Abstract

Thin terahertz (THz)-wave optical components are fundamentally important for integrated THz-wave spectroscopy and imaging systems, especially for phase manipulation devices. As described herein, a thin THz-wave phase shifter was developed using a flexible film metamaterial with high transmission and polarization independent properties. The metamaterial unit structure employs double-layer un-split ring resonators (USRRs) with a designed distance between the two layers to obtain phase retardance of π/2, thus constituting a THz-wave phase shifter. The metamaterial design keeps the transmission coefficient as high as 0.91. The phase shifter also has polarization independence due to the four-fold symmetry of the USRR structure. Because of the subwavelength feature size of the USRR, this shifter can offer benefits for manipulating the spatial profile for the THz-wave phase through design of a binary optics phase plate by arranging a USRR array. The thickness of 48 μm has benefits for developing integrated THz optics and other applications that demand compactness and flexibility. The developed film size of 5 cm × 5 cm from the device fabrication process is suitable for THz lenses or gratings of large optical components.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Off-resonance and in-resonance metamaterial design for a high-transmission terahertz-wave quarter-wave plate

Zhengli Han, Seigo Ohno, Yu Tokizane, Kouji Nawata, Takashi Notake, Yuma Takida, and Hiroaki Minamide
Opt. Lett. 43(12) 2977-2980 (2018)

Optical tuning of ultra-thin, silicon-based flexible metamaterial membranes in the terahertz regime

Michael A. Hoeh, Jens Neu, Klemens Schmitt, and Marco Rahm
Opt. Mater. Express 5(2) 408-415 (2015)

Metamaterial-enhanced terahertz vibrational spectroscopy for thin film detection

Jingya Xie, Xi Zhu, Xiaofei Zang, Qingqing Cheng, Lin Chen, and Yiming Zhu
Opt. Mater. Express 8(1) 128-135 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
  2. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [PubMed]
  3. M. Herrmann, M. Tani, and K. Sakai, “Terahertz imaging of silicon wafers,” J. Appl. Phys. 91, 1247 (2002).
  4. T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
  5. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
  6. G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).
  7. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
  8. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
  9. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [PubMed]
  10. M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
    [PubMed]
  11. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [PubMed]
  12. E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).
  13. O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009).
    [PubMed]
  14. G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).
  15. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011).
    [PubMed]
  16. Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22(18), 21326–21339 (2014).
    [PubMed]
  17. Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21(4), 1–9 (2015).
  18. Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Terahertz devices with reconfigurable metamaterial by surface MEMS technique,” IEEJ Trans. SM 136(11), 450–453 (2015).
  19. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [PubMed]
  20. X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express 17(2), 773–783 (2009).
    [PubMed]
  21. Y.-Y. Ji, F. Fan, M. Chen, L. Yang, and S.-J. Chang, “Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice,” Opt. Express 25(10), 11405–11413 (2017).
    [PubMed]
  22. L. Cong, Y. K. Srivastava, and R. Singh, “Near-field inductive coupling induced polarization control in metasurfaces,” Adv. Opt. Mater. 4(6), 848–852 (2016).
  23. L. Cong, Y. K. Srivastava, and R. Singh, “Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces,” Appl. Phys. Lett. 108, 011110 (2016).
  24. L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam–Berry-phase-enabled modulation and polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
    [PubMed]
  25. L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
  26. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
    [PubMed]
  27. Z. Liu, C. Zhang, S. Sun, N. Yi, Y. Gao, Q. Song, and S. Xiao, “Polarization-independent metamaterial with broad ultrahigh refractive index in terahertz region,” Opt. Mater. Express 5(9), 1949–1953 (2015).
  28. X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
    [PubMed]
  29. D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
  30. T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21(3), 2875–2889 (2013).
    [PubMed]
  31. L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).
  32. ANSYS, Inc., http://www.ansys.com/
  33. Y. Kawada, T. Yasuda, and H. Takahashi, “Carrier envelope phase shifter for broadband terahertz pulses,” Opt. Lett. 41(5), 986–989 (2016).
    [PubMed]
  34. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
    [PubMed]
  35. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
    [PubMed]
  36. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005).
    [PubMed]
  37. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
  38. Z. Han and H. Toshiyoshi, “Structure reconfigurable metamaterial plate with MEMS technique for THz wave beam shaping,” in Proceedings of the 11th International Congress on Engineered Material Platforms for Novel Wave Phenomena (Metamaterials 2017), (METAMORPHOSE VI AISBL, 2017), pp 393–395.
  39. G. J. Swanson and W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28(6), 286605 (1989).

2017 (1)

2016 (3)

Y. Kawada, T. Yasuda, and H. Takahashi, “Carrier envelope phase shifter for broadband terahertz pulses,” Opt. Lett. 41(5), 986–989 (2016).
[PubMed]

L. Cong, Y. K. Srivastava, and R. Singh, “Near-field inductive coupling induced polarization control in metasurfaces,” Adv. Opt. Mater. 4(6), 848–852 (2016).

L. Cong, Y. K. Srivastava, and R. Singh, “Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces,” Appl. Phys. Lett. 108, 011110 (2016).

2015 (8)

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam–Berry-phase-enabled modulation and polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[PubMed]

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[PubMed]

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21(4), 1–9 (2015).

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Terahertz devices with reconfigurable metamaterial by surface MEMS technique,” IEEJ Trans. SM 136(11), 450–453 (2015).

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Z. Liu, C. Zhang, S. Sun, N. Yi, Y. Gao, Q. Song, and S. Xiao, “Polarization-independent metamaterial with broad ultrahigh refractive index in terahertz region,” Opt. Mater. Express 5(9), 1949–1953 (2015).

2014 (3)

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22(18), 21326–21339 (2014).
[PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[PubMed]

G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).

2013 (5)

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21(3), 2875–2889 (2013).
[PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[PubMed]

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).

2011 (3)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011).
[PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[PubMed]

2010 (2)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
[PubMed]

2009 (5)

X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express 17(2), 773–783 (2009).
[PubMed]

O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009).
[PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).

2006 (1)

2005 (2)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005).
[PubMed]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).

2003 (1)

2002 (1)

M. Herrmann, M. Tani, and K. Sakai, “Terahertz imaging of silicon wafers,” J. Appl. Phys. 91, 1247 (2002).

1989 (1)

G. J. Swanson and W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28(6), 286605 (1989).

Aieta, F.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[PubMed]

Al-Naib, I. A. I.

Averitt, R. D.

G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express 17(2), 773–783 (2009).
[PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).

Beigang, R.

Bhaskaran, M.

Breinbjerg, O.

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).

Brener, I.

Capasso, F.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[PubMed]

Chang, S.-J.

Chen, H.-B.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express 17(2), 773–783 (2009).
[PubMed]

Chen, M.

Chen, Z. C.

Cheng, Q.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Choi, M.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[PubMed]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[PubMed]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

Cong, L.

L. Cong, Y. K. Srivastava, and R. Singh, “Near-field inductive coupling induced polarization control in metasurfaces,” Adv. Opt. Mater. 4(6), 848–852 (2016).

L. Cong, Y. K. Srivastava, and R. Singh, “Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces,” Appl. Phys. Lett. 108, 011110 (2016).

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam–Berry-phase-enabled modulation and polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[PubMed]

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).

Cui, T.-J.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[PubMed]

Davies, A. G.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).

de Maagt, P.

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

Economon, E. N.

Ederra, I.

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).

Fan, F.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).

Feng, S.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).

Fujita, H.

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Terahertz devices with reconfigurable metamaterial by surface MEMS technique,” IEEJ Trans. SM 136(11), 450–453 (2015).

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21(4), 1–9 (2015).

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22(18), 21326–21339 (2014).
[PubMed]

Fumeaux, C.

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

Gao, L.-H.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Gao, Y.

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).

Genevet, P.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[PubMed]

Gonzalo, R.

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[PubMed]

Gu, J.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[PubMed]

Han, J.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam–Berry-phase-enabled modulation and polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[PubMed]

Han, N. R.

Han, Z.

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Terahertz devices with reconfigurable metamaterial by surface MEMS technique,” IEEJ Trans. SM 136(11), 450–453 (2015).

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21(4), 1–9 (2015).

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22(18), 21326–21339 (2014).
[PubMed]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

He, Q.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Herrmann, M.

M. Herrmann, M. Tani, and K. Sakai, “Terahertz imaging of silicon wafers,” J. Appl. Phys. 91, 1247 (2002).

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[PubMed]

Hirakawa, K.

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Terahertz devices with reconfigurable metamaterial by surface MEMS technique,” IEEJ Trans. SM 136(11), 450–453 (2015).

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21(4), 1–9 (2015).

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22(18), 21326–21339 (2014).
[PubMed]

Hong, M. H.

Hu, D.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).

Hu, X.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).

Inoue, H.

Ji, Y.-Y.

Jiang, W.-X.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Jin, B.-B.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Kampfrath, T.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).

Kan, Q.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).

Kang, K.-Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[PubMed]

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[PubMed]

Kanhaiya, P.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[PubMed]

Kats, M. A.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[PubMed]

Kawada, Y.

Kawase, K.

Keiser, G. R.

G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).

Khorasaninejad, M.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[PubMed]

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[PubMed]

Klar, P. J.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).

Koch, M.

Kohno, K.

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Terahertz devices with reconfigurable metamaterial by surface MEMS technique,” IEEJ Trans. SM 136(11), 450–453 (2015).

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21(4), 1–9 (2015).

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22(18), 21326–21339 (2014).
[PubMed]

Koschny, T.

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005).
[PubMed]

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[PubMed]

Lee, S. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[PubMed]

Lee, Y.-H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[PubMed]

Li, L. H.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).

Liang, G.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).

Liang, H. K.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).

Liang, L.-J.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Lim, C. S.

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

Linfield, E. H.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).

Liu, S.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Liu, W.-W.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

Liu, Z.

Ma, H.-F.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Ma, S.-J.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Menekse, H.

Min, B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[PubMed]

Nelson, K. A.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).

Ng, B.

Niu, T.

O’Hara, J. F.

Ogawa, Y.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[PubMed]

Paul, O.

Peralta, X. G.

Pivnenko, S.

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

Rahm, M.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

Rousso, D.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[PubMed]

Saenz, E.

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

Sakai, K.

M. Herrmann, M. Tani, and K. Sakai, “Terahertz imaging of silicon wafers,” J. Appl. Phys. 91, 1247 (2002).

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).

Seren, H. R.

G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).

Shen, Y.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[PubMed]

Singh, R.

L. Cong, Y. K. Srivastava, and R. Singh, “Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces,” Appl. Phys. Lett. 108, 011110 (2016).

L. Cong, Y. K. Srivastava, and R. Singh, “Near-field inductive coupling induced polarization control in metasurfaces,” Adv. Opt. Mater. 4(6), 848–852 (2016).

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam–Berry-phase-enabled modulation and polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[PubMed]

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
[PubMed]

Smirnova, E. I.

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005).
[PubMed]

Song, Q.

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005).
[PubMed]

Sriram, S.

Srivastava, Y. K.

L. Cong, Y. K. Srivastava, and R. Singh, “Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces,” Appl. Phys. Lett. 108, 011110 (2016).

L. Cong, Y. K. Srivastava, and R. Singh, “Near-field inductive coupling induced polarization control in metasurfaces,” Adv. Opt. Mater. 4(6), 848–852 (2016).

Strikwerda, A. C.

G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).

Sun, S.

Sun, W.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).

Swanson, G. J.

G. J. Swanson and W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28(6), 286605 (1989).

Takahashi, H.

Tanaka, K.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).

Tani, M.

M. Herrmann, M. Tani, and K. Sakai, “Terahertz imaging of silicon wafers,” J. Appl. Phys. 91, 1247 (2002).

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express 17(2), 773–783 (2009).
[PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

Tian, Z.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).

Toshiyoshi, H.

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21(4), 1–9 (2015).

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Terahertz devices with reconfigurable metamaterial by surface MEMS technique,” IEEJ Trans. SM 136(11), 450–453 (2015).

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22(18), 21326–21339 (2014).
[PubMed]

Ung, B. S.-Y.

Veldkamp, W. B.

G. J. Swanson and W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28(6), 286605 (1989).

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005).
[PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

Wang, Q. J.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).

Wang, X.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).

Watanabe, Y.

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

Wen, Q.-Y.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Withayachumnankul, W.

Wu, P.-H.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Xiao, S.

Xu, N.

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam–Berry-phase-enabled modulation and polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[PubMed]

Yang, J.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Yang, L.

Yao, J.-Q.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Yasuda, T.

Ye, J.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).

Yi, N.

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[PubMed]

Yu, S. F.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).

Yu, X.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).

Yue, W.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[PubMed]

Zhang, C.

Zhang, S.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[PubMed]

Zhang, W.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam–Berry-phase-enabled modulation and polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[PubMed]

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
[PubMed]

Zhang, X.

G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[PubMed]

Zhang, Y.

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).

Zhao, J.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Zhou, J.

Zhou, L.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).

ACS Photonics (1)

G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” ACS Photonics 2(11), 1559–1566 (2015).

Adv. Mater. (2)

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam–Berry-phase-enabled modulation and polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[PubMed]

Adv. Opt. Mater. (3)

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).

L. Cong, Y. K. Srivastava, and R. Singh, “Near-field inductive coupling induced polarization control in metasurfaces,” Adv. Opt. Mater. 4(6), 848–852 (2016).

Appl. Phys. Lett. (3)

L. Cong, Y. K. Srivastava, and R. Singh, “Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces,” Appl. Phys. Lett. 108, 011110 (2016).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21(4), 1–9 (2015).

IEEE Trans. Antenn. Propag. (1)

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).

IEEJ Trans. SM (1)

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Terahertz devices with reconfigurable metamaterial by surface MEMS technique,” IEEJ Trans. SM 136(11), 450–453 (2015).

J. Appl. Phys. (1)

M. Herrmann, M. Tani, and K. Sakai, “Terahertz imaging of silicon wafers,” J. Appl. Phys. 91, 1247 (2002).

Light Sci. Appl. (1)

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4, e324 (2015).

Nano Lett. (1)

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[PubMed]

Nat. Photonics (4)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Nature (1)

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[PubMed]

Opt. Eng. (1)

G. J. Swanson and W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28(6), 286605 (1989).

Opt. Express (8)

X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express 17(2), 773–783 (2009).
[PubMed]

Y.-Y. Ji, F. Fan, M. Chen, L. Yang, and S.-J. Chang, “Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice,” Opt. Express 25(10), 11405–11413 (2017).
[PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
[PubMed]

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21(3), 2875–2889 (2013).
[PubMed]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[PubMed]

O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009).
[PubMed]

N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011).
[PubMed]

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22(18), 21326–21339 (2014).
[PubMed]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005).
[PubMed]

Science (2)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).

Other (2)

Z. Han and H. Toshiyoshi, “Structure reconfigurable metamaterial plate with MEMS technique for THz wave beam shaping,” in Proceedings of the 11th International Congress on Engineered Material Platforms for Novel Wave Phenomena (Metamaterials 2017), (METAMORPHOSE VI AISBL, 2017), pp 393–395.

ANSYS, Inc., http://www.ansys.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic showing the film metamaterial unit structure with double-layer USRRs for THz-wave phase shifter. Metallic patterns are shown as yellow. Gray shows the substrate BCB.
Fig. 2
Fig. 2 Device fabrication process: (a) process chart; (b) optical microscope image of the double-layer USRRs from top view; and (c) overview of the developed flexible film metamaterial device.
Fig. 3
Fig. 3 Spectral performance of the film metamaterial for THz-wave phase shifter: (a) amplitude, which shows a high transmission coefficient of T = 0.91 at 0.92 THz; (b) phase shift; at 0.92 THz phase retardance φ = π/2. The phase retardance uses air (phase shift is 0) as the reference. Solid lines, measurement; dash lines, simulation. Both TE and TM modes are shown.
Fig. 4
Fig. 4 Investigation on the mechanism of high transmission for the double-layer USRRs design. The incident wave is TE-mode polarization along the y-axis. (a) Surface current distribution at 0.92 THz. Currents on the top USRR and bottom USRR are in opposite directions. (b) Amplitude of the electric field distribution at 0.92 THz. The large value (orange) of the electric field under the metamaterial unit cell indicates high transmission. (c) Amplitude of the magnetic field distribution at 0.92 THz. The magnetic field is concentrated between double-layer USRRs.
Fig. 5
Fig. 5 Comparison of the effective refractive index of the double-layer USRRs metamaterial and the BCB film substrate. Black curve, metamaterial; pink curve, BCB film.
Fig. 6
Fig. 6 Metamaterial for THz-wave phase shifter with BCB film (47.5 μm) as the reference: (a) Amplitude, showing high transmission coefficient of T = 0.9 at 0.98 THz. (b) Phase shift, which has a π/2 difference from that of the BCB film at 0.98 THz. Solid line, measurement; dash lines, simulation. Only TE modes of metamaterial are shown. The BCB film is polarization independent.
Fig. 7
Fig. 7 Relation of the resonant frequency tuning with distance between the double-layer USRRs (black curve) based on simulation. Relation of transmission coefficient with distance for the corresponding resonant frequency (blue curve) based on simulation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η eff = μ eff / ε eff ,

Metrics