E 90, 022917 (2014).
[Crossref]

Lenstra, D.

S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[Crossref]

Masoller, C.

J. Ahuja, D. Bhiku Nalawade, J. Zamora-Munt, R. Vilaseca, and C. Masoller, “Rogue waves in injected semiconductor lasers with current modulation: role of the modulation phase,” Opt. Express 22, 28377 (2014).
[Crossref] [PubMed]

S. Perrone, R. Vilaseca, J. Zamora-Munt, and C. Masoller, “Controlling the likelihood of rogue waves in an optically injected semiconductor laser via direct current modulation,” Phys. Rev. A 89, 033804 (2014).
[Crossref]

J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici, J. R. Rios Leite, C. Masoller, and J. R. Tredicce, ”Rogue waves in optically injected lasers: origin, predictability, and suppression,” Phys. Rev. A. 87, 035802 (2013).
[Crossref]

C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. Rios Leite, and J. R. Tredicce, “Deterministic optical rogue waves,” Phys. Rev. Lett. 107, 053901 (2011).
[Crossref] [PubMed]

Metayer, C.

Musarra, G.

D. Pierangeli, G. Musarra, F. Di Mei, G. Di Domenico, A. J. Agranat, C. Conti, and E. DelRe, “Enhancing optical extreme events through input wave disorder,” Phys. Rev. A 94, 063833 (2016).
[Crossref]

O’Shea, D.

Osborne, S.

Pelinovsky, E.

C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009).

Perrone, S.

S. Perrone, R. Vilaseca, J. Zamora-Munt, and C. Masoller, “Controlling the likelihood of rogue waves in an optically injected semiconductor laser via direct current modulation,” Phys. Rev. A 89, 033804 (2014).
[Crossref]

Pierangeli, D.

D. Pierangeli, G. Musarra, F. Di Mei, G. Di Domenico, A. J. Agranat, C. Conti, and E. DelRe, “Enhancing optical extreme events through input wave disorder,” Phys. Rev. A 94, 063833 (2016).
[Crossref]

Pisarchik, A. N.

A. N. Pisarchik, R. Jaimes-Reategui, R. Sevilla-Escoboza, G. Huerta-Cuellar, and M. Taki, “Rogue waves in a multistable system,” Phys. Rev. Lett. 107, 274101 (2011).
[Crossref]

Prati, F.

C. Rimoldi, S. Barland, F. Prati, and G. Tissoni, “Spatiotemporal extreme events in a laser with a saturable absorber,” Phys. Rev. A 95, 023841 (2017).
[Crossref]

B. Garbin, A. Dolcemascolo, F. Prati, J. Javaloyes, G. Tissoni, and S. Barland, “Refractory period of an excitable semiconductor laser with optical injection,” Phys. Rev. E 95, 012214 (2017).
[Crossref] [PubMed]

Rimoldi, C.

C. Rimoldi, S. Barland, F. Prati, and G. Tissoni, “Spatiotemporal extreme events in a laser with a saturable absorber,” Phys. Rev. A 95, 023841 (2017).
[Crossref]

Rios Leite, J. R.

C. Metayer, A. Serres, E. J. Rosero, W. A. S. Barbosa, F. M. de Aguiar, J. R. Rios Leite, and J. R. Tredicce, “Extreme events in chaotic lasers with modulated parameter,” Opt. Express 22, 19850 (2014).
[Crossref] [PubMed]

J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici, J. R. Rios Leite, C. Masoller, and J. R. Tredicce, ”Rogue waves in optically injected lasers: origin, predictability, and suppression,” Phys. Rev. A. 87, 035802 (2013).
[Crossref]

C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. Rios Leite, and J. R. Tredicce, “Deterministic optical rogue waves,” Phys. Rev. Lett. 107, 053901 (2011).
[Crossref] [PubMed]

Robertson, J.

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, ‘Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref] [PubMed]

Rosero, E. J.

Saha, A

A Saha and U. Feudel, “Extreme events in FitzHugh-Nagumo oscillators coupled with two time delays”, Phys. Rev. E 95, 062219 (2017).
[Crossref] [PubMed]

Schires, K.

K. Schires, A. Hurtado, I.D. Henning, and M.J. Adams, “Rare disruptive events in the polarisation-resolved dynamics of optically-injected 1550nm-VCSELs,” Electron. Lett. 48, 872–874 (2012).
[Crossref]

Sciamanna, M.

Selmi, F.

S. Coulibaly, M. G. Clerc, F. Selmi, and S. Barbay, “Extreme events following bifurcation to spatiotemporal chaos in a spatially extended microcavity laser,” Phys. Rev. A 95, 023816 (2017).
[Crossref]

Serres, A.

Sevilla-Escoboza, R.

A. N. Pisarchik, R. Jaimes-Reategui, R. Sevilla-Escoboza, G. Huerta-Cuellar, and M. Taki, “Rogue waves in a multistable system,” Phys. Rev. Lett. 107, 274101 (2011).
[Crossref]

Shore, K. A.

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Phot. 9, 151 (2015).
[Crossref]

Simpson, T.B.

S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[Crossref]

Slunyaev, A.

C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009).

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, ‘Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref] [PubMed]

Soto-Crespo, J. M.

C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref] [PubMed]

N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “How to excite a rogue wave,” Phys. Rev. A 80, 043818 (2009).
[Crossref]

Taki, M.

A. N. Pisarchik, R. Jaimes-Reategui, R. Sevilla-Escoboza, G. Huerta-Cuellar, and M. Taki, “Rogue waves in a multistable system,” Phys. Rev. Lett. 107, 274101 (2011).
[Crossref]

N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A 373, 675 (2009).
[Crossref]

Tissoni, G.

B. Garbin, A. Dolcemascolo, F. Prati, J. Javaloyes, G. Tissoni, and S. Barland, “Refractory period of an excitable semiconductor laser with optical injection,” Phys. Rev. E 95, 012214 (2017).
[Crossref] [PubMed]

C. Rimoldi, S. Barland, F. Prati, and G. Tissoni, “Spatiotemporal extreme events in a laser with a saturable absorber,” Phys. Rev. A 95, 023841 (2017).
[Crossref]

Tredicce, J. R.

C. Metayer, A. Serres, E. J. Rosero, W. A. S. Barbosa, F. M. de Aguiar, J. R. Rios Leite, and J. R. Tredicce, “Extreme events in chaotic lasers with modulated parameter,” Opt. Express 22, 19850 (2014).
[Crossref] [PubMed]

J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici, J. R. Rios Leite, C. Masoller, and J. R. Tredicce, ”Rogue waves in optically injected lasers: origin, predictability, and suppression,” Phys. Rev. A. 87, 035802 (2013).
[Crossref]

C. Bonazzola, A. Hnilo, M. Kovalsky, and J. R. Tredicce, “Optical rogue waves in an all-solid state laser with saturable absorber: importance of spatial effects,” J. Opt. 15, 064004 (2013).
[Crossref]

C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. Rios Leite, and J. R. Tredicce, “Deterministic optical rogue waves,” Phys. Rev. Lett. 107, 053901 (2011).
[Crossref] [PubMed]

M. G. Kovalsky, A. A. Hnilo, and J. R. Tredicce, “Extreme events in the Ti:sapphire laser,” Opt. Lett. 36, 4449–4451 (2011).
[Crossref] [PubMed]

Turconi, M.

M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E 88, 022923 (2013).
[Crossref]

Vilaseca, R.

S. Perrone, R. Vilaseca, J. Zamora-Munt, and C. Masoller, “Controlling the likelihood of rogue waves in an optically injected semiconductor laser via direct current modulation,” Phys. Rev. A 89, 033804 (2014).
[Crossref]

J. Ahuja, D. Bhiku Nalawade, J. Zamora-Munt, R. Vilaseca, and C. Masoller, “Rogue waves in injected semiconductor lasers with current modulation: role of the modulation phase,” Opt. Express 22, 28377 (2014).
[Crossref] [PubMed]

Wieczorek, S.

S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[Crossref]

Wolfersberger, D.

Zamora-Munt, J.

S. Perrone, R. Vilaseca, J. Zamora-Munt, and C. Masoller, “Controlling the likelihood of rogue waves in an optically injected semiconductor laser via direct current modulation,” Phys. Rev. A 89, 033804 (2014).
[Crossref]

J. Ahuja, D. Bhiku Nalawade, J. Zamora-Munt, R. Vilaseca, and C. Masoller, “Rogue waves in injected semiconductor lasers with current modulation: role of the modulation phase,” Opt. Express 22, 28377 (2014).
[Crossref] [PubMed]

J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici, J. R. Rios Leite, C. Masoller, and J. R. Tredicce, ”Rogue waves in optically injected lasers: origin, predictability, and suppression,” Phys. Rev. A. 87, 035802 (2013).
[Crossref]

Appl. Phys. Lett. (1)

A. Hurtado and J. Javaloyes, “Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems,” Appl. Phys. Lett. 107, 241103 (2015).
[Crossref]

Electron. Lett. (1)

K. Schires, A. Hurtado, I.D. Henning, and M.J. Adams, “Rare disruptive events in the polarisation-resolved dynamics of optically-injected 1550nm-VCSELs,” Electron. Lett. 48, 872–874 (2012).
[Crossref]

Eur. Phys. J. D (1)

B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58, 175 (2010).
[Crossref]

J. Opt. (2)

N. Akhmediev, B. Kibler, F. Baronio, and et al., “Roadmap on optical rogue waves and extreme events,” J. Opt. 18, 063001 (2016).
[Crossref]

C. Bonazzola, A. Hnilo, M. Kovalsky, and J. R. Tredicce, “Optical rogue waves in an all-solid state laser with saturable absorber: importance of spatial effects,” J. Opt. 15, 064004 (2013).
[Crossref]

Nat. Phot. (1)

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Phot. 9, 151 (2015).
[Crossref]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, ‘Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Phys. Lett. A (1)

N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A 373, 675 (2009).
[Crossref]

Phys. Rep. (1)

S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[Crossref]

Phys. Rev. A (5)

S. Perrone, R. Vilaseca, J. Zamora-Munt, and C. Masoller, “Controlling the likelihood of rogue waves in an optically injected semiconductor laser via direct current modulation,” Phys. Rev. A 89, 033804 (2014).
[Crossref]

C. Rimoldi, S. Barland, F. Prati, and G. Tissoni, “Spatiotemporal extreme events in a laser with a saturable absorber,” Phys. Rev. A 95, 023841 (2017).
[Crossref]

S. Coulibaly, M. G. Clerc, F. Selmi, and S. Barbay, “Extreme events following bifurcation to spatiotemporal chaos in a spatially extended microcavity laser,” Phys. Rev. A 95, 023816 (2017).
[Crossref]

N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “How to excite a rogue wave,” Phys. Rev. A 80, 043818 (2009).
[Crossref]

D. Pierangeli, G. Musarra, F. Di Mei, G. Di Domenico, A. J. Agranat, C. Conti, and E. DelRe, “Enhancing optical extreme events through input wave disorder,” Phys. Rev. A 94, 063833 (2016).
[Crossref]

Phys. Rev. A. (1)

J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici, J. R. Rios Leite, C. Masoller, and J. R. Tredicce, ”Rogue waves in optically injected lasers: origin, predictability, and suppression,” Phys. Rev. A. 87, 035802 (2013).
[Crossref]

Phys. Rev. E (5)

R. Karnatak, G. Ansmann, U. Feudel, and K. Lehnertz, “Route to extreme events in excitable systems,” Phys. Rev. E 90, 022917 (2014).
[Crossref]

A Saha and U. Feudel, “Extreme events in FitzHugh-Nagumo oscillators coupled with two time delays”, Phys. Rev. E 95, 062219 (2017).
[Crossref] [PubMed]

M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E 88, 022923 (2013).
[Crossref]

B. Garbin, A. Dolcemascolo, F. Prati, J. Javaloyes, G. Tissoni, and S. Barland, “Refractory period of an excitable semiconductor laser with optical injection,” Phys. Rev. E 95, 012214 (2017).
[Crossref] [PubMed]

B. Kelleher, D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet, “Bounded phase phenomena in the optically injected laser,” Phys. Rev. E 85, 046212 (2012).
[Crossref]

Phys. Rev. Lett. (3)

A. N. Pisarchik, R. Jaimes-Reategui, R. Sevilla-Escoboza, G. Huerta-Cuellar, and M. Taki, “Rogue waves in a multistable system,” Phys. Rev. Lett. 107, 274101 (2011).
[Crossref]

C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. Rios Leite, and J. R. Tredicce, “Deterministic optical rogue waves,” Phys. Rev. Lett. 107, 053901 (2011).
[Crossref] [PubMed]

C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref] [PubMed]

Other (1)

C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Left: Intensity temporal evolution (bottom line) at constant pump current (top line): the intensity displays small oscillations but, occasionally, very high pulses are generated by deterministic nonlinear dynamics. The parameters are μ = 2.4 and Δν = 0.22 GHz (point labeled A). Right: Example of pump current step-up perturbation (top line) and the generated pulse (bottom line). The parameters are μ = 2.2 and Δν = 0.6 GHz (point labeled B). The insets show the details of the pulses.

Fig. 2
Fig. 2

Number of intensity pulses generated after 1000 perturbations as a function of the perturbation parameters. In point C (left) the success probability can exceed 50%, while in point B (right) it is much lower.

Fig. 3
Fig. 3

Examples of two current perturbations: one triggers an extreme pulse while the other only produces a small fluctuation. The parameters are μ = 2.2, δν = 0.6 GHz, Δμ = 0.35, and τ = 2 ns (left), 0.5 ns (right).

Fig. 4
Fig. 4

Number of generated intensity pulses as a function of the pump current, μ, and the frequency detuning, Δν. 100 perturbations are performed with parameters Δμ = 0.35 and τ = 4 (left) and Δμ = 0.35 and τ = 2 (right). In the regions where there are spontaneous extreme pulses, no perturbation is applied and thus the number of generated pulses is zero.

Fig. 5
Fig. 5

Intensity and phase time traces during pulses that are generated by the intrinsic nonlinear dynamics. The lower panel shows in detail the temporal evolution during the pulse. 50 intensity time traces of 200 ns each were simulated and 816 pulses were above the 〈S〉 + 8σ threshold. The intensity time traces are superposed and centered at the peak of the pulse. The phase time traces are also superposed and the value of the phase at the pulse peak is subtracted to make all time traces converge to zero at the peak. The lower panels show in detail the evolution during the intensity peak. Parameters correspond to point A.

Fig. 6
Fig. 6

As Fig. 5 but the pump current parameter is sinusoidally modulated, μ = μ0[1 + Amod sin(2πfmodt)] with μ0 = 2.4, Amod = 0.2 and fmod = 3.5 GHz. In 50 time traces of 200 ns each there were 78 pulses higher than 〈S〉 + 8σ.

Fig. 7
Fig. 7

Temporal evolution of the carrier density during the spontaneous extreme pulses shown in Fig. 5.

Fig. 8
Fig. 8

Intensity and phase time traces during pulses generated by pump current perturbations. The lower panel shows in detail the temporal evolution during the pulses. 200 simulations were done and in each simulation a perturbation (Δμ = 0.35 and τ = 3 ns) was randomly applied to the laser current. The resulting 47 pulses above the threshold (〈S〉 + 8σ) are superposed and centered at the peak of the pulse. As in Figs. 5 and 6 the phase time traces are also superposed and the value of the phase at the peak of the pulse is subtracted to make all time traces converge to zero at the pulse peak. Parameters are μ = 1.8, Δν = 0.22 GHz (point C).

Fig. 9
Fig. 9

Temporal evolution of the carrier density during the extreme pulses that are generated by step-up current perturbations.

Fig. 10
Fig. 10

Mean amplitude (left panel, in arb. units) and mean waiting time (right panel, in nanoseconds) of the pulses generated by current perturbation with parameters Δμ = 0.35 and τ = 3 ns. Regions where spontaneous ultra-high pulses occur are indicated in dark blue.

Fig. 11
Fig. 11

Left: abrupt and smooth pump current perturbation; right: number of extreme pulses generated by smooth perturbations, when the parameters are as in Fig. 2, right panel.

Fig. 12
Fig. 12

Abrupt (left) and smooth (right) pump current perturbation and the resulting intensity pulses. It can be noticed that the height of the pulse generated by the smooth perturbation is lower than that the height of the pulse generated by the abrupt perturbation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d E d t = κ ( 1 + i α ) ( N 1 ) E + i Δ ω E + P inj
d N d t = γ N ( μ ( t ) N | E | 2 )