Abstract

Benefiting from both Brillouin amplitude and phase spectral responses during Brillouin scattering, a support vector machine (SVM) assisted Brillouin optical time domain analyzer (BOTDA) enabling the improvement of sensing accuracy with only a slight sacrifice of processing speed has been proposed and demonstrated. Only one SVM model, i.e. SVM-(g + p), is required to effectively combine the Brillouin gain and phase information in the training and testing phases, which avoids separate Brillouin gain spectrum (BGS) and Brillouin phase spectrum (BPS) fitting, and hence saves the processing time. Both simulation and experiments using different parameters were conducted to evaluate the improved performance of SVM-(g + p). Compared with the case of using BGS only or BPS only, SVM assisted BOTDA using combined BGS and BPS enhances the accuracy of temperature extraction by about 30% over a wide range of simulation and experiment parameters, only at a slight expense of the processing speed. Although the processing of both gain and phase information takes extra time, SVM-(g + p) assisted BOTDA still has a processing speed 80 times faster than that of using a conventional curve fitting method like Lorentzian curve fitting (LCF). The improved accuracy, together with fast processing speed, is crucial for future high-speed and accurate BOTDA sensors based on both Brillouin gain and phase detection.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deep neural networks assisted BOTDA for simultaneous temperature and strain measurement with enhanced accuracy

Biwei Wang, Liang Wang, Nan Guo, Zhiyong Zhao, Changyuan Yu, and Chao Lu
Opt. Express 27(3) 2530-2543 (2019)

Signal processing using artificial neural network for BOTDA sensor system

Abul Kalam Azad, Liang Wang, Nan Guo, Hwa-Yaw Tam, and Chao Lu
Opt. Express 24(6) 6769-6782 (2016)

Mitigating the effects of the gain-dependence of the Brillouin line-shape on dynamic BOTDA sensing methods

Avi Motil, Roy Davidi, Raanan Hadar, and Moshe Tur
Opt. Express 25(19) 22206-22218 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
    [PubMed]
  2. L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives,” Front. Optoelectron. 3(1), 13–21 (2010).
  3. A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
    [PubMed]
  4. C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).
  5. A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
    [PubMed]
  6. Y. Dong, C. Liang, and X. Bao, “Extending the Sensing Range of Brillouin Optical Time-Domain Analysis Combining Frequency-Division Multiplexing and In-Line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
  7. F. Wang, W. Zhan, Y. Lu, Z. Yan, and X. Zhang, “Determining the Change of Brillouin Frequency Shift by Using the Similarity Matching Method,” IEEE/OSA J. Lightw. Technol. 33(19), 4101–4108 (2015).
  8. H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-Based BOTDA Using Optical Comb Pump and Pulse Coding with a Single Laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
  9. Y. Dang, Z. Zhao, M. Tang, C. Zhao, L. Gan, S. Fu, T. Liu, W. Tong, P. P. Shum, and D. Liu, “Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber,” Opt. Express 25(17), 20183–20193 (2017).
    [PubMed]
  10. S. Diakaridia, Y. Pan, P. Xu, D. Zhou, B. Wang, L. Teng, Z. Lu, D. Ba, and Y. Dong, “Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum,” Opt. Express 25(15), 17727–17736 (2017).
    [PubMed]
  11. A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, “Resolving 1 million sensing points in an optimized differential time-domain Brillouin sensor,” Opt. Lett. 42(10), 1903–1906 (2017).
    [PubMed]
  12. R. W. Boyd, Nonlinear Optics, 3rd ed. Singapore: Academic, (2007).
  13. A. Zornoza, M. Sagues, and A. Loayssa, “Self-heterodyne detection for SNR improvement and distributed phase-shift measurements in BOTDA,” J. Lightwave Technol. 30(8), 1066–1072 (2012).
  14. X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).
  15. X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-López, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and G. -Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).
  16. A. Lopez-Gil, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simple baseband method for the distributed analysis of Brillouin phase-shift spectra,” IEEE Photonics Technol. Lett. 28(13), 1379–1382 (2016).
  17. Z. Li, L. Yan, L. Shao, W. Pan, B. Luo, J. Liang, H. He, and Y. Zhang, “Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation,” Opt. Express 24(5), 4824–4833 (2016).
    [PubMed]
  18. C. Zhao, M. Tang, L. Wang, H. Wu, Z. Zhao, Y. Dang, J. Wu, S. Fu, D. Liu, and P. P. Shum, “BOTDA using channel estimation with direct-detection optical OFDM technique,” Opt. Express 25(11), 12698–12709 (2017).
    [PubMed]
  19. C. Jin, L. Wang, Y. Chen, N. Guo, W. Chung, H. Au, Z. Li, H. Y. Tam, and C. Lu, “Single-measurement digital optical frequency comb based phase-detection Brillouin optical time domain analyzer,” Opt. Express 25(8), 9213–9224 (2017).
    [PubMed]
  20. D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25(3), 1889–1902 (2017).
  21. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
  22. C. Li and Y. Li, “Fitting of Brillouin spectrum based on LabVIEW,” Proc. 5th Int. Conf. Wireless Commun., Netw. Mobile Comput.,1–4 (2009).
  23. C. Zhang, Y. Yang, and A. Li, “Application of Levenberg–Marquardt algorithm in the Brillouin spectrum fitting,” Proc. SPIE 7129, 71291Y (2008).
  24. X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24(8), 510–512 (1999).
    [PubMed]
  25. G. A. Ferrier, S. Afshar, X. Bao, and L. Chen, “A new fitting method for spectral characterization of Brillouin-based distributed sensors,” Applications of Photonic Technology 5260, 512–515 (2003).
  26. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [PubMed]
  27. A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
    [PubMed]
  28. M. A. Farahani, E. Castillo-Guerra, and B. G. Colpitts, “A Detailed Evaluation of the Correlation-Based Method Used for Estimation of the Brillouin Frequency Shift in BOTDA Sensors,” IEEE Sens. J. 13(12), 4589–4598 (2013).
  29. H. Wu, L. Wang, N. Guo, C. Shu, and C. Lu, “Brillouin optical time domain analyzer assisted by support vector machine for ultrafast temperature extraction,” J. Lightwave Technol. 35(19), 4159–4167 (2017).
  30. C. W. Hsu and C. J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE Trans. Neural Netw. 13(2), 415–425 (2002).
    [PubMed]
  31. A. K. Azad, L. Wang, N. Guo, H. Y. Tam, and C. Lu, “Temperature sensing in BOTDA system by using artificial neural network,” Electron. Lett. 51(20), 1578–1580 (2015).
  32. A. K. Azad, L. Wang, N. Guo, H. Y. Tam, and C. Lu, “Signal processing using artificial neural network for BOTDA sensor system,” Opt. Express 24(6), 6769–6782 (2016).
    [PubMed]

2017 (8)

C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).

Y. Dang, Z. Zhao, M. Tang, C. Zhao, L. Gan, S. Fu, T. Liu, W. Tong, P. P. Shum, and D. Liu, “Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber,” Opt. Express 25(17), 20183–20193 (2017).
[PubMed]

S. Diakaridia, Y. Pan, P. Xu, D. Zhou, B. Wang, L. Teng, Z. Lu, D. Ba, and Y. Dong, “Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum,” Opt. Express 25(15), 17727–17736 (2017).
[PubMed]

A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, “Resolving 1 million sensing points in an optimized differential time-domain Brillouin sensor,” Opt. Lett. 42(10), 1903–1906 (2017).
[PubMed]

C. Zhao, M. Tang, L. Wang, H. Wu, Z. Zhao, Y. Dang, J. Wu, S. Fu, D. Liu, and P. P. Shum, “BOTDA using channel estimation with direct-detection optical OFDM technique,” Opt. Express 25(11), 12698–12709 (2017).
[PubMed]

C. Jin, L. Wang, Y. Chen, N. Guo, W. Chung, H. Au, Z. Li, H. Y. Tam, and C. Lu, “Single-measurement digital optical frequency comb based phase-detection Brillouin optical time domain analyzer,” Opt. Express 25(8), 9213–9224 (2017).
[PubMed]

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25(3), 1889–1902 (2017).

H. Wu, L. Wang, N. Guo, C. Shu, and C. Lu, “Brillouin optical time domain analyzer assisted by support vector machine for ultrafast temperature extraction,” J. Lightwave Technol. 35(19), 4159–4167 (2017).

2016 (7)

A. K. Azad, L. Wang, N. Guo, H. Y. Tam, and C. Lu, “Signal processing using artificial neural network for BOTDA sensor system,” Opt. Express 24(6), 6769–6782 (2016).
[PubMed]

A. Lopez-Gil, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simple baseband method for the distributed analysis of Brillouin phase-shift spectra,” IEEE Photonics Technol. Lett. 28(13), 1379–1382 (2016).

Z. Li, L. Yan, L. Shao, W. Pan, B. Luo, J. Liang, H. He, and Y. Zhang, “Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation,” Opt. Express 24(5), 4824–4833 (2016).
[PubMed]

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[PubMed]

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[PubMed]

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-Based BOTDA Using Optical Comb Pump and Pulse Coding with a Single Laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[PubMed]

2015 (3)

F. Wang, W. Zhan, Y. Lu, Z. Yan, and X. Zhang, “Determining the Change of Brillouin Frequency Shift by Using the Similarity Matching Method,” IEEE/OSA J. Lightw. Technol. 33(19), 4101–4108 (2015).

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-López, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and G. -Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).

A. K. Azad, L. Wang, N. Guo, H. Y. Tam, and C. Lu, “Temperature sensing in BOTDA system by using artificial neural network,” Electron. Lett. 51(20), 1578–1580 (2015).

2014 (1)

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).

2013 (2)

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[PubMed]

M. A. Farahani, E. Castillo-Guerra, and B. G. Colpitts, “A Detailed Evaluation of the Correlation-Based Method Used for Estimation of the Brillouin Frequency Shift in BOTDA Sensors,” IEEE Sens. J. 13(12), 4589–4598 (2013).

2012 (3)

2010 (1)

L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives,” Front. Optoelectron. 3(1), 13–21 (2010).

2008 (1)

C. Zhang, Y. Yang, and A. Li, “Application of Levenberg–Marquardt algorithm in the Brillouin spectrum fitting,” Proc. SPIE 7129, 71291Y (2008).

2003 (1)

G. A. Ferrier, S. Afshar, X. Bao, and L. Chen, “A new fitting method for spectral characterization of Brillouin-based distributed sensors,” Applications of Photonic Technology 5260, 512–515 (2003).

2002 (1)

C. W. Hsu and C. J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE Trans. Neural Netw. 13(2), 415–425 (2002).
[PubMed]

1999 (1)

1997 (1)

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).

Afshar, S.

G. A. Ferrier, S. Afshar, X. Bao, and L. Chen, “A new fitting method for spectral characterization of Brillouin-based distributed sensors,” Applications of Photonic Technology 5260, 512–515 (2003).

Andres, M. V.

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-López, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and G. -Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).

Angulo-Vinuesa, X.

A. Lopez-Gil, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simple baseband method for the distributed analysis of Brillouin phase-shift spectra,” IEEE Photonics Technol. Lett. 28(13), 1379–1382 (2016).

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[PubMed]

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-López, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and G. -Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).

Ao, L.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-Based BOTDA Using Optical Comb Pump and Pulse Coding with a Single Laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).

Au, H.

Azad, A. K.

A. K. Azad, L. Wang, N. Guo, H. Y. Tam, and C. Lu, “Signal processing using artificial neural network for BOTDA sensor system,” Opt. Express 24(6), 6769–6782 (2016).
[PubMed]

A. K. Azad, L. Wang, N. Guo, H. Y. Tam, and C. Lu, “Temperature sensing in BOTDA system by using artificial neural network,” Electron. Lett. 51(20), 1578–1580 (2015).

Ba, D.

Bao, X.

X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[PubMed]

Y. Dong, C. Liang, and X. Bao, “Extending the Sensing Range of Brillouin Optical Time-Domain Analysis Combining Frequency-Division Multiplexing and In-Line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).

G. A. Ferrier, S. Afshar, X. Bao, and L. Chen, “A new fitting method for spectral characterization of Brillouin-based distributed sensors,” Applications of Photonic Technology 5260, 512–515 (2003).

X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24(8), 510–512 (1999).
[PubMed]

Barrias, A.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[PubMed]

Brown, A.

Casas, J. R.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[PubMed]

Castillo-Guerra, E.

M. A. Farahani, E. Castillo-Guerra, and B. G. Colpitts, “A Detailed Evaluation of the Correlation-Based Method Used for Estimation of the Brillouin Frequency Shift in BOTDA Sensors,” IEEE Sens. J. 13(12), 4589–4598 (2013).

Chang, H.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-Based BOTDA Using Optical Comb Pump and Pulse Coding with a Single Laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).

Chen, L.

X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[PubMed]

G. A. Ferrier, S. Afshar, X. Bao, and L. Chen, “A new fitting method for spectral characterization of Brillouin-based distributed sensors,” Applications of Photonic Technology 5260, 512–515 (2003).

Chen, M.

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).

Chen, W.

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).

Chen, Y.

Chung, W.

Colpitts, B. G.

M. A. Farahani, E. Castillo-Guerra, and B. G. Colpitts, “A Detailed Evaluation of the Correlation-Based Method Used for Estimation of the Brillouin Frequency Shift in BOTDA Sensors,” IEEE Sens. J. 13(12), 4589–4598 (2013).

Cruz, J. L.

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-López, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and G. -Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).

Dang, Y.

Demerchant, M.

Diakaridia, S.

Dominguez-Lopez, A.

Dominguez-López, A.

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-López, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and G. -Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).

Dong, Y.

Farahani, M. A.

M. A. Farahani, E. Castillo-Guerra, and B. G. Colpitts, “A Detailed Evaluation of the Correlation-Based Method Used for Estimation of the Brillouin Frequency Shift in BOTDA Sensors,” IEEE Sens. J. 13(12), 4589–4598 (2013).

Ferrier, G. A.

G. A. Ferrier, S. Afshar, X. Bao, and L. Chen, “A new fitting method for spectral characterization of Brillouin-based distributed sensors,” Applications of Photonic Technology 5260, 512–515 (2003).

Fu, S.

Gan, L.

Gonzalez-Herraez, M.

Guo, N.

He, H.

-Herraez, G.

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-López, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and G. -Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).

Hong, C.

C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).

Hsu, C. W.

C. W. Hsu and C. J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE Trans. Neural Netw. 13(2), 415–425 (2002).
[PubMed]

Ji, X.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-Based BOTDA Using Optical Comb Pump and Pulse Coding with a Single Laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).

Jia, X.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-Based BOTDA Using Optical Comb Pump and Pulse Coding with a Single Laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).

Jiang, T.

Jin, C.

Li, A.

C. Zhang, Y. Yang, and A. Li, “Application of Levenberg–Marquardt algorithm in the Brillouin spectrum fitting,” Proc. SPIE 7129, 71291Y (2008).

Li, G.

C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).

Li, H.

Li, Z.

Liang, C.

Liang, J.

Lin, C. J.

C. W. Hsu and C. J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE Trans. Neural Netw. 13(2), 415–425 (2002).
[PubMed]

Liu, D.

Liu, T.

Liu, Z.

C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).

Loayssa, A.

Lopez-Gil, A.

A. Lopez-Gil, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simple baseband method for the distributed analysis of Brillouin phase-shift spectra,” IEEE Photonics Technol. Lett. 28(13), 1379–1382 (2016).

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[PubMed]

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-López, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and G. -Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).

Lu, C.

Lu, Y.

F. Wang, W. Zhan, Y. Lu, Z. Yan, and X. Zhang, “Determining the Change of Brillouin Frequency Shift by Using the Similarity Matching Method,” IEEE/OSA J. Lightw. Technol. 33(19), 4101–4108 (2015).

Lu, Z.

Luo, B.

Martin-Lopez, S.

A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, “Resolving 1 million sensing points in an optimized differential time-domain Brillouin sensor,” Opt. Lett. 42(10), 1903–1906 (2017).
[PubMed]

A. Lopez-Gil, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simple baseband method for the distributed analysis of Brillouin phase-shift spectra,” IEEE Photonics Technol. Lett. 28(13), 1379–1382 (2016).

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[PubMed]

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-López, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and G. -Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).

Masoudi, A.

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[PubMed]

Meng, Z.

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).

Newson, T. P.

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[PubMed]

Niklès, M.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).

Pan, W.

Pan, Y.

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).

Sagues, M.

Shao, L.

Shu, C.

Shum, P. P.

Smith, J.

Soto, M. A.

Sun, Q.

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).

Tam, H. Y.

Tang, M.

Teng, L.

Thevenaz, L.

Thévenaz, L.

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[PubMed]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[PubMed]

L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives,” Front. Optoelectron. 3(1), 13–21 (2010).

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).

Tong, W.

Tu, X.

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).

Villalba, S.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[PubMed]

Wang, B.

Wang, F.

F. Wang, W. Zhan, Y. Lu, Z. Yan, and X. Zhang, “Determining the Change of Brillouin Frequency Shift by Using the Similarity Matching Method,” IEEE/OSA J. Lightw. Technol. 33(19), 4101–4108 (2015).

Wang, L.

Wang, Z.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-Based BOTDA Using Optical Comb Pump and Pulse Coding with a Single Laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).

Wu, H.

Wu, J.

Xu, C.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-Based BOTDA Using Optical Comb Pump and Pulse Coding with a Single Laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).

Xu, P.

Yan, L.

Yan, Z.

F. Wang, W. Zhan, Y. Lu, Z. Yan, and X. Zhang, “Determining the Change of Brillouin Frequency Shift by Using the Similarity Matching Method,” IEEE/OSA J. Lightw. Technol. 33(19), 4101–4108 (2015).

Yang, Y.

C. Zhang, Y. Yang, and A. Li, “Application of Levenberg–Marquardt algorithm in the Brillouin spectrum fitting,” Proc. SPIE 7129, 71291Y (2008).

Zhan, W.

F. Wang, W. Zhan, Y. Lu, Z. Yan, and X. Zhang, “Determining the Change of Brillouin Frequency Shift by Using the Similarity Matching Method,” IEEE/OSA J. Lightw. Technol. 33(19), 4101–4108 (2015).

Zhang, C.

C. Zhang, Y. Yang, and A. Li, “Application of Levenberg–Marquardt algorithm in the Brillouin spectrum fitting,” Proc. SPIE 7129, 71291Y (2008).

Zhang, H.

Zhang, M.

C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).

Zhang, W.

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-Based BOTDA Using Optical Comb Pump and Pulse Coding with a Single Laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).

Zhang, X.

F. Wang, W. Zhan, Y. Lu, Z. Yan, and X. Zhang, “Determining the Change of Brillouin Frequency Shift by Using the Similarity Matching Method,” IEEE/OSA J. Lightw. Technol. 33(19), 4101–4108 (2015).

Zhang, Y.

C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).

Z. Li, L. Yan, L. Shao, W. Pan, B. Luo, J. Liang, H. He, and Y. Zhang, “Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation,” Opt. Express 24(5), 4824–4833 (2016).
[PubMed]

Zhao, C.

Zhao, Z.

Zhou, D.

Zornoza, A.

Applications of Photonic Technology (1)

G. A. Ferrier, S. Afshar, X. Bao, and L. Chen, “A new fitting method for spectral characterization of Brillouin-based distributed sensors,” Applications of Photonic Technology 5260, 512–515 (2003).

Electron. Lett. (1)

A. K. Azad, L. Wang, N. Guo, H. Y. Tam, and C. Lu, “Temperature sensing in BOTDA system by using artificial neural network,” Electron. Lett. 51(20), 1578–1580 (2015).

Front. Optoelectron. (1)

L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives,” Front. Optoelectron. 3(1), 13–21 (2010).

IEEE Photonics J. (1)

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).

IEEE Photonics Technol. Lett. (2)

H. Chang, X. Jia, X. Ji, C. Xu, L. Ao, H. Wu, Z. Wang, and W. Zhang, “DBA-Based BOTDA Using Optical Comb Pump and Pulse Coding with a Single Laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).

A. Lopez-Gil, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simple baseband method for the distributed analysis of Brillouin phase-shift spectra,” IEEE Photonics Technol. Lett. 28(13), 1379–1382 (2016).

IEEE Sens. J. (1)

M. A. Farahani, E. Castillo-Guerra, and B. G. Colpitts, “A Detailed Evaluation of the Correlation-Based Method Used for Estimation of the Brillouin Frequency Shift in BOTDA Sensors,” IEEE Sens. J. 13(12), 4589–4598 (2013).

IEEE Trans. Neural Netw. (1)

C. W. Hsu and C. J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE Trans. Neural Netw. 13(2), 415–425 (2002).
[PubMed]

IEEE/OSA J. Lightw. Technol. (1)

F. Wang, W. Zhan, Y. Lu, Z. Yan, and X. Zhang, “Determining the Change of Brillouin Frequency Shift by Using the Similarity Matching Method,” IEEE/OSA J. Lightw. Technol. 33(19), 4101–4108 (2015).

J. Lightwave Technol. (4)

Opt. Express (9)

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[PubMed]

Z. Li, L. Yan, L. Shao, W. Pan, B. Luo, J. Liang, H. He, and Y. Zhang, “Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation,” Opt. Express 24(5), 4824–4833 (2016).
[PubMed]

A. K. Azad, L. Wang, N. Guo, H. Y. Tam, and C. Lu, “Signal processing using artificial neural network for BOTDA sensor system,” Opt. Express 24(6), 6769–6782 (2016).
[PubMed]

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[PubMed]

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25(3), 1889–1902 (2017).

C. Jin, L. Wang, Y. Chen, N. Guo, W. Chung, H. Au, Z. Li, H. Y. Tam, and C. Lu, “Single-measurement digital optical frequency comb based phase-detection Brillouin optical time domain analyzer,” Opt. Express 25(8), 9213–9224 (2017).
[PubMed]

C. Zhao, M. Tang, L. Wang, H. Wu, Z. Zhao, Y. Dang, J. Wu, S. Fu, D. Liu, and P. P. Shum, “BOTDA using channel estimation with direct-detection optical OFDM technique,” Opt. Express 25(11), 12698–12709 (2017).
[PubMed]

S. Diakaridia, Y. Pan, P. Xu, D. Zhou, B. Wang, L. Teng, Z. Lu, D. Ba, and Y. Dong, “Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum,” Opt. Express 25(15), 17727–17736 (2017).
[PubMed]

Y. Dang, Z. Zhao, M. Tang, C. Zhao, L. Gan, S. Fu, T. Liu, W. Tong, P. P. Shum, and D. Liu, “Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber,” Opt. Express 25(17), 20183–20193 (2017).
[PubMed]

Opt. Lett. (2)

Proc. SPIE (2)

C. Zhang, Y. Yang, and A. Li, “Application of Levenberg–Marquardt algorithm in the Brillouin spectrum fitting,” Proc. SPIE 7129, 71291Y (2008).

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-López, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and G. -Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).

Rev. Sci. Instrum. (1)

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[PubMed]

Sens. Actuators A Phys. (1)

C. Hong, Y. Zhang, G. Li, M. Zhang, and Z. Liu, “Recent progress of using Brillouin distributed fiber sensors for geotechnical health monitoring,” Sens. Actuators A Phys. 258, 131–145 (2017).

Sensors (Basel) (2)

X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[PubMed]

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors (Basel) 16(5), 748 (2016).
[PubMed]

Other (2)

C. Li and Y. Li, “Fitting of Brillouin spectrum based on LabVIEW,” Proc. 5th Int. Conf. Wireless Commun., Netw. Mobile Comput.,1–4 (2009).

R. W. Boyd, Nonlinear Optics, 3rd ed. Singapore: Academic, (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Principle of temperature extraction using linear multi-class SVM classifier, (b) BGSs only, BPSs only and pairs of BGS + BPS as data patterns for three different temperature classes, respectively, where the dash line indicates the BFS at a temperature of Class 2.
Fig. 2
Fig. 2 (a) Temperature uncertainty, (b) root mean square error (RMSE) together with corresponding improvement simulated under different SNRs by using SVM-g, SVM-p and SVM-(g + p) for temperature extraction, respectively.
Fig. 3
Fig. 3 (a) Temperature uncertainty, (b) root mean square error (RMSE) together with corresponding improvement simulated under different bandwidths by using SVM-g, SVM-p and SVM-(g + p) for temperature extraction, respectively.
Fig. 4
Fig. 4 (a) Temperature uncertainty, (b) root mean square error (RMSE) together with corresponding improvement simulated under different frequency scanning steps by using SVM-g, SVM-p and SVM-(g + p) for temperature extraction, respectively.
Fig. 5
Fig. 5 (a) Measured BGS, (b) BPS distribution along 10 km FUT with last 200 m section heated at 60 °C; (c1)-(c3) temperature distribution around the heated fiber section extracted by SVM-g, SVM-p and SVM-(g + p), respectively.
Fig. 6
Fig. 6 (a) Temperature uncertainty, (b) RMSE together with corresponding improvement V.S. SNR measured by using SVM-g, SVM-p and SVM-(g + p) for temperature extraction, respectively.
Fig. 7
Fig. 7 (a) Temperature uncertainty, (b) RMSE together with corresponding improvement V.S. bandwidth measured by using SVM-g, SVM-p and SVM-(g + p) for temperature extraction, respectively.
Fig. 8
Fig. 8 (a) Temperature uncertainty, (b) RMSE together with corresponding improvement V.S. frequency step measured by using SVM-g, SVM-p and SVM-(g + p) for temperature extraction, respectively.

Tables (3)

Tables Icon

Table 1 Time needed for the training of SVM-g, SVM-p and SVM-(g + p)

Tables Icon

Table 2 Comparison of processing time using SVM-g, SVM-p and SVM-(g + p) for 100,000 sensing points

Tables Icon

Table 3 Comparison of processing time for temperature extraction along 10km FUT

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g(υ)= g B 1 1+ [(υ υ B )/(Δ υ B /2)] 2
p(υ)= 2 g B Δ υ B (υ υ B ) Δ υ B 2 +4 (υ υ B ) 2

Metrics