Abstract

One of the trends in design of mid-wave infrared (MWIR) focal plane arrays (FPAs) consists in reduction of the pixel sizes which allows increasing the resolution and decreasing the dark currents of FPAs. To keep high light collection efficiency and to combine it with large angle-of-view (AOV) of FPAs, in this work we propose to use photonic jets produced by the dielectric microspheres for focusing and highly efficient coupling light into individual photodetector mesas. In this approach, each pixel of FPA is integrated with the appropriately designed, fixed and properly aligned microsphere. The tasks consist in developing technology of integration of microspheres with pixels on a massive scale and in developing designs of corresponding structures. We propose to use air suction through a microhole array for assembling ordered arrays of microspheres. We demonstrate that this technology allows obtaining large-scale arrays containing thousands of microspheres with ~1% defect rate which represents a clear advantage over the best results obtained by the techniques of directed self-assembly. We optimized the designs of such FPAs integrated with microspheres for achieving maximal angle of view (AOV) as a function of the index of refraction and diameter of the microspheres. Using simplified two-dimensional finite difference time domain (FDTD) modeling we designed structures where the microspheres are partly‐immersed in a layer of photoresist or slightly truncated by using controllable temperature melting effects. Compared to the standard microlens arrays, our designs provide up to an order of magnitude higher AOVs reaching ~8° for back-illuminated and ~20° for front-illuminated structures.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of large micro-structured high-numerical-aperture optofluidic compound eyes with tunable angle of view

Qiao Xu, Bo Dai, Ziao Jiao, Ruijin Hong, Zhuoqin Yang, Dawei Zhang, and Songlin Zhuang
Opt. Express 26(25) 33356-33365 (2018)

Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer

Frédéric Gillard, Yann Ferrec, Nicolas Guérineau, Sylvain Rommeluère, Jean Taboury, and Pierre Chavel
J. Opt. Soc. Am. A 29(6) 936-944 (2012)

Mercury cadmium telluride focal-plane array detection for mid-infrared Fourier-transform spectroscopic imaging

L. H. Kidder, I. W. Levin, E. Neil Lewis, V. D. Kleiman, and E. J. Heilweil
Opt. Lett. 22(10) 742-744 (1997)

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski, “Progress in focal plane array technologies,” Prog. Quantum Electron. 36, 342–473 (2012).
  2. N. K. Dhar, R. Dat, and A. K. Sood, Optoelectronics: Advanced Materials and Devices, S. L. Pyshkin and J. M. Ballato eds. (InTech Rijeka, 2013).
  3. P. B. Catrysse and T. Skauli, “Pixel scaling in infrared focal plane arrays,” Appl. Opt. 52(7), C72–C77 (2013).
    [PubMed]
  4. “Microlens Arrays,” (SUSS MicroOptics SA, Neuchatel, Catalogue 2007, http://www.amstechnologies.com/fileadmin/amsmedia/downloads/2067_SMO_catalog.pdf ).
  5. K. D. Smith, J. G. A. Wehner, R. W. Graham, J. E. Randolph, A. M. Ramirez, G. M. Venzor, K. Olsson, M. F. Vilela, and E. P. G. Smith, “High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays,” Proc. SPIE 8353, 83532R (2012).
  6. A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “MWIR InAs1-x Sbx nCBn detectors data and analysis,” Proc. SPIE 8353, 835333 (2012).
  7. S.-B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16(7), 4965–4971 (2008).
    [PubMed]
  8. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
    [PubMed]
  9. W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96, 161107 (2010).
  10. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97, 021112 (2010).
  11. G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28, 105005 (2013).
  12. P. Vasinajindakaw, J. Vaillancourt, G. Gu, R. Liu, Y. Ling, and X. Lu, “A Fano-type interference enhanced quantum dot infrared photodetector,” Appl. Phys. Lett. 98, 211111 (2011).
  13. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
  14. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
  15. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
    [PubMed]
  16. C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).
  17. K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).
  18. A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
    [PubMed]
  19. M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19(11), 10206–10220 (2011).
    [PubMed]
  20. M. Hasan and J. J. Simpson, “Photonic nanojet-enhanced nanometer-scale germanium photodiode,” Appl. Opt. 52(22), 5420–5425 (2013).
    [PubMed]
  21. K. W. Allen, J. M. Duran, G. Ariyawansa, J. H. Vella, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Photonic jets for strained-layer superlattice infrared photodetector enhancement,” in NAECON 2014 - IEEE National Aerospace and Electronics Conference (2014), pp. 32–33.
  22. K. W. Allen, F. Abolmaali, J. M. Duran, G. Ariyawansa, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres,” Appl. Phys. Lett. 108, 241108 (2016).
  23. V. N. Astratov, K. W. Allen, Jr., N. I. Limberopoulos, A. Urbas, and J. M. Duran, “Photodetector focal plane array systems and methods,” patent application14/587,068 filed on 12/31/2014. U.S. patent 9,362,324 (7 June 2016).
  24. F. Abolmaali, A. Brettin, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Use of photonic jets produced by dielectric microspheres for increasing sensitivity and angle-of-view of MWIR detectors,” Proc. SPIE 10107, 101070V (2017).
  25. A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17, 1507–1511 (2005).
  26. M. S. Miller, G. J. E. Davidson, and T. B. Carmichael, “Templated self-assembly of glass microspheres into ordered two-dimensional arrays under dry conditions,” Langmuir 26(7), 5286–5290 (2010).
    [PubMed]
  27. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63, 109–115 (1996).
  28. C. Chienliu, W. Yeong-Feng, K. Yoshiaki, S. Ji-Jheng, K. Yusuke, L. Chih-Kung, W. Kuang-Chong, and E. Masayoshi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng. 15, 580–585 (2005).
  29. V. N. Astratov, A. V. Maslov, A. Brettin, K. F. Blanchette, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, and A. M. Urbas, “Contact microspherical nanoscopy: from fundamentals to biomedical applications,” Proc. SPIE 10077, 100770S (2017).
  30. V. N. Astratov, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, S. Brand, S. Brand, I. S. Culshaw, T. F. Krauss, R. M. DeLaRue, and O. Z. Karimov, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEE Proc., Optoelectron. 145, 398–402 (1998).
  31. A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period Al x Ga 1− x As photonic crystal waveguides,” Phys. Rev. B 68, 033303 (2003).
  32. A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
    [PubMed]
  33. D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
    [PubMed]
  34. G. Gu, R. Zhou, H. Xu, G. Cai, and Z. Cai, “Subsurface nano-imaging with self-assembled spherical cap optical nanoscopy,” Opt. Express 24, 4937–4948 (2016).
  35. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [PubMed]
  36. V. N. Astratov and A. Darafsheh, “Methods and systems for super-resolution optical imaging using high-index of refraction microspheres and microcylinders,” (US Patent App. 14/042,834, 2013).
  37. A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
  38. A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).
  39. K. W. Allen, Waveguide, Photodetector, and Imaging Applications of Microspherical Photonics (University of North Carolina at Charlotte, 2014).
  40. K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (Berlin) 527, 513–522 (2015).
  41. K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
    [PubMed]
  42. K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)]”,” Ann. Phys. 528, 901 (2016).
  43. A. V. Maslov and V. N. Astratov, “Imaging of sub-wavelength structures radiating coherently near microspheres,” Appl. Phys. Lett. 108, 051104 (2016).

2017 (2)

F. Abolmaali, A. Brettin, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Use of photonic jets produced by dielectric microspheres for increasing sensitivity and angle-of-view of MWIR detectors,” Proc. SPIE 10107, 101070V (2017).

V. N. Astratov, A. V. Maslov, A. Brettin, K. F. Blanchette, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, and A. M. Urbas, “Contact microspherical nanoscopy: from fundamentals to biomedical applications,” Proc. SPIE 10077, 100770S (2017).

2016 (4)

K. W. Allen, F. Abolmaali, J. M. Duran, G. Ariyawansa, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres,” Appl. Phys. Lett. 108, 241108 (2016).

G. Gu, R. Zhou, H. Xu, G. Cai, and Z. Cai, “Subsurface nano-imaging with self-assembled spherical cap optical nanoscopy,” Opt. Express 24, 4937–4948 (2016).

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)]”,” Ann. Phys. 528, 901 (2016).

A. V. Maslov and V. N. Astratov, “Imaging of sub-wavelength structures radiating coherently near microspheres,” Appl. Phys. Lett. 108, 051104 (2016).

2015 (2)

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (Berlin) 527, 513–522 (2015).

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
[PubMed]

2014 (1)

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).

2013 (3)

M. Hasan and J. J. Simpson, “Photonic nanojet-enhanced nanometer-scale germanium photodiode,” Appl. Opt. 52(22), 5420–5425 (2013).
[PubMed]

P. B. Catrysse and T. Skauli, “Pixel scaling in infrared focal plane arrays,” Appl. Opt. 52(7), C72–C77 (2013).
[PubMed]

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28, 105005 (2013).

2012 (6)

K. D. Smith, J. G. A. Wehner, R. W. Graham, J. E. Randolph, A. M. Ramirez, G. M. Venzor, K. Olsson, M. F. Vilela, and E. P. G. Smith, “High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays,” Proc. SPIE 8353, 83532R (2012).

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “MWIR InAs1-x Sbx nCBn detectors data and analysis,” Proc. SPIE 8353, 835333 (2012).

A. Rogalski, “Progress in focal plane array technologies,” Prog. Quantum Electron. 36, 342–473 (2012).

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[PubMed]

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[PubMed]

2011 (4)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[PubMed]

P. Vasinajindakaw, J. Vaillancourt, G. Gu, R. Liu, Y. Ling, and X. Lu, “A Fano-type interference enhanced quantum dot infrared photodetector,” Appl. Phys. Lett. 98, 211111 (2011).

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19(11), 10206–10220 (2011).
[PubMed]

2010 (3)

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96, 161107 (2010).

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97, 021112 (2010).

M. S. Miller, G. J. E. Davidson, and T. B. Carmichael, “Templated self-assembly of glass microspheres into ordered two-dimensional arrays under dry conditions,” Langmuir 26(7), 5286–5290 (2010).
[PubMed]

2009 (2)

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[PubMed]

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[PubMed]

2008 (2)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).

S.-B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16(7), 4965–4971 (2008).
[PubMed]

2007 (1)

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[PubMed]

2006 (1)

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).

2005 (3)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).

A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17, 1507–1511 (2005).

C. Chienliu, W. Yeong-Feng, K. Yoshiaki, S. Ji-Jheng, K. Yusuke, L. Chih-Kung, W. Kuang-Chong, and E. Masayoshi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng. 15, 580–585 (2005).

2003 (1)

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period Al x Ga 1− x As photonic crystal waveguides,” Phys. Rev. B 68, 033303 (2003).

1998 (1)

V. N. Astratov, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, S. Brand, S. Brand, I. S. Culshaw, T. F. Krauss, R. M. DeLaRue, and O. Z. Karimov, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEE Proc., Optoelectron. 145, 398–402 (1998).

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63, 109–115 (1996).

Abolmaali, F.

F. Abolmaali, A. Brettin, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Use of photonic jets produced by dielectric microspheres for increasing sensitivity and angle-of-view of MWIR detectors,” Proc. SPIE 10107, 101070V (2017).

K. W. Allen, F. Abolmaali, J. M. Duran, G. Ariyawansa, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres,” Appl. Phys. Lett. 108, 241108 (2016).

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[PubMed]

Allen, K. W.

K. W. Allen, F. Abolmaali, J. M. Duran, G. Ariyawansa, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres,” Appl. Phys. Lett. 108, 241108 (2016).

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)]”,” Ann. Phys. 528, 901 (2016).

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
[PubMed]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (Berlin) 527, 513–522 (2015).

Annamalai, S.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).

Ariyawansa, G.

K. W. Allen, F. Abolmaali, J. M. Duran, G. Ariyawansa, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres,” Appl. Phys. Lett. 108, 241108 (2016).

Astratov, V. N.

F. Abolmaali, A. Brettin, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Use of photonic jets produced by dielectric microspheres for increasing sensitivity and angle-of-view of MWIR detectors,” Proc. SPIE 10107, 101070V (2017).

V. N. Astratov, A. V. Maslov, A. Brettin, K. F. Blanchette, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, and A. M. Urbas, “Contact microspherical nanoscopy: from fundamentals to biomedical applications,” Proc. SPIE 10077, 100770S (2017).

K. W. Allen, F. Abolmaali, J. M. Duran, G. Ariyawansa, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres,” Appl. Phys. Lett. 108, 241108 (2016).

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)]”,” Ann. Phys. 528, 901 (2016).

A. V. Maslov and V. N. Astratov, “Imaging of sub-wavelength structures radiating coherently near microspheres,” Appl. Phys. Lett. 108, 051104 (2016).

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
[PubMed]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (Berlin) 527, 513–522 (2015).

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period Al x Ga 1− x As photonic crystal waveguides,” Phys. Rev. B 68, 033303 (2003).

V. N. Astratov, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, S. Brand, S. Brand, I. S. Culshaw, T. F. Krauss, R. M. DeLaRue, and O. Z. Karimov, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEE Proc., Optoelectron. 145, 398–402 (1998).

Backman, V.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[PubMed]

Bellotti, E.

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).

Blanchette, K. F.

V. N. Astratov, A. V. Maslov, A. Brettin, K. F. Blanchette, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, and A. M. Urbas, “Contact microspherical nanoscopy: from fundamentals to biomedical applications,” Proc. SPIE 10077, 100770S (2017).

Bonakdar, A.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96, 161107 (2010).

Brand, S.

V. N. Astratov, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, S. Brand, S. Brand, I. S. Culshaw, T. F. Krauss, R. M. DeLaRue, and O. Z. Karimov, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEE Proc., Optoelectron. 145, 398–402 (1998).

V. N. Astratov, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, S. Brand, S. Brand, I. S. Culshaw, T. F. Krauss, R. M. DeLaRue, and O. Z. Karimov, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEE Proc., Optoelectron. 145, 398–402 (1998).

Brettin, A.

V. N. Astratov, A. V. Maslov, A. Brettin, K. F. Blanchette, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, and A. M. Urbas, “Contact microspherical nanoscopy: from fundamentals to biomedical applications,” Proc. SPIE 10077, 100770S (2017).

F. Abolmaali, A. Brettin, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Use of photonic jets produced by dielectric microspheres for increasing sensitivity and angle-of-view of MWIR detectors,” Proc. SPIE 10107, 101070V (2017).

Bristow, A. D.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period Al x Ga 1− x As photonic crystal waveguides,” Phys. Rev. B 68, 033303 (2003).

Brueck, S. R. J.

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97, 021112 (2010).

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[PubMed]

Cai, G.

Cai, Z.

Carmichael, T. B.

M. S. Miller, G. J. E. Davidson, and T. B. Carmichael, “Templated self-assembly of glass microspheres into ordered two-dimensional arrays under dry conditions,” Langmuir 26(7), 5286–5290 (2010).
[PubMed]

Catrysse, P. B.

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[PubMed]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63, 109–115 (1996).

Chienliu, C.

C. Chienliu, W. Yeong-Feng, K. Yoshiaki, S. Ji-Jheng, K. Yusuke, L. Chih-Kung, W. Kuang-Chong, and E. Masayoshi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng. 15, 580–585 (2005).

Chih-Kung, L.

C. Chienliu, W. Yeong-Feng, K. Yoshiaki, S. Ji-Jheng, K. Yusuke, L. Chih-Kung, W. Kuang-Chong, and E. Masayoshi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng. 15, 580–585 (2005).

Cho, H. S.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[PubMed]

Choi, Y. W.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[PubMed]

Crisafulli, O.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).

Croucher, M. P.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period Al x Ga 1− x As photonic crystal waveguides,” Phys. Rev. B 68, 033303 (2003).

Culshaw, I. S.

V. N. Astratov, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, S. Brand, S. Brand, I. S. Culshaw, T. F. Krauss, R. M. DeLaRue, and O. Z. Karimov, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEE Proc., Optoelectron. 145, 398–402 (1998).

D’Souza, A. I.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “MWIR InAs1-x Sbx nCBn detectors data and analysis,” Proc. SPIE 8353, 835333 (2012).

Dal Negro, L.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).

Darafsheh, A.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).

Davidson, G. J. E.

M. S. Miller, G. J. E. Davidson, and T. B. Carmichael, “Templated self-assembly of glass microspheres into ordered two-dimensional arrays under dry conditions,” Langmuir 26(7), 5286–5290 (2010).
[PubMed]

de Lyon, T. J.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “MWIR InAs1-x Sbx nCBn detectors data and analysis,” Proc. SPIE 8353, 835333 (2012).

DeLaRue, R. M.

V. N. Astratov, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, S. Brand, S. Brand, I. S. Culshaw, T. F. Krauss, R. M. DeLaRue, and O. Z. Karimov, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEE Proc., Optoelectron. 145, 398–402 (1998).

Derov, J. S.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).

Dhar, N.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “MWIR InAs1-x Sbx nCBn detectors data and analysis,” Proc. SPIE 8353, 835333 (2012).

Dinyari, R.

Duran, J. M.

K. W. Allen, F. Abolmaali, J. M. Duran, G. Ariyawansa, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres,” Appl. Phys. Lett. 108, 241108 (2016).

Farahi, N.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (Berlin) 527, 513–522 (2015).

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
[PubMed]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).

Gates, B. D.

A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17, 1507–1511 (2005).

Gehring, G. A.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period Al x Ga 1− x As photonic crystal waveguides,” Phys. Rev. B 68, 033303 (2003).

Graham, R. W.

K. D. Smith, J. G. A. Wehner, R. W. Graham, J. E. Randolph, A. M. Ramirez, G. M. Venzor, K. Olsson, M. F. Vilela, and E. P. G. Smith, “High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays,” Proc. SPIE 8353, 83532R (2012).

Grein, C.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “MWIR InAs1-x Sbx nCBn detectors data and analysis,” Proc. SPIE 8353, 835333 (2012).

Gu, G.

G. Gu, R. Zhou, H. Xu, G. Cai, and Z. Cai, “Subsurface nano-imaging with self-assembled spherical cap optical nanoscopy,” Opt. Express 24, 4937–4948 (2016).

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28, 105005 (2013).

P. Vasinajindakaw, J. Vaillancourt, G. Gu, R. Liu, Y. Ling, and X. Lu, “A Fano-type interference enhanced quantum dot infrared photodetector,” Appl. Phys. Lett. 98, 211111 (2011).

Guo, W.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[PubMed]

Hasan, M.

Heifetz, A.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[PubMed]

Herzig, H. P.

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[PubMed]

Hopkinson, M.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period Al x Ga 1− x As photonic crystal waveguides,” Phys. Rev. B 68, 033303 (2003).

Huang, K.

Huynen, I.

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[PubMed]

Ionescu, A. C.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “MWIR InAs1-x Sbx nCBn detectors data and analysis,” Proc. SPIE 8353, 835333 (2012).

Ji-Jheng, S.

C. Chienliu, W. Yeong-Feng, K. Yoshiaki, S. Ji-Jheng, K. Yusuke, L. Chih-Kung, W. Kuang-Chong, and E. Masayoshi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng. 15, 580–585 (2005).

Kang, D.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[PubMed]

Karimov, O. Z.

V. N. Astratov, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, S. Brand, S. Brand, I. S. Culshaw, T. F. Krauss, R. M. DeLaRue, and O. Z. Karimov, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEE Proc., Optoelectron. 145, 398–402 (1998).

Keasler, C. A.

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[PubMed]

Kim, M.-S.

Kim, S. M.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[PubMed]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).

Kong, S.-C.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[PubMed]

Krauss, T. F.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period Al x Ga 1− x As photonic crystal waveguides,” Phys. Rev. B 68, 033303 (2003).

V. N. Astratov, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, S. Brand, S. Brand, I. S. Culshaw, T. F. Krauss, R. M. DeLaRue, and O. Z. Karimov, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEE Proc., Optoelectron. 145, 398–402 (1998).

Krishna, S.

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97, 021112 (2010).

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[PubMed]

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).

Kuang-Chong, W.

C. Chienliu, W. Yeong-Feng, K. Yoshiaki, S. Ji-Jheng, K. Yusuke, L. Chih-Kung, W. Kuang-Chong, and E. Masayoshi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng. 15, 580–585 (2005).

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).

Lee, S. C.

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97, 021112 (2010).

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[PubMed]

Li, L.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[PubMed]

Li, Y.

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)]”,” Ann. Phys. 528, 901 (2016).

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
[PubMed]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (Berlin) 527, 513–522 (2015).

Liberman, V.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (Berlin) 527, 513–522 (2015).

Limberopoulos, N. I.

F. Abolmaali, A. Brettin, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Use of photonic jets produced by dielectric microspheres for increasing sensitivity and angle-of-view of MWIR detectors,” Proc. SPIE 10107, 101070V (2017).

V. N. Astratov, A. V. Maslov, A. Brettin, K. F. Blanchette, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, and A. M. Urbas, “Contact microspherical nanoscopy: from fundamentals to biomedical applications,” Proc. SPIE 10077, 100770S (2017).

K. W. Allen, F. Abolmaali, J. M. Duran, G. Ariyawansa, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres,” Appl. Phys. Lett. 108, 241108 (2016).

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (Berlin) 527, 513–522 (2015).

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
[PubMed]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).

Ling, Y.

P. Vasinajindakaw, J. Vaillancourt, G. Gu, R. Liu, Y. Ling, and X. Lu, “A Fano-type interference enhanced quantum dot infrared photodetector,” Appl. Phys. Lett. 98, 211111 (2011).

Liu, R.

P. Vasinajindakaw, J. Vaillancourt, G. Gu, R. Liu, Y. Ling, and X. Lu, “A Fano-type interference enhanced quantum dot infrared photodetector,” Appl. Phys. Lett. 98, 211111 (2011).

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[PubMed]

Lu, X.

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28, 105005 (2013).

P. Vasinajindakaw, J. Vaillancourt, G. Gu, R. Liu, Y. Ling, and X. Lu, “A Fano-type interference enhanced quantum dot infrared photodetector,” Appl. Phys. Lett. 98, 211111 (2011).

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[PubMed]

Ly-Gagnon, D.-S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).

Masayoshi, E.

C. Chienliu, W. Yeong-Feng, K. Yoshiaki, S. Ji-Jheng, K. Yusuke, L. Chih-Kung, W. Kuang-Chong, and E. Masayoshi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng. 15, 580–585 (2005).

Maslov, A. V.

V. N. Astratov, A. V. Maslov, A. Brettin, K. F. Blanchette, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, and A. M. Urbas, “Contact microspherical nanoscopy: from fundamentals to biomedical applications,” Proc. SPIE 10077, 100770S (2017).

A. V. Maslov and V. N. Astratov, “Imaging of sub-wavelength structures radiating coherently near microspheres,” Appl. Phys. Lett. 108, 051104 (2016).

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[PubMed]

McCarty, L. S.

A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17, 1507–1511 (2005).

Melinte, S.

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[PubMed]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).

Miller, M. S.

M. S. Miller, G. J. E. Davidson, and T. B. Carmichael, “Templated self-assembly of glass microspheres into ordered two-dimensional arrays under dry conditions,” Langmuir 26(7), 5286–5290 (2010).
[PubMed]

Mohseni, H.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96, 161107 (2010).

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63, 109–115 (1996).

Mühlig, S.

Nahata, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[PubMed]

Nesmelov, Y. E.

V. N. Astratov, A. V. Maslov, A. Brettin, K. F. Blanchette, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, and A. M. Urbas, “Contact microspherical nanoscopy: from fundamentals to biomedical applications,” Proc. SPIE 10077, 100770S (2017).

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63, 109–115 (1996).

Okerlund, D.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “MWIR InAs1-x Sbx nCBn detectors data and analysis,” Proc. SPIE 8353, 835333 (2012).

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).

Olsson, K.

K. D. Smith, J. G. A. Wehner, R. W. Graham, J. E. Randolph, A. M. Ramirez, G. M. Venzor, K. Olsson, M. F. Vilela, and E. P. G. Smith, “High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays,” Proc. SPIE 8353, 83532R (2012).

Painter, O. J.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).

Pang, C.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[PubMed]

Perahia, R.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).

Peumans, P.

Posani, K. T.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).

Rajavel, R. D.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “MWIR InAs1-x Sbx nCBn detectors data and analysis,” Proc. SPIE 8353, 835333 (2012).

Ramirez, A. M.

K. D. Smith, J. G. A. Wehner, R. W. Graham, J. E. Randolph, A. M. Ramirez, G. M. Venzor, K. Olsson, M. F. Vilela, and E. P. G. Smith, “High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays,” Proc. SPIE 8353, 83532R (2012).

Randolph, J. E.

K. D. Smith, J. G. A. Wehner, R. W. Graham, J. E. Randolph, A. M. Ramirez, G. M. Venzor, K. Olsson, M. F. Vilela, and E. P. G. Smith, “High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays,” Proc. SPIE 8353, 83532R (2012).

Rim, S.-B.

Robinson, E.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “MWIR InAs1-x Sbx nCBn detectors data and analysis,” Proc. SPIE 8353, 835333 (2012).

Rockstuhl, C.

Rogalski, A.

A. Rogalski, “Progress in focal plane array technologies,” Prog. Quantum Electron. 36, 342–473 (2012).

Sahakian, A. V.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[PubMed]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).

Scharf, T.

Sharifi, H.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “MWIR InAs1-x Sbx nCBn detectors data and analysis,” Proc. SPIE 8353, 835333 (2012).

Simpson, J. J.

Skauli, T.

Skolnick, M. S.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period Al x Ga 1− x As photonic crystal waveguides,” Phys. Rev. B 68, 033303 (2003).

V. N. Astratov, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, S. Brand, S. Brand, I. S. Culshaw, T. F. Krauss, R. M. DeLaRue, and O. Z. Karimov, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEE Proc., Optoelectron. 145, 398–402 (1998).

Smith, E. P. G.

K. D. Smith, J. G. A. Wehner, R. W. Graham, J. E. Randolph, A. M. Ramirez, G. M. Venzor, K. Olsson, M. F. Vilela, and E. P. G. Smith, “High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays,” Proc. SPIE 8353, 83532R (2012).

Smith, K. D.

K. D. Smith, J. G. A. Wehner, R. W. Graham, J. E. Randolph, A. M. Ramirez, G. M. Venzor, K. Olsson, M. F. Vilela, and E. P. G. Smith, “High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays,” Proc. SPIE 8353, 83532R (2012).

Stevenson, R. M.

V. N. Astratov, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, S. Brand, S. Brand, I. S. Culshaw, T. F. Krauss, R. M. DeLaRue, and O. Z. Karimov, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEE Proc., Optoelectron. 145, 398–402 (1998).

Suh, K. Y.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[PubMed]

Taflove, A.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[PubMed]

Tahraoui, A.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period Al x Ga 1− x As photonic crystal waveguides,” Phys. Rev. B 68, 033303 (2003).

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).

Tripathi, V.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63, 109–115 (1996).

Um, H. S.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[PubMed]

Urbas, A. M.

V. N. Astratov, A. V. Maslov, A. Brettin, K. F. Blanchette, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, and A. M. Urbas, “Contact microspherical nanoscopy: from fundamentals to biomedical applications,” Proc. SPIE 10077, 100770S (2017).

F. Abolmaali, A. Brettin, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Use of photonic jets produced by dielectric microspheres for increasing sensitivity and angle-of-view of MWIR detectors,” Proc. SPIE 10107, 101070V (2017).

K. W. Allen, F. Abolmaali, J. M. Duran, G. Ariyawansa, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres,” Appl. Phys. Lett. 108, 241108 (2016).

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (Berlin) 527, 513–522 (2015).

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
[PubMed]

Vaillancourt, J.

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28, 105005 (2013).

P. Vasinajindakaw, J. Vaillancourt, G. Gu, R. Liu, Y. Ling, and X. Lu, “A Fano-type interference enhanced quantum dot infrared photodetector,” Appl. Phys. Lett. 98, 211111 (2011).

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[PubMed]

Vasinajindakaw, P.

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28, 105005 (2013).

P. Vasinajindakaw, J. Vaillancourt, G. Gu, R. Liu, Y. Ling, and X. Lu, “A Fano-type interference enhanced quantum dot infrared photodetector,” Appl. Phys. Lett. 98, 211111 (2011).

Venzor, G. M.

K. D. Smith, J. G. A. Wehner, R. W. Graham, J. E. Randolph, A. M. Ramirez, G. M. Venzor, K. Olsson, M. F. Vilela, and E. P. G. Smith, “High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays,” Proc. SPIE 8353, 83532R (2012).

Vilela, M. F.

K. D. Smith, J. G. A. Wehner, R. W. Graham, J. E. Randolph, A. M. Ramirez, G. M. Venzor, K. Olsson, M. F. Vilela, and E. P. G. Smith, “High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays,” Proc. SPIE 8353, 83532R (2012).

Vlad, A.

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[PubMed]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63, 109–115 (1996).

Walker, D. E.

V. N. Astratov, A. V. Maslov, A. Brettin, K. F. Blanchette, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, and A. M. Urbas, “Contact microspherical nanoscopy: from fundamentals to biomedical applications,” Proc. SPIE 10077, 100770S (2017).

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (Berlin) 527, 513–522 (2015).

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23(19), 24484–24496 (2015).
[PubMed]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).

Walsh, G. F.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[PubMed]

Wehner, J. G. A.

K. D. Smith, J. G. A. Wehner, R. W. Graham, J. E. Randolph, A. M. Ramirez, G. M. Venzor, K. Olsson, M. F. Vilela, and E. P. G. Smith, “High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays,” Proc. SPIE 8353, 83532R (2012).

Weisse-Bernstein, N. R.

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).

Whitesides, G. M.

A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17, 1507–1511 (2005).

Whittaker, D. M.

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period Al x Ga 1− x As photonic crystal waveguides,” Phys. Rev. B 68, 033303 (2003).

V. N. Astratov, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, S. Brand, S. Brand, I. S. Culshaw, T. F. Krauss, R. M. DeLaRue, and O. Z. Karimov, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEE Proc., Optoelectron. 145, 398–402 (1998).

Wijewarnasuriya, P. S.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “MWIR InAs1-x Sbx nCBn detectors data and analysis,” Proc. SPIE 8353, 835333 (2012).

Winkleman, A.

A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17, 1507–1511 (2005).

Wu, W.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96, 161107 (2010).

Xu, H.

Yap, D.

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “MWIR InAs1-x Sbx nCBn detectors data and analysis,” Proc. SPIE 8353, 835333 (2012).

Yeong-Feng, W.

C. Chienliu, W. Yeong-Feng, K. Yoshiaki, S. Ji-Jheng, K. Yusuke, L. Chih-Kung, W. Kuang-Chong, and E. Masayoshi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng. 15, 580–585 (2005).

Yoshiaki, K.

C. Chienliu, W. Yeong-Feng, K. Yoshiaki, S. Ji-Jheng, K. Yusuke, L. Chih-Kung, W. Kuang-Chong, and E. Masayoshi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng. 15, 580–585 (2005).

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).

Yusuke, K.

C. Chienliu, W. Yeong-Feng, K. Yoshiaki, S. Ji-Jheng, K. Yusuke, L. Chih-Kung, W. Kuang-Chong, and E. Masayoshi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng. 15, 580–585 (2005).

Zhou, R.

Adv. Mater. (2)

A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17, 1507–1511 (2005).

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24(13), 1709–1715 (2012).
[PubMed]

Ann. Phys. (1)

K. W. Allen, Y. Li, and V. N. Astratov, “Reply to “Comment on ‘Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis’ [Ann. Phys. (Berlin) 527, 513 (2015)]”,” Ann. Phys. 528, 901 (2016).

Ann. Phys. (Berlin) (1)

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (Berlin) 527, 513–522 (2015).

Appl. Opt. (2)

Appl. Phys. Lett. (10)

P. Vasinajindakaw, J. Vaillancourt, G. Gu, R. Liu, Y. Ling, and X. Lu, “A Fano-type interference enhanced quantum dot infrared photodetector,” Appl. Phys. Lett. 98, 211111 (2011).

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).

K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006).

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96, 161107 (2010).

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97, 021112 (2010).

K. W. Allen, F. Abolmaali, J. M. Duran, G. Ariyawansa, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres,” Appl. Phys. Lett. 108, 241108 (2016).

A. V. Maslov and V. N. Astratov, “Imaging of sub-wavelength structures radiating coherently near microspheres,” Appl. Phys. Lett. 108, 051104 (2016).

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).

Appl. Phys., A Mater. Sci. Process. (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63, 109–115 (1996).

IEE Proc., Optoelectron. (1)

V. N. Astratov, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, S. Brand, S. Brand, I. S. Culshaw, T. F. Krauss, R. M. DeLaRue, and O. Z. Karimov, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” IEE Proc., Optoelectron. 145, 398–402 (1998).

J. Comput. Theor. Nanosci. (1)

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009).
[PubMed]

J. Micromech. Microeng. (1)

C. Chienliu, W. Yeong-Feng, K. Yoshiaki, S. Ji-Jheng, K. Yusuke, L. Chih-Kung, W. Kuang-Chong, and E. Masayoshi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng. 15, 580–585 (2005).

Langmuir (1)

M. S. Miller, G. J. E. Davidson, and T. B. Carmichael, “Templated self-assembly of glass microspheres into ordered two-dimensional arrays under dry conditions,” Langmuir 26(7), 5286–5290 (2010).
[PubMed]

Nanotechnology (1)

A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23(28), 285708 (2012).
[PubMed]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[PubMed]

Nat. Photonics (1)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).

Nature (1)

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[PubMed]

Opt. Express (5)

Phys. Rev. B (1)

A. D. Bristow, D. M. Whittaker, V. N. Astratov, M. S. Skolnick, A. Tahraoui, T. F. Krauss, M. Hopkinson, M. P. Croucher, and G. A. Gehring, “Defect states and commensurability in dual-period Al x Ga 1− x As photonic crystal waveguides,” Phys. Rev. B 68, 033303 (2003).

Proc. SPIE (4)

V. N. Astratov, A. V. Maslov, A. Brettin, K. F. Blanchette, Y. E. Nesmelov, N. I. Limberopoulos, D. E. Walker, and A. M. Urbas, “Contact microspherical nanoscopy: from fundamentals to biomedical applications,” Proc. SPIE 10077, 100770S (2017).

F. Abolmaali, A. Brettin, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Use of photonic jets produced by dielectric microspheres for increasing sensitivity and angle-of-view of MWIR detectors,” Proc. SPIE 10107, 101070V (2017).

K. D. Smith, J. G. A. Wehner, R. W. Graham, J. E. Randolph, A. M. Ramirez, G. M. Venzor, K. Olsson, M. F. Vilela, and E. P. G. Smith, “High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays,” Proc. SPIE 8353, 83532R (2012).

A. I. D’Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. de Lyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, “MWIR InAs1-x Sbx nCBn detectors data and analysis,” Proc. SPIE 8353, 835333 (2012).

Prog. Quantum Electron. (1)

A. Rogalski, “Progress in focal plane array technologies,” Prog. Quantum Electron. 36, 342–473 (2012).

Semicond. Sci. Technol. (1)

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28, 105005 (2013).

Other (6)

K. W. Allen, J. M. Duran, G. Ariyawansa, J. H. Vella, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Photonic jets for strained-layer superlattice infrared photodetector enhancement,” in NAECON 2014 - IEEE National Aerospace and Electronics Conference (2014), pp. 32–33.

V. N. Astratov, K. W. Allen, Jr., N. I. Limberopoulos, A. Urbas, and J. M. Duran, “Photodetector focal plane array systems and methods,” patent application14/587,068 filed on 12/31/2014. U.S. patent 9,362,324 (7 June 2016).

N. K. Dhar, R. Dat, and A. K. Sood, Optoelectronics: Advanced Materials and Devices, S. L. Pyshkin and J. M. Ballato eds. (InTech Rijeka, 2013).

“Microlens Arrays,” (SUSS MicroOptics SA, Neuchatel, Catalogue 2007, http://www.amstechnologies.com/fileadmin/amsmedia/downloads/2067_SMO_catalog.pdf ).

V. N. Astratov and A. Darafsheh, “Methods and systems for super-resolution optical imaging using high-index of refraction microspheres and microcylinders,” (US Patent App. 14/042,834, 2013).

K. W. Allen, Waveguide, Photodetector, and Imaging Applications of Microspherical Photonics (University of North Carolina at Charlotte, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic sketches illustrating steps of assembly microspheres by the suction forces: (a) lifting microspheres from the substrate by the suction force produces an ordered array of microspheres sitting in microholes, (b) blowing interstitial spheres away by a sideway air flux, and (c) perfectly ordered single monolayer of microspheres. Circular shape of micro-channels with 45 ���� diameters illustrated (d) from the front and (e) from the back surface of the wafer. Microscope image illustrating assembly of 53 µm borosilicate microspheres on (f) relatively small area of the array where there are no defects and (g) significantly larger area of the array with ~1% defect rate.
Fig. 2
Fig. 2 (a,b) Schematics of the microlens array integrated with the back-illuminated optical detector FPA with 200 µm thickness of the substrate. (c) Electric field map calculated by FDTD simulation at λ = 4.0 µm. The position of microlens, substrate and detector are shown with dashed black lines. (d) Electric field map calculated at λ = 4.0 μm for α = 0° (top image), and α = 1° (bottom image). In the latter case, it can be seen that the focused light beam hits the edge of the detector.
Fig. 3
Fig. 3 (a) Schematic of 60 μm soda-lime glass microsphere immersed in a 28 μm photoresist adhesive layer at the back-illuminated FPA structure. The thickness of the detector substrate is 47.2 μm. (b,c) Electric field maps calculated at λ = 4.0 μm for angles of incidence α = 0° and α = 5°, respectively.
Fig. 4
Fig. 4 (a) Schematic of 60 µm polystyrene microsphere truncated at a 5 µm depth in contact with a 20 µm substrate in the back-illuminated FPA. (b,c) Electric field maps calculated at λ = 4.0 μm for α = 0° and α = 8°, respectively.
Fig. 5
Fig. 5 (a) Schematic of a front-illuminated FPA with a 30 µm barium titanate microsphere placed in contact with the 10 μm detector mesa. (b,c) Electric field maps calculated at λ = 4.0 µm for incidence angles α = 0° and α = 20°, respectively.

Metrics