Abstract

Optical biosensing devices for the affinity analysis of molecular binding events could offer significant advantages over current analytical methods. However, most of those excited with a single optical mode are “blind” to the conformational change of bound molecules. We succeeded in designing Mach-Zehnder interferometers (MZI) with a hybrid plasmonic (HP) waveguide with nano-slots. By addressing the structure with dual polarizations, the optogeometrical properties (density and thickness) of protein layers have been determined without ambiguity. Differences in the hybrid mode dispersion between the transverse electric (TE) and transverse magnetic (TM) modes separately allow the determination of the thickness and the density at all stages during the molecular interaction. Moreover, nano-slots can be equated with an effective optical capacitance resulting in strong field confinement and low propagation loss. A proof of concept is conducted by analyzing the conformational change of HepV, a recombinant fragment of collagen V, during complicated molecular interaction. Instead of wavelength interrogation, a cost-effective method with output intensity variation at particular wavelengths due to “resonance phenomena” was employed to monitor the biological event.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Protein detection on biotin-derivatized polyallylamine by optical microring resonators

Daniela Ullien, Peter J. Harmsma, Shahina M. C. Abdulla, Bart M. de Boer, Duco Bosma, Ernst J. R. Sudhölter, Louis C. P. M. de Smet, and Wolter F. Jager
Opt. Express 22(13) 16585-16594 (2014)

Specific detection of proteins using photonic crystal waveguides

S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy
Opt. Express 16(20) 15949-15957 (2008)

Size-selective detection in integrated optical interferometric biosensors

Harmen K.P. Mulder, Aurel Ymeti, Vinod Subramaniam, and Johannes S. Kanger
Opt. Express 20(19) 20934-20950 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Nelson and M. Cox, Lehninger Principles of Biochemistry (W.H. Freeman and Company 2005).
  2. S. R. Hammes, “The further redefining of steroid-mediated signaling,” Proc. Natl. Acad. Sci. U.S.A. 100(5), 2168–2170 (2003).
    [PubMed]
  3. A. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, and M. H. Olsson, “Electrostatic Basis for Enzyme Catalysis,” Chem. Rev. 106(8), 3210–3235 (2006).
    [PubMed]
  4. M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515–528 (2002).
    [PubMed]
  5. F. Ye, Label-Free Biosensor Methods in Drug Discovery (Springer, 2015)
  6. K. E. Coan, M. J. Swann, and J. Ottl, “Measurement and Differentiation of Ligand-Induced Calmodulin Conformations by Dual Polarization Interferometry,” Anal. Chem. 84(3), 1586–1591 (2012).
    [PubMed]
  7. F. Dell’Olio, D. Conteduca, C. Ciminelli, and M. N. Armenise, “New ultrasensitive resonant photonic platform for label-free biosensing,” Opt. Express 23(22), 28593–28604 (2015).
    [PubMed]
  8. B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B.J. Luff, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens. Act. B 39(1–3), 277–282 (1997).
  9. M. Kitsara, K. Misiakos, I. Raptis, and E. Makarona, “Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing,” Opt. Express 18(8), 8193–8206 (2010).
    [PubMed]
  10. B. J. Luff, S. James Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated Optical Mach–Zehnder Biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998).
  11. B. Y. Shew, C. H. Kou, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005).
  12. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L.M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
  13. W. C. Tsai and I. C. Li, “SPR-based immunosensor for determining staphylococcal enterotoxin A,” Sens. Act. B 136(1), 8–12 (2009).
  14. A. I. Lao, X. Su, and K. M. Aung, “SPR study of DNA hybridization with DNA and PNA probes under stringent conditions,” Biosens. Bioelectron. 24(6), 1717–1722 (2009).
    [PubMed]
  15. L. Xu, V. G. Vaidyanathan, and B. P. Cho, “Real-time surface plasmon resonance study of biomolecular interactions between polymerase and bulky mutagenic DNA lesions,” Chem. Res. Toxicol. 27(10), 1796–1807 (2014).
    [PubMed]
  16. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Act. B 12(3), 213–220 (1993).
  17. P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58(58), 287–307 (2014).
    [PubMed]
  18. M. C. Estevez, M. Alvarez, and M. L. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
  19. R. Méjard, H. J. Griesser, and B. Thierry, “Optical biosensing for label-free cellular studies,” Trends Analyt. Chem. 53, 178–186 (2014).
  20. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [PubMed]
  21. Q. Wang, R. Liu, X. Yang, K. Wang, J. Zhu, L. He, and Q. Li, “Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich,” Sens. Act. B 223, 613–620 (2016).
  22. F. Dell’Olio, D. Conteduca, M. De Palo, and C. Ciminelli, “Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform,” Sensors (Basel) 17(8), 1810 (2017).
    [PubMed]
  23. A. Bozzola, S. Perotto, and F. De Angelis, “Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review,” Analyst (Lond.) 142(6), 883–898 (2017).
    [PubMed]
  24. X. Kong, E. Li, K. Squire, Y. Liu, B. Wu, L. J. Cheng, and A. X. Wang, “Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing,” J. Biophotonics 10(11), 1473–1484 (2017).
    [PubMed]
  25. M. Malmqvist, “Biospecific interaction analysis using biosensor technology,” Nature 361(6408), 186–187 (1993).
    [PubMed]
  26. G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
    [PubMed]
  27. M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329(2), 190–198 (2004).
    [PubMed]
  28. H. Berney and K. Oliver, “Dual polarization interferometry size and density characterisation of DNA immobilisation and hybridisation,” Biosens. Bioelectron. 21(4), 618–626 (2005).
    [PubMed]
  29. G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, “The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferom,” J. Phys. D Appl. Phys. 37(1), 74–80 (2004).
  30. D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).
  31. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
    [PubMed]
  32. A. E. Eter, T. Grosjean, P. Viktorovitch, X. Letartre, T. Benyattou, and F. I. Baida, “Huge light-enhancement by coupling a bowtie nano-antenna’s plasmonic resonance to a photonic crystal mode,” Opt. Express 22(12), 14464–14472 (2014).
    [PubMed]
  33. J. Zhang, Q. Song, H. Tian, X. Zhang, H. Wu, J. Wang, C. Yu, G. Li, D. Fan, and P. Yuan, “A double-ring Mach–Zehnder interferometer sensor with high sensitivity,” J. Phys. D Appl. Phys. 45(45), 1–5 (2012).
  34. R. J. Wenstrup, J. B. Florer, E. W. Brunskill, S. M. Bell, I. Chervoneva, and D. E. Birk, “Type V collagen controls the initiation of Collagen Fibril Assembly,” J. Biol. Chem. 279(51), 53331–53337 (2004).
    [PubMed]
  35. F. Delacoux, A. Fichard, C. Geourjon, R. Garrone, and F. Ruggiero, “Molecular Features of the Collagen V Heparin Binding Site,” J. Biol. Chem. 273(24), 15069–15076 (1998).
    [PubMed]
  36. S. Ricard-Blum, L. L. Peel, F. Ruggiero, and N. J. Freeman, “Dual polarization interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352(2), 252–259 (2006).
    [PubMed]
  37. N. M. Green, “Avidin,” Adv. Protein Chem. 29, 85–133 (1975).
    [PubMed]
  38. R. Lide David Handbook of Chemistry and Physics (CRC 2008).
  39. CF Bohren and DR Huffman. Absorption and Scattering of Light by Small Particle (Wiley 1983)
  40. G. Bartal, R. F. Oulton, V. J. Sorger, and X. Zhang, “A Hybrid Plasmonic waveguide for Subwavelength Confinement and Long Range Propagation,” Nat. Photonics 2(8), 496–500 (2008).
  41. J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Kekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Act. B 76(1–3), 8–12 (2001).
  42. Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5(12), 9836–9844 (2011).
    [PubMed]
  43. H. Awrin, “Ellipsometry on thin organic layers of biological interest: characterization and applications,” Thin Solid Films 377, 48–56 (2002).
  44. J. Wen and T. Arakawa, “Refractive index of proteins in aqueous sodium chloride,” Anal. Biochem. 280(2), 327–329 (2000).
    [PubMed]
  45. T. M. Davis and W. D. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284(2), 348–353 (2000).
    [PubMed]
  46. G. S. Nikolic, M. D. Cakic, and L. A. Ilic, “Specific refractive index increments of insulin,” J. Serb. Chem. Soc. 66(6), 397–401 (2001).
  47. J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface,” Biopolymers 17(7), 1759–1772 (1978).
  48. http://www.bellexinternational.com/products/cytop/

2017 (3)

F. Dell’Olio, D. Conteduca, M. De Palo, and C. Ciminelli, “Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform,” Sensors (Basel) 17(8), 1810 (2017).
[PubMed]

A. Bozzola, S. Perotto, and F. De Angelis, “Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review,” Analyst (Lond.) 142(6), 883–898 (2017).
[PubMed]

X. Kong, E. Li, K. Squire, Y. Liu, B. Wu, L. J. Cheng, and A. X. Wang, “Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing,” J. Biophotonics 10(11), 1473–1484 (2017).
[PubMed]

2016 (2)

Q. Wang, R. Liu, X. Yang, K. Wang, J. Zhu, L. He, and Q. Li, “Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich,” Sens. Act. B 223, 613–620 (2016).

D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).

2015 (1)

2014 (4)

A. E. Eter, T. Grosjean, P. Viktorovitch, X. Letartre, T. Benyattou, and F. I. Baida, “Huge light-enhancement by coupling a bowtie nano-antenna’s plasmonic resonance to a photonic crystal mode,” Opt. Express 22(12), 14464–14472 (2014).
[PubMed]

R. Méjard, H. J. Griesser, and B. Thierry, “Optical biosensing for label-free cellular studies,” Trends Analyt. Chem. 53, 178–186 (2014).

L. Xu, V. G. Vaidyanathan, and B. P. Cho, “Real-time surface plasmon resonance study of biomolecular interactions between polymerase and bulky mutagenic DNA lesions,” Chem. Res. Toxicol. 27(10), 1796–1807 (2014).
[PubMed]

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58(58), 287–307 (2014).
[PubMed]

2012 (3)

M. C. Estevez, M. Alvarez, and M. L. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).

J. Zhang, Q. Song, H. Tian, X. Zhang, H. Wu, J. Wang, C. Yu, G. Li, D. Fan, and P. Yuan, “A double-ring Mach–Zehnder interferometer sensor with high sensitivity,” J. Phys. D Appl. Phys. 45(45), 1–5 (2012).

K. E. Coan, M. J. Swann, and J. Ottl, “Measurement and Differentiation of Ligand-Induced Calmodulin Conformations by Dual Polarization Interferometry,” Anal. Chem. 84(3), 1586–1591 (2012).
[PubMed]

2011 (2)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[PubMed]

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[PubMed]

2010 (1)

2009 (2)

W. C. Tsai and I. C. Li, “SPR-based immunosensor for determining staphylococcal enterotoxin A,” Sens. Act. B 136(1), 8–12 (2009).

A. I. Lao, X. Su, and K. M. Aung, “SPR study of DNA hybridization with DNA and PNA probes under stringent conditions,” Biosens. Bioelectron. 24(6), 1717–1722 (2009).
[PubMed]

2008 (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

G. Bartal, R. F. Oulton, V. J. Sorger, and X. Zhang, “A Hybrid Plasmonic waveguide for Subwavelength Confinement and Long Range Propagation,” Nat. Photonics 2(8), 496–500 (2008).

2006 (2)

S. Ricard-Blum, L. L. Peel, F. Ruggiero, and N. J. Freeman, “Dual polarization interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352(2), 252–259 (2006).
[PubMed]

A. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, and M. H. Olsson, “Electrostatic Basis for Enzyme Catalysis,” Chem. Rev. 106(8), 3210–3235 (2006).
[PubMed]

2005 (2)

H. Berney and K. Oliver, “Dual polarization interferometry size and density characterisation of DNA immobilisation and hybridisation,” Biosens. Bioelectron. 21(4), 618–626 (2005).
[PubMed]

B. Y. Shew, C. H. Kou, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005).

2004 (3)

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, “The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferom,” J. Phys. D Appl. Phys. 37(1), 74–80 (2004).

R. J. Wenstrup, J. B. Florer, E. W. Brunskill, S. M. Bell, I. Chervoneva, and D. E. Birk, “Type V collagen controls the initiation of Collagen Fibril Assembly,” J. Biol. Chem. 279(51), 53331–53337 (2004).
[PubMed]

M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329(2), 190–198 (2004).
[PubMed]

2003 (3)

S. R. Hammes, “The further redefining of steroid-mediated signaling,” Proc. Natl. Acad. Sci. U.S.A. 100(5), 2168–2170 (2003).
[PubMed]

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L.M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[PubMed]

2002 (2)

H. Awrin, “Ellipsometry on thin organic layers of biological interest: characterization and applications,” Thin Solid Films 377, 48–56 (2002).

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515–528 (2002).
[PubMed]

2001 (2)

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Kekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Act. B 76(1–3), 8–12 (2001).

G. S. Nikolic, M. D. Cakic, and L. A. Ilic, “Specific refractive index increments of insulin,” J. Serb. Chem. Soc. 66(6), 397–401 (2001).

2000 (2)

J. Wen and T. Arakawa, “Refractive index of proteins in aqueous sodium chloride,” Anal. Biochem. 280(2), 327–329 (2000).
[PubMed]

T. M. Davis and W. D. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284(2), 348–353 (2000).
[PubMed]

1998 (2)

F. Delacoux, A. Fichard, C. Geourjon, R. Garrone, and F. Ruggiero, “Molecular Features of the Collagen V Heparin Binding Site,” J. Biol. Chem. 273(24), 15069–15076 (1998).
[PubMed]

B. J. Luff, S. James Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated Optical Mach–Zehnder Biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998).

1997 (1)

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B.J. Luff, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens. Act. B 39(1–3), 277–282 (1997).

1993 (2)

M. Malmqvist, “Biospecific interaction analysis using biosensor technology,” Nature 361(6408), 186–187 (1993).
[PubMed]

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Act. B 12(3), 213–220 (1993).

1978 (1)

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface,” Biopolymers 17(7), 1759–1772 (1978).

1975 (1)

N. M. Green, “Avidin,” Adv. Protein Chem. 29, 85–133 (1975).
[PubMed]

Abad, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L.M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[PubMed]

Alvarez, M.

M. C. Estevez, M. Alvarez, and M. L. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Arakawa, T.

J. Wen and T. Arakawa, “Refractive index of proteins in aqueous sodium chloride,” Anal. Biochem. 280(2), 327–329 (2000).
[PubMed]

Armenise, M. N.

D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).

F. Dell’Olio, D. Conteduca, C. Ciminelli, and M. N. Armenise, “New ultrasensitive resonant photonic platform for label-free biosensing,” Opt. Express 23(22), 28593–28604 (2015).
[PubMed]

Aung, K. M.

A. I. Lao, X. Su, and K. M. Aung, “SPR study of DNA hybridization with DNA and PNA probes under stringent conditions,” Biosens. Bioelectron. 24(6), 1717–1722 (2009).
[PubMed]

Awrin, H.

H. Awrin, “Ellipsometry on thin organic layers of biological interest: characterization and applications,” Thin Solid Films 377, 48–56 (2002).

Baida, F. I.

Bartal, G.

G. Bartal, R. F. Oulton, V. J. Sorger, and X. Zhang, “A Hybrid Plasmonic waveguide for Subwavelength Confinement and Long Range Propagation,” Nat. Photonics 2(8), 496–500 (2008).

Bartoli, F. J.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[PubMed]

Bell, S. M.

R. J. Wenstrup, J. B. Florer, E. W. Brunskill, S. M. Bell, I. Chervoneva, and D. E. Birk, “Type V collagen controls the initiation of Collagen Fibril Assembly,” J. Biol. Chem. 279(51), 53331–53337 (2004).
[PubMed]

Benjamins, J.

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface,” Biopolymers 17(7), 1759–1772 (1978).

Benyattou, T.

Berney, H.

H. Berney and K. Oliver, “Dual polarization interferometry size and density characterisation of DNA immobilisation and hybridisation,” Biosens. Bioelectron. 21(4), 618–626 (2005).
[PubMed]

Bier, F. F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58(58), 287–307 (2014).
[PubMed]

Birk, D. E.

R. J. Wenstrup, J. B. Florer, E. W. Brunskill, S. M. Bell, I. Chervoneva, and D. E. Birk, “Type V collagen controls the initiation of Collagen Fibril Assembly,” J. Biol. Chem. 279(51), 53331–53337 (2004).
[PubMed]

Bozzola, A.

A. Bozzola, S. Perotto, and F. De Angelis, “Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review,” Analyst (Lond.) 142(6), 883–898 (2017).
[PubMed]

Brand, S.

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, “The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferom,” J. Phys. D Appl. Phys. 37(1), 74–80 (2004).

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[PubMed]

Brecht, A.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B.J. Luff, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens. Act. B 39(1–3), 277–282 (1997).

Brunskill, E. W.

R. J. Wenstrup, J. B. Florer, E. W. Brunskill, S. M. Bell, I. Chervoneva, and D. E. Birk, “Type V collagen controls the initiation of Collagen Fibril Assembly,” J. Biol. Chem. 279(51), 53331–53337 (2004).
[PubMed]

Brynda, E.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Kekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Act. B 76(1–3), 8–12 (2001).

Cakic, M. D.

G. S. Nikolic, M. D. Cakic, and L. A. Ilic, “Specific refractive index increments of insulin,” J. Serb. Chem. Soc. 66(6), 397–401 (2001).

Calle, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L.M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Carrington, S.

M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329(2), 190–198 (2004).
[PubMed]

Cheng, L. J.

X. Kong, E. Li, K. Squire, Y. Liu, B. Wu, L. J. Cheng, and A. X. Wang, “Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing,” J. Biophotonics 10(11), 1473–1484 (2017).
[PubMed]

Cheng, X.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[PubMed]

Chervoneva, I.

R. J. Wenstrup, J. B. Florer, E. W. Brunskill, S. M. Bell, I. Chervoneva, and D. E. Birk, “Type V collagen controls the initiation of Collagen Fibril Assembly,” J. Biol. Chem. 279(51), 53331–53337 (2004).
[PubMed]

Cho, B. P.

L. Xu, V. G. Vaidyanathan, and B. P. Cho, “Real-time surface plasmon resonance study of biomolecular interactions between polymerase and bulky mutagenic DNA lesions,” Chem. Res. Toxicol. 27(10), 1796–1807 (2014).
[PubMed]

Ciminelli, C.

F. Dell’Olio, D. Conteduca, M. De Palo, and C. Ciminelli, “Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform,” Sensors (Basel) 17(8), 1810 (2017).
[PubMed]

D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).

F. Dell’Olio, D. Conteduca, C. Ciminelli, and M. N. Armenise, “New ultrasensitive resonant photonic platform for label-free biosensing,” Opt. Express 23(22), 28593–28604 (2015).
[PubMed]

Coan, K. E.

K. E. Coan, M. J. Swann, and J. Ottl, “Measurement and Differentiation of Ligand-Induced Calmodulin Conformations by Dual Polarization Interferometry,” Anal. Chem. 84(3), 1586–1591 (2012).
[PubMed]

Conteduca, D.

F. Dell’Olio, D. Conteduca, M. De Palo, and C. Ciminelli, “Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform,” Sensors (Basel) 17(8), 1810 (2017).
[PubMed]

D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).

F. Dell’Olio, D. Conteduca, C. Ciminelli, and M. N. Armenise, “New ultrasensitive resonant photonic platform for label-free biosensing,” Opt. Express 23(22), 28593–28604 (2015).
[PubMed]

Cooper, M. A.

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515–528 (2002).
[PubMed]

Cross, G. H.

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, “The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferom,” J. Phys. D Appl. Phys. 37(1), 74–80 (2004).

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[PubMed]

Ctyroky, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Kekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Act. B 76(1–3), 8–12 (2001).

Davis, T. M.

T. M. Davis and W. D. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284(2), 348–353 (2000).
[PubMed]

De Angelis, F.

A. Bozzola, S. Perotto, and F. De Angelis, “Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review,” Analyst (Lond.) 142(6), 883–898 (2017).
[PubMed]

De Feijter, J. A.

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface,” Biopolymers 17(7), 1759–1772 (1978).

De Palo, M.

F. Dell’Olio, D. Conteduca, M. De Palo, and C. Ciminelli, “Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform,” Sensors (Basel) 17(8), 1810 (2017).
[PubMed]

Delacoux, F.

F. Delacoux, A. Fichard, C. Geourjon, R. Garrone, and F. Ruggiero, “Molecular Features of the Collagen V Heparin Binding Site,” J. Biol. Chem. 273(24), 15069–15076 (1998).
[PubMed]

Dell’Olio, F.

F. Dell’Olio, D. Conteduca, M. De Palo, and C. Ciminelli, “Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform,” Sensors (Basel) 17(8), 1810 (2017).
[PubMed]

D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).

F. Dell’Olio, D. Conteduca, C. Ciminelli, and M. N. Armenise, “New ultrasensitive resonant photonic platform for label-free biosensing,” Opt. Express 23(22), 28593–28604 (2015).
[PubMed]

Dominguez, C.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L.M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Dostalek, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Kekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Act. B 76(1–3), 8–12 (2001).

Drapp, B.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B.J. Luff, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens. Act. B 39(1–3), 277–282 (1997).

Ehrentreich-Förster, E.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58(58), 287–307 (2014).
[PubMed]

Estevez, M. C.

M. C. Estevez, M. Alvarez, and M. L. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).

Eter, A. E.

Fabricius, N.

Fan, D.

J. Zhang, Q. Song, H. Tian, X. Zhang, H. Wu, J. Wang, C. Yu, G. Li, D. Fan, and P. Yuan, “A double-ring Mach–Zehnder interferometer sensor with high sensitivity,” J. Phys. D Appl. Phys. 45(45), 1–5 (2012).

Fichard, A.

F. Delacoux, A. Fichard, C. Geourjon, R. Garrone, and F. Ruggiero, “Molecular Features of the Collagen V Heparin Binding Site,” J. Biol. Chem. 273(24), 15069–15076 (1998).
[PubMed]

Florer, J. B.

R. J. Wenstrup, J. B. Florer, E. W. Brunskill, S. M. Bell, I. Chervoneva, and D. E. Birk, “Type V collagen controls the initiation of Collagen Fibril Assembly,” J. Biol. Chem. 279(51), 53331–53337 (2004).
[PubMed]

Freeman, N. J.

S. Ricard-Blum, L. L. Peel, F. Ruggiero, and N. J. Freeman, “Dual polarization interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352(2), 252–259 (2006).
[PubMed]

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, “The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferom,” J. Phys. D Appl. Phys. 37(1), 74–80 (2004).

M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329(2), 190–198 (2004).
[PubMed]

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[PubMed]

Gan, Q.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[PubMed]

Gao, Y.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[PubMed]

Garrone, R.

F. Delacoux, A. Fichard, C. Geourjon, R. Garrone, and F. Ruggiero, “Molecular Features of the Collagen V Heparin Binding Site,” J. Biol. Chem. 273(24), 15069–15076 (1998).
[PubMed]

Gauglitz, G.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B.J. Luff, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens. Act. B 39(1–3), 277–282 (1997).

Geourjon, C.

F. Delacoux, A. Fichard, C. Geourjon, R. Garrone, and F. Ruggiero, “Molecular Features of the Collagen V Heparin Binding Site,” J. Biol. Chem. 273(24), 15069–15076 (1998).
[PubMed]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[PubMed]

Green, N. M.

N. M. Green, “Avidin,” Adv. Protein Chem. 29, 85–133 (1975).
[PubMed]

Griesser, H. J.

R. Méjard, H. J. Griesser, and B. Thierry, “Optical biosensing for label-free cellular studies,” Trends Analyt. Chem. 53, 178–186 (2014).

Grosjean, T.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Hammes, S. R.

S. R. Hammes, “The further redefining of steroid-mediated signaling,” Proc. Natl. Acad. Sci. U.S.A. 100(5), 2168–2170 (2003).
[PubMed]

He, L.

Q. Wang, R. Liu, X. Yang, K. Wang, J. Zhu, L. He, and Q. Li, “Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich,” Sens. Act. B 223, 613–620 (2016).

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[PubMed]

Hollenbach, U.

Homola, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Kekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Act. B 76(1–3), 8–12 (2001).

Huang, Y. C.

B. Y. Shew, C. H. Kou, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005).

Ilic, L. A.

G. S. Nikolic, M. D. Cakic, and L. A. Ilic, “Specific refractive index increments of insulin,” J. Serb. Chem. Soc. 66(6), 397–401 (2001).

Ingenhoff, J.

B. J. Luff, S. James Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated Optical Mach–Zehnder Biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998).

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B.J. Luff, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens. Act. B 39(1–3), 277–282 (1997).

Innone, F.

D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).

James Wilkinson, S.

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Act. B 12(3), 213–220 (1993).

Kato, M.

A. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, and M. H. Olsson, “Electrostatic Basis for Enzyme Catalysis,” Chem. Rev. 106(8), 3210–3235 (2006).
[PubMed]

Kehl, F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58(58), 287–307 (2014).
[PubMed]

Kekvindova, P.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Kekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Act. B 76(1–3), 8–12 (2001).

Kitsara, M.

Kong, X.

X. Kong, E. Li, K. Squire, Y. Liu, B. Wu, L. J. Cheng, and A. X. Wang, “Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing,” J. Biophotonics 10(11), 1473–1484 (2017).
[PubMed]

Kou, C. H.

B. Y. Shew, C. H. Kou, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005).

Kozma, P.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58(58), 287–307 (2014).
[PubMed]

Lao, A. I.

A. I. Lao, X. Su, and K. M. Aung, “SPR study of DNA hybridization with DNA and PNA probes under stringent conditions,” Biosens. Bioelectron. 24(6), 1717–1722 (2009).
[PubMed]

Lechuga, L.M.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L.M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Lechuga, M. L.

M. C. Estevez, M. Alvarez, and M. L. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).

Letartre, X.

Li, E.

X. Kong, E. Li, K. Squire, Y. Liu, B. Wu, L. J. Cheng, and A. X. Wang, “Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing,” J. Biophotonics 10(11), 1473–1484 (2017).
[PubMed]

Li, G.

J. Zhang, Q. Song, H. Tian, X. Zhang, H. Wu, J. Wang, C. Yu, G. Li, D. Fan, and P. Yuan, “A double-ring Mach–Zehnder interferometer sensor with high sensitivity,” J. Phys. D Appl. Phys. 45(45), 1–5 (2012).

Li, I. C.

W. C. Tsai and I. C. Li, “SPR-based immunosensor for determining staphylococcal enterotoxin A,” Sens. Act. B 136(1), 8–12 (2009).

Li, Q.

Q. Wang, R. Liu, X. Yang, K. Wang, J. Zhu, L. He, and Q. Li, “Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich,” Sens. Act. B 223, 613–620 (2016).

Liu, H.

A. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, and M. H. Olsson, “Electrostatic Basis for Enzyme Catalysis,” Chem. Rev. 106(8), 3210–3235 (2006).
[PubMed]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[PubMed]

Liu, R.

Q. Wang, R. Liu, X. Yang, K. Wang, J. Zhu, L. He, and Q. Li, “Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich,” Sens. Act. B 223, 613–620 (2016).

Liu, Y.

X. Kong, E. Li, K. Squire, Y. Liu, B. Wu, L. J. Cheng, and A. X. Wang, “Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing,” J. Biophotonics 10(11), 1473–1484 (2017).
[PubMed]

Llobera, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L.M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Lu, J. R.

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, “The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferom,” J. Phys. D Appl. Phys. 37(1), 74–80 (2004).

Luff, B. J.

Luff, B.J.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B.J. Luff, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens. Act. B 39(1–3), 277–282 (1997).

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Makarona, E.

Malmqvist, M.

M. Malmqvist, “Biospecific interaction analysis using biosensor technology,” Nature 361(6408), 186–187 (1993).
[PubMed]

Méjard, R.

R. Méjard, H. J. Griesser, and B. Thierry, “Optical biosensing for label-free cellular studies,” Trends Analyt. Chem. 53, 178–186 (2014).

Misiakos, K.

Montoya, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L.M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Nikolic, G. S.

G. S. Nikolic, M. D. Cakic, and L. A. Ilic, “Specific refractive index increments of insulin,” J. Serb. Chem. Soc. 66(6), 397–401 (2001).

Oliver, K.

H. Berney and K. Oliver, “Dual polarization interferometry size and density characterisation of DNA immobilisation and hybridisation,” Biosens. Bioelectron. 21(4), 618–626 (2005).
[PubMed]

Olsson, M. H.

A. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, and M. H. Olsson, “Electrostatic Basis for Enzyme Catalysis,” Chem. Rev. 106(8), 3210–3235 (2006).
[PubMed]

Ottl, J.

K. E. Coan, M. J. Swann, and J. Ottl, “Measurement and Differentiation of Ligand-Induced Calmodulin Conformations by Dual Polarization Interferometry,” Anal. Chem. 84(3), 1586–1591 (2012).
[PubMed]

Oulton, R. F.

G. Bartal, R. F. Oulton, V. J. Sorger, and X. Zhang, “A Hybrid Plasmonic waveguide for Subwavelength Confinement and Long Range Propagation,” Nat. Photonics 2(8), 496–500 (2008).

Peel, L. L.

S. Ricard-Blum, L. L. Peel, F. Ruggiero, and N. J. Freeman, “Dual polarization interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352(2), 252–259 (2006).
[PubMed]

M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329(2), 190–198 (2004).
[PubMed]

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, “The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferom,” J. Phys. D Appl. Phys. 37(1), 74–80 (2004).

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[PubMed]

Perotto, S.

A. Bozzola, S. Perotto, and F. De Angelis, “Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review,” Analyst (Lond.) 142(6), 883–898 (2017).
[PubMed]

Piehler, J.

B. J. Luff, S. James Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated Optical Mach–Zehnder Biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998).

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B.J. Luff, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens. Act. B 39(1–3), 277–282 (1997).

Popplewell, J. F.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[PubMed]

Prieto, F.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L.M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Raptis, I.

Reeves, A.

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, “The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferom,” J. Phys. D Appl. Phys. 37(1), 74–80 (2004).

Reeves, A. A.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[PubMed]

Ricard-Blum, S.

S. Ricard-Blum, L. L. Peel, F. Ruggiero, and N. J. Freeman, “Dual polarization interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352(2), 252–259 (2006).
[PubMed]

Ruggiero, F.

S. Ricard-Blum, L. L. Peel, F. Ruggiero, and N. J. Freeman, “Dual polarization interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352(2), 252–259 (2006).
[PubMed]

F. Delacoux, A. Fichard, C. Geourjon, R. Garrone, and F. Ruggiero, “Molecular Features of the Collagen V Heparin Binding Site,” J. Biol. Chem. 273(24), 15069–15076 (1998).
[PubMed]

Schrofel, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Kekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Act. B 76(1–3), 8–12 (2001).

Sepulveda, B.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L.M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Sharma, P. K.

A. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, and M. H. Olsson, “Electrostatic Basis for Enzyme Catalysis,” Chem. Rev. 106(8), 3210–3235 (2006).
[PubMed]

Shew, B. Y.

B. Y. Shew, C. H. Kou, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005).

Skalsky, M.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Kekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Act. B 76(1–3), 8–12 (2001).

Skvor, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Kekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Act. B 76(1–3), 8–12 (2001).

Song, Q.

J. Zhang, Q. Song, H. Tian, X. Zhang, H. Wu, J. Wang, C. Yu, G. Li, D. Fan, and P. Yuan, “A double-ring Mach–Zehnder interferometer sensor with high sensitivity,” J. Phys. D Appl. Phys. 45(45), 1–5 (2012).

Sorger, V. J.

G. Bartal, R. F. Oulton, V. J. Sorger, and X. Zhang, “A Hybrid Plasmonic waveguide for Subwavelength Confinement and Long Range Propagation,” Nat. Photonics 2(8), 496–500 (2008).

Spirkova, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Kekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Act. B 76(1–3), 8–12 (2001).

Squire, K.

X. Kong, E. Li, K. Squire, Y. Liu, B. Wu, L. J. Cheng, and A. X. Wang, “Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing,” J. Biophotonics 10(11), 1473–1484 (2017).
[PubMed]

Stamm, C.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58(58), 287–307 (2014).
[PubMed]

Su, X.

A. I. Lao, X. Su, and K. M. Aung, “SPR study of DNA hybridization with DNA and PNA probes under stringent conditions,” Biosens. Bioelectron. 24(6), 1717–1722 (2009).
[PubMed]

Swann, M. J.

K. E. Coan, M. J. Swann, and J. Ottl, “Measurement and Differentiation of Ligand-Induced Calmodulin Conformations by Dual Polarization Interferometry,” Anal. Chem. 84(3), 1586–1591 (2012).
[PubMed]

M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329(2), 190–198 (2004).
[PubMed]

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, “The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferom,” J. Phys. D Appl. Phys. 37(1), 74–80 (2004).

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[PubMed]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[PubMed]

Thierry, B.

R. Méjard, H. J. Griesser, and B. Thierry, “Optical biosensing for label-free cellular studies,” Trends Analyt. Chem. 53, 178–186 (2014).

Tian, H.

J. Zhang, Q. Song, H. Tian, X. Zhang, H. Wu, J. Wang, C. Yu, G. Li, D. Fan, and P. Yuan, “A double-ring Mach–Zehnder interferometer sensor with high sensitivity,” J. Phys. D Appl. Phys. 45(45), 1–5 (2012).

Tsai, W. C.

W. C. Tsai and I. C. Li, “SPR-based immunosensor for determining staphylococcal enterotoxin A,” Sens. Act. B 136(1), 8–12 (2009).

Tsai, Y. H.

B. Y. Shew, C. H. Kou, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005).

Vaidyanathan, V. G.

L. Xu, V. G. Vaidyanathan, and B. P. Cho, “Real-time surface plasmon resonance study of biomolecular interactions between polymerase and bulky mutagenic DNA lesions,” Chem. Res. Toxicol. 27(10), 1796–1807 (2014).
[PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Veer, F. A.

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface,” Biopolymers 17(7), 1759–1772 (1978).

Viktorovitch, P.

Wang, A. X.

X. Kong, E. Li, K. Squire, Y. Liu, B. Wu, L. J. Cheng, and A. X. Wang, “Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing,” J. Biophotonics 10(11), 1473–1484 (2017).
[PubMed]

Wang, J.

J. Zhang, Q. Song, H. Tian, X. Zhang, H. Wu, J. Wang, C. Yu, G. Li, D. Fan, and P. Yuan, “A double-ring Mach–Zehnder interferometer sensor with high sensitivity,” J. Phys. D Appl. Phys. 45(45), 1–5 (2012).

Wang, K.

Q. Wang, R. Liu, X. Yang, K. Wang, J. Zhu, L. He, and Q. Li, “Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich,” Sens. Act. B 223, 613–620 (2016).

Wang, Q.

Q. Wang, R. Liu, X. Yang, K. Wang, J. Zhu, L. He, and Q. Li, “Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich,” Sens. Act. B 223, 613–620 (2016).

Warshel, A.

A. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, and M. H. Olsson, “Electrostatic Basis for Enzyme Catalysis,” Chem. Rev. 106(8), 3210–3235 (2006).
[PubMed]

Wen, J.

J. Wen and T. Arakawa, “Refractive index of proteins in aqueous sodium chloride,” Anal. Biochem. 280(2), 327–329 (2000).
[PubMed]

Wenstrup, R. J.

R. J. Wenstrup, J. B. Florer, E. W. Brunskill, S. M. Bell, I. Chervoneva, and D. E. Birk, “Type V collagen controls the initiation of Collagen Fibril Assembly,” J. Biol. Chem. 279(51), 53331–53337 (2004).
[PubMed]

Wilson, W. D.

T. M. Davis and W. D. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284(2), 348–353 (2000).
[PubMed]

Wu, B.

X. Kong, E. Li, K. Squire, Y. Liu, B. Wu, L. J. Cheng, and A. X. Wang, “Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing,” J. Biophotonics 10(11), 1473–1484 (2017).
[PubMed]

Wu, H.

J. Zhang, Q. Song, H. Tian, X. Zhang, H. Wu, J. Wang, C. Yu, G. Li, D. Fan, and P. Yuan, “A double-ring Mach–Zehnder interferometer sensor with high sensitivity,” J. Phys. D Appl. Phys. 45(45), 1–5 (2012).

Xiang, Y.

A. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, and M. H. Olsson, “Electrostatic Basis for Enzyme Catalysis,” Chem. Rev. 106(8), 3210–3235 (2006).
[PubMed]

Xin, Z.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[PubMed]

Xu, L.

L. Xu, V. G. Vaidyanathan, and B. P. Cho, “Real-time surface plasmon resonance study of biomolecular interactions between polymerase and bulky mutagenic DNA lesions,” Chem. Res. Toxicol. 27(10), 1796–1807 (2014).
[PubMed]

Yang, X.

Q. Wang, R. Liu, X. Yang, K. Wang, J. Zhu, L. He, and Q. Li, “Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich,” Sens. Act. B 223, 613–620 (2016).

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Act. B 12(3), 213–220 (1993).

Yu, C.

J. Zhang, Q. Song, H. Tian, X. Zhang, H. Wu, J. Wang, C. Yu, G. Li, D. Fan, and P. Yuan, “A double-ring Mach–Zehnder interferometer sensor with high sensitivity,” J. Phys. D Appl. Phys. 45(45), 1–5 (2012).

Yuan, P.

J. Zhang, Q. Song, H. Tian, X. Zhang, H. Wu, J. Wang, C. Yu, G. Li, D. Fan, and P. Yuan, “A double-ring Mach–Zehnder interferometer sensor with high sensitivity,” J. Phys. D Appl. Phys. 45(45), 1–5 (2012).

Zhang, J.

J. Zhang, Q. Song, H. Tian, X. Zhang, H. Wu, J. Wang, C. Yu, G. Li, D. Fan, and P. Yuan, “A double-ring Mach–Zehnder interferometer sensor with high sensitivity,” J. Phys. D Appl. Phys. 45(45), 1–5 (2012).

Zhang, X.

J. Zhang, Q. Song, H. Tian, X. Zhang, H. Wu, J. Wang, C. Yu, G. Li, D. Fan, and P. Yuan, “A double-ring Mach–Zehnder interferometer sensor with high sensitivity,” J. Phys. D Appl. Phys. 45(45), 1–5 (2012).

G. Bartal, R. F. Oulton, V. J. Sorger, and X. Zhang, “A Hybrid Plasmonic waveguide for Subwavelength Confinement and Long Range Propagation,” Nat. Photonics 2(8), 496–500 (2008).

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Zhu, J.

Q. Wang, R. Liu, X. Yang, K. Wang, J. Zhu, L. He, and Q. Li, “Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich,” Sens. Act. B 223, 613–620 (2016).

ACS Nano (1)

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for Ultrasensitive On-Chip Biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[PubMed]

Adv. Protein Chem. (1)

N. M. Green, “Avidin,” Adv. Protein Chem. 29, 85–133 (1975).
[PubMed]

Anal. Biochem. (4)

S. Ricard-Blum, L. L. Peel, F. Ruggiero, and N. J. Freeman, “Dual polarization interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352(2), 252–259 (2006).
[PubMed]

M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329(2), 190–198 (2004).
[PubMed]

J. Wen and T. Arakawa, “Refractive index of proteins in aqueous sodium chloride,” Anal. Biochem. 280(2), 327–329 (2000).
[PubMed]

T. M. Davis and W. D. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284(2), 348–353 (2000).
[PubMed]

Anal. Chem. (1)

K. E. Coan, M. J. Swann, and J. Ottl, “Measurement and Differentiation of Ligand-Induced Calmodulin Conformations by Dual Polarization Interferometry,” Anal. Chem. 84(3), 1586–1591 (2012).
[PubMed]

Analyst (Lond.) (1)

A. Bozzola, S. Perotto, and F. De Angelis, “Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review,” Analyst (Lond.) 142(6), 883–898 (2017).
[PubMed]

Biopolymers (1)

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface,” Biopolymers 17(7), 1759–1772 (1978).

Biosens. Bioelectron. (4)

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[PubMed]

H. Berney and K. Oliver, “Dual polarization interferometry size and density characterisation of DNA immobilisation and hybridisation,” Biosens. Bioelectron. 21(4), 618–626 (2005).
[PubMed]

A. I. Lao, X. Su, and K. M. Aung, “SPR study of DNA hybridization with DNA and PNA probes under stringent conditions,” Biosens. Bioelectron. 24(6), 1717–1722 (2009).
[PubMed]

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58(58), 287–307 (2014).
[PubMed]

Chem. Res. Toxicol. (1)

L. Xu, V. G. Vaidyanathan, and B. P. Cho, “Real-time surface plasmon resonance study of biomolecular interactions between polymerase and bulky mutagenic DNA lesions,” Chem. Res. Toxicol. 27(10), 1796–1807 (2014).
[PubMed]

Chem. Rev. (1)

A. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, and M. H. Olsson, “Electrostatic Basis for Enzyme Catalysis,” Chem. Rev. 106(8), 3210–3235 (2006).
[PubMed]

J. Biol. Chem. (2)

R. J. Wenstrup, J. B. Florer, E. W. Brunskill, S. M. Bell, I. Chervoneva, and D. E. Birk, “Type V collagen controls the initiation of Collagen Fibril Assembly,” J. Biol. Chem. 279(51), 53331–53337 (2004).
[PubMed]

F. Delacoux, A. Fichard, C. Geourjon, R. Garrone, and F. Ruggiero, “Molecular Features of the Collagen V Heparin Binding Site,” J. Biol. Chem. 273(24), 15069–15076 (1998).
[PubMed]

J. Biophotonics (1)

X. Kong, E. Li, K. Squire, Y. Liu, B. Wu, L. J. Cheng, and A. X. Wang, “Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing,” J. Biophotonics 10(11), 1473–1484 (2017).
[PubMed]

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (2)

G. H. Cross, A. Reeves, S. Brand, M. J. Swann, L. L. Peel, N. J. Freeman, and J. R. Lu, “The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferom,” J. Phys. D Appl. Phys. 37(1), 74–80 (2004).

J. Zhang, Q. Song, H. Tian, X. Zhang, H. Wu, J. Wang, C. Yu, G. Li, D. Fan, and P. Yuan, “A double-ring Mach–Zehnder interferometer sensor with high sensitivity,” J. Phys. D Appl. Phys. 45(45), 1–5 (2012).

J. Serb. Chem. Soc. (1)

G. S. Nikolic, M. D. Cakic, and L. A. Ilic, “Specific refractive index increments of insulin,” J. Serb. Chem. Soc. 66(6), 397–401 (2001).

Laser Photonics Rev. (1)

M. C. Estevez, M. Alvarez, and M. L. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).

Nanotechnology (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L.M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Nat. Mater. (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[PubMed]

Nat. Photonics (1)

G. Bartal, R. F. Oulton, V. J. Sorger, and X. Zhang, “A Hybrid Plasmonic waveguide for Subwavelength Confinement and Long Range Propagation,” Nat. Photonics 2(8), 496–500 (2008).

Nat. Rev. Drug Discov. (1)

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515–528 (2002).
[PubMed]

Nature (1)

M. Malmqvist, “Biospecific interaction analysis using biosensor technology,” Nature 361(6408), 186–187 (1993).
[PubMed]

Opt. Express (3)

Opt. Laser Technol. (1)

D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).

Proc. Natl. Acad. Sci. U.S.A. (1)

S. R. Hammes, “The further redefining of steroid-mediated signaling,” Proc. Natl. Acad. Sci. U.S.A. 100(5), 2168–2170 (2003).
[PubMed]

Sens. Act. A (1)

B. Y. Shew, C. H. Kou, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005).

Sens. Act. B (5)

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B.J. Luff, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens. Act. B 39(1–3), 277–282 (1997).

Q. Wang, R. Liu, X. Yang, K. Wang, J. Zhu, L. He, and Q. Li, “Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich,” Sens. Act. B 223, 613–620 (2016).

W. C. Tsai and I. C. Li, “SPR-based immunosensor for determining staphylococcal enterotoxin A,” Sens. Act. B 136(1), 8–12 (2009).

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Act. B 12(3), 213–220 (1993).

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Kekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Act. B 76(1–3), 8–12 (2001).

Sensors (Basel) (1)

F. Dell’Olio, D. Conteduca, M. De Palo, and C. Ciminelli, “Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform,” Sensors (Basel) 17(8), 1810 (2017).
[PubMed]

Thin Solid Films (1)

H. Awrin, “Ellipsometry on thin organic layers of biological interest: characterization and applications,” Thin Solid Films 377, 48–56 (2002).

Trends Analyt. Chem. (1)

R. Méjard, H. J. Griesser, and B. Thierry, “Optical biosensing for label-free cellular studies,” Trends Analyt. Chem. 53, 178–186 (2014).

Other (5)

D. Nelson and M. Cox, Lehninger Principles of Biochemistry (W.H. Freeman and Company 2005).

F. Ye, Label-Free Biosensor Methods in Drug Discovery (Springer, 2015)

R. Lide David Handbook of Chemistry and Physics (CRC 2008).

CF Bohren and DR Huffman. Absorption and Scattering of Light by Small Particle (Wiley 1983)

http://www.bellexinternational.com/products/cytop/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) Schematic of HP waveguide (b) Cross-section view of the DPHP waveguide filled by test liquid. The widths of Si core and lateral slot are denoted as wsi and wslot, respectively. The heights of silver cladding, Si core and upper slot are defined as hAg, hsi and hslot, respectively. (c) field profiles of the HP waveguide.
Fig. 2
Fig. 2 The effective mode index neff dependent on the width of Si core wsi and the dimension of lateral slots wslot, with adopted hsi = 320nm and hslot = 80nm. (a) for TE mode and (b) for TM mode.
Fig. 3
Fig. 3 The effective mode index neff dependent on the height of Si core hsi and the dimension of upper slot hslot, with fixed wsi = 550nm and wslot = 50nm. (a) for TE mode and (b) for TM mode.
Fig. 4
Fig. 4 The width of Si core wsi and the dimension of vertical slots wslot influence on the mode propagation loss, with adopted hsi = 320nm and hslot = 80nm. (a) for TE mode and (b) for TM mode.
Fig. 5
Fig. 5 The height of Si core hsi and the dimension of horizontal slot hslot effect on the mode propagation loss, with adopted wsi = 550nm and wslot = 50nm. (a) for TE mode and (b) for TM mode.
Fig. 6
Fig. 6 (a) 3D schematic structure of integrated MZI with 71μm in length (L) and 20μm in width (wL), with identical length Lm = 20μm in sensing and reference arms and separated by the distance D = 11.5μm, with S-shaped bent wires of bending radius of 19.5μm (r0 = 19.5μm). (b) the structure of HP waveguide coupled in sensing arm of MZI. Geometrical parameters are set: l = 10μm, w = 6.5μm, wsi = 550nm, hsi = 320nm, wslot = 50nm,hslot = 80nm and hAg = 3μm. (c) cross-section view of HP waveguide in sensing area.
Fig. 7
Fig. 7 Schematic representation [30] of the surface structure obtained during the course of the molecular event. (a) streptavidin immobilization. (b) Biotinylated heparin capture. (c) HepV binding with heparin. (d) Loss of streptavidin during injection of HepV.
Fig. 8
Fig. 8 Simulation results of HepV-heparin binding event at wavelength spanning 1.285µm λ 1.315µm for TE mode (a) and TM mode (b) respectively. A plot of wavelength versus effective mode index provides a representation of each step.
Fig. 9
Fig. 9 Simulation results of effective mode refractive indices in reference arm at wavelength spanning 1.285µm λ 1.315µm for TE mode (a) and TM mode (b) respectively.
Fig. 10
Fig. 10 Output spectrum of Hep V-heparin binding event for TE mode (a). and for TM mode (b).
Fig. 11
Fig. 11 Partial derivative of the transmission versus bulk index at λ = 1.296μm for TE mode(a) and at λ = 1.312μm for TM mode.
Fig. 12
Fig. 12 Partial derivative of the transmission versus adlayer index at λ = 1.296μm for TE mode(a) and at λ = 1.312μm for TM mode.
Fig. 13
Fig. 13 Partial derivative of the transmission versus adlayer thickness at λ = 1.296mm for TE mode(a) and at λ = 1.312μm for TM mode.

Tables (1)

Tables Icon

Table 1 Observed layer characteristics [36] of thickness a and refractive index nl during the whole process. Calculated solution refractive index ns in each step by equation nl = 0.52*(np – ns) + ns.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ε= ε ω p 2 ω 2 +jωγ
I out cos(ΔΦ)
ΔΦ= 2πL λ ( n eff_s_i n eff_r_i ) (i=TE,TM)
S n s _i = T n s = T λ . λ n eff_s_i n eff_s_i n s ( i = TE, TM )
S n l _i = T n l = T λ . λ n eff_s_i n eff_s_i n l ( i = TE, TM )
S n l _i = T a = T λ . λ n eff_s_i n eff_s_i a ( i = TE, TM )
ΔT(λ, n s, n l ,a)_i= T n s Δ n s + T n l Δ n l + T a Δa ( i = TE, TM )
ΔT(λ, n s, n l ,a)_i= T λ λ n eff_s_i Δ n eff_s_i ( i = TE, TM )
Δ n eff_s_i =( n eff_s_i n s Δ n s + n eff_s_i n l Δ n l + n eff_s_i a Δa ) ( i = TE, TM )
T λ sin(ΔΦ) Δ λ
ΔΦ λ =2πL λ ( n eff_s_i n eff_r_i λ ) ( i = TE, TM )
[ Δ T _TE Δ T _TM ]=[ T _TE n s T _TM n s T _TE n l T _TM n l T _TE a T _TM a ][ Δ n s Δ n l Δa ]
[ Δ T _TE Δ T _TM ]=[ T _T E * n l T _TE a T _T M * n l T _TM a ][ Δ n l Δa ]

Metrics