Abstract

In this paper we describe the principles of operation as well as the fabrication and testing steps of an all-organic waveguide modulator. The modulator comprises an SU-8 core and an electro-optic host-guest polymer cladding. The polymer properties are tuned in order to achieve single mode operation. We used direct-write laser lithography in two steps for the preparation of the devices. The electro-optic coefficient of the polymer is estimated from observing the modulation of the device operated in push-pull mode.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication technique of a nonlinear optical structure using optical polymeric films by direct electron-beam irradiation

Hideki Nakayama, Hisashi Fujimura, Chikara Egami, Okihiro Sugihara, Ryoka Matsushima, and Naomichi Okamoto
Appl. Opt. 37(7) 1213-1219 (1998)

Phase-matched second-harmonic generation in a four-layered polymeric waveguide

Koen Clays, Jay S. Schildkraut, and David J. Williams
J. Opt. Soc. Am. B 11(4) 655-664 (1994)

Second-order nonlinear optical effects in novel side-chain liquid crystalline polymers and monomers under bias of an applied dc electric field

W. M. K. P. Wijekoon, Y. Zhang, S. P. Karna, P. N. Prasad, A. C. Griffin, and A. M. Bhatti
J. Opt. Soc. Am. B 9(10) 1832-1842 (1992)

References

  • View by:
  • |
  • |
  • |

  1. L. R. Dalton, D. Lao, B. C. Olbricht, S. Benight, D. H. Bale, J. A. Davies, T. Ewy, S. R. Hammond, and P. A. Sullivan, “Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices,” Opt. Mater. 32, 658–668 (2010).
  2. S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
  3. C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express 25, 1762 (2017).
  4. W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).
  5. Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).
  6. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
    [PubMed]
  7. W. Heni, C. Haffner, D. L. Elder, A. F. Tillack, Y. Fedoryshyn, R. Cottier, Y. Salamin, C. Hoessbacher, U. Koch, B. Cheng, B. Robinson, L. R. Dalton, and J. Leuthold, “Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design,” Opt. Express 25, 2627 (2017).
  8. R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).
  9. B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).
  10. X. Wang, J. Meng, Y. Yue, J. Sun, X. Sun, F. Wang, and D. Zhang, “Fabrication of single-mode ridge SU-8 waveguides based on inductively coupled plasma etching,” Appl. Phys., A Mater. Sci. Process. 113, 195–200 (2013).
  11. M. Balakrishnan, M. Faccini, M. B. J. Diemeer, W. Verboom, A. Driessen, D. N. Reinhoudt, and A. Leinse, “Photodefinable electro-optic polymer for high-speed modulators,” Electron. Lett. 42, 51 (2006).
  12. M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).
  13. C.-T. Zheng, L.-J. Zhang, L.-C. Qv, L. Liang, C.-S. Ma, D.-M. Zhang, and Z.-C. Cui, “Nanosecond polymer Mach-Zehnder interferometer electro-optic modulator using optimized micro-strip line electrode,” Opt. Quantum Electron. 45, 279–293 (2012).
  14. A. Leinse, M. B. J. Diemeer, A. Rousseau, and A. Driessen, “A novel high-speed polymeric EO Modulator based on a combination of a microring resonator and an MZI,” IEEE Photonics Technol. Lett. 17, 2074–2076 (2005).
  15. B. Bêche, “Integrated photonics devices on SU8 organic materials,” Int. J. Phys. Sci. 5, 612–618 (2010).
  16. G.-M. Parsanasab, M. Moshkani, and A. Gharavi, “Femtosecond laser direct writing of single mode polymer micro ring laser with high stability and low pumping threshold,” Opt. Express 23(7), 8310–8316 (2015).
    [PubMed]
  17. Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of Flexible Freestanding All-Polymer Integrated Optical Ring Resonator Devices,” Adv. Mater. 16, 44–48 (2004).
  18. Y. Huang, A. George, T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and Replication of Polymer Integrated Optical Devices Using Electron-Beam Lithography and Soft Lithography,” (2004).
  19. E. Nitiss, “Evaluation of performance of a hybrid electro-optic directional coupler and a Mach–Zehnder switch,” J. Nanophotonics 11, 16013 (2017).
  20. H. Sato, H. Miura, F. Qiu, A. M. Spring, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, and S. Yokoyama, “Low driving voltage Mach-Zehnder interference modulator constructed from an electro-optic polymer on ultra-thin silicon with a broadband operation,” Opt. Express 25(2), 768–775 (2017).
    [PubMed]
  21. R. Himmelhuber, O. D. Herrera, R. Voorakaranam, L. Li, A. M. Jones, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “A Silicon-Polymer Hybrid Modulator—Design, Simulation and Proof of Principle,” J. Lightwave Technol. 31, 4067–4072 (2013).
  22. F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
  23. N. Miyazaki, K. Ooizumi, T. Hara, M. Yamada, H. Nagata, and T. Sakane, “LiNbO3 optical intensity modulator packaged with monitor photodiode,” IEEE Photonics Technol. Lett. 13, 442–444 (2001).
  24. R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 30, 1121–1137 (1982).
  25. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
    [PubMed]
  26. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
  27. A. S. Holland, A. Mitchell, V. S. Balkunje, M. W. Austin, and M. K. Raghunathan, “Fabrication of raised and inverted SU8 polymer waveguides,” in H. Ming, X. Zhang, and M. Y. Chen, eds. (International Society for Optics and Photonics, 2005), p. 353.
  28. M. Nordstrom, D. A. Zauner, A. Boisen, and J. Hubner, “Single-Mode Waveguides With SU-8 Polymer Core and Cladding for MOEMS Applications,” J. Lightwave Technol. 25, 1284–1289 (2007).
  29. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971).
    [PubMed]
  30. D. Marcuse, “Bending Losses of the Asymmetric Slab Waveguide,” Bell Syst. Tech. J. 50, 2551–2563 (1971).
  31. K. Traskovskis, I. Mihailovs, A. Tokmakovs, V. Kokars, and M. Rutkis, “An improved molecular design of obtaining NLO active molecular glasses using triphenyl moieties as amorphous phase formation enhancers,” in B. J. Eggleton, A. L. Gaeta, and N. G. Broderick, eds. (International Society for Optics and Photonics, 2012), Vol. 8434, p. 84341P.
  32. A. Vembris, M. Rutkis, and E. Laizane, “Effect of corona poling and thermo cycling sequence on NLO properties of the guest-host system,” Molecular Crystals Liquid Crystals 485, 922684 (2008).
  33. M. Rutkis, A. Vembris, V. Zauls, A. Tokmakovs, E. Fonavs, A. Jurgis, and V. Kampars, “Novel second-order non-linear optical polymer materials containing indandione derivativatives as a chromophore,” in Organic Optoelectronics and Photonics II, P. L. Heremans, M. Muccini, and E. A. Meulenkamp, eds. (2006), Vol. 6192, p. 61922Q–61922Q–8.
  34. E. Nitiss, E. Titavs, K. Kundzins, A. Dementjev, V. Gulbinas, and M. Rutkis, “Poling induced mass transport in thin polymer films,” J. Phys. Chem. B 117(9), 2812–2819 (2013).
    [PubMed]
  35. J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,” J. Chem. Phys. 66, 2664–2668 (1977).
  36. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
  37. K. Traskovskis, I. Mihailovs, A. Tokmakovs, A. Jurgis, V. Kokars, and M. Rutkis, “Triphenyl moieties as building blocks for obtaining molecular glasses with nonlinear optical activity,” J. Mater. Chem. 22, 11268–11276 (2012).
  38. L. R. Dalton, “Rational design of organic electro-optic materials,” J. Phys. Condens. Matter 15, R897–R934 (2003).
  39. P. K. Dey and P. Ganguly, “A technical report on fabrication of SU-8 optical waveguides,” J. Opt. 43, 79–83 (2014).

2017 (5)

2015 (3)

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

G.-M. Parsanasab, M. Moshkani, and A. Gharavi, “Femtosecond laser direct writing of single mode polymer micro ring laser with high stability and low pumping threshold,” Opt. Express 23(7), 8310–8316 (2015).
[PubMed]

2014 (1)

P. K. Dey and P. Ganguly, “A technical report on fabrication of SU-8 optical waveguides,” J. Opt. 43, 79–83 (2014).

2013 (4)

R. Himmelhuber, O. D. Herrera, R. Voorakaranam, L. Li, A. M. Jones, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “A Silicon-Polymer Hybrid Modulator—Design, Simulation and Proof of Principle,” J. Lightwave Technol. 31, 4067–4072 (2013).

E. Nitiss, E. Titavs, K. Kundzins, A. Dementjev, V. Gulbinas, and M. Rutkis, “Poling induced mass transport in thin polymer films,” J. Phys. Chem. B 117(9), 2812–2819 (2013).
[PubMed]

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).

X. Wang, J. Meng, Y. Yue, J. Sun, X. Sun, F. Wang, and D. Zhang, “Fabrication of single-mode ridge SU-8 waveguides based on inductively coupled plasma etching,” Appl. Phys., A Mater. Sci. Process. 113, 195–200 (2013).

2012 (2)

C.-T. Zheng, L.-J. Zhang, L.-C. Qv, L. Liang, C.-S. Ma, D.-M. Zhang, and Z.-C. Cui, “Nanosecond polymer Mach-Zehnder interferometer electro-optic modulator using optimized micro-strip line electrode,” Opt. Quantum Electron. 45, 279–293 (2012).

K. Traskovskis, I. Mihailovs, A. Tokmakovs, A. Jurgis, V. Kokars, and M. Rutkis, “Triphenyl moieties as building blocks for obtaining molecular glasses with nonlinear optical activity,” J. Mater. Chem. 22, 11268–11276 (2012).

2011 (1)

2010 (2)

L. R. Dalton, D. Lao, B. C. Olbricht, S. Benight, D. H. Bale, J. A. Davies, T. Ewy, S. R. Hammond, and P. A. Sullivan, “Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices,” Opt. Mater. 32, 658–668 (2010).

B. Bêche, “Integrated photonics devices on SU8 organic materials,” Int. J. Phys. Sci. 5, 612–618 (2010).

2008 (2)

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).

A. Vembris, M. Rutkis, and E. Laizane, “Effect of corona poling and thermo cycling sequence on NLO properties of the guest-host system,” Molecular Crystals Liquid Crystals 485, 922684 (2008).

2007 (2)

M. Nordstrom, D. A. Zauner, A. Boisen, and J. Hubner, “Single-Mode Waveguides With SU-8 Polymer Core and Cladding for MOEMS Applications,” J. Lightwave Technol. 25, 1284–1289 (2007).

R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).

2006 (2)

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, W. Verboom, A. Driessen, D. N. Reinhoudt, and A. Leinse, “Photodefinable electro-optic polymer for high-speed modulators,” Electron. Lett. 42, 51 (2006).

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
[PubMed]

2005 (1)

A. Leinse, M. B. J. Diemeer, A. Rousseau, and A. Driessen, “A novel high-speed polymeric EO Modulator based on a combination of a microring resonator and an MZI,” IEEE Photonics Technol. Lett. 17, 2074–2076 (2005).

2004 (1)

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of Flexible Freestanding All-Polymer Integrated Optical Ring Resonator Devices,” Adv. Mater. 16, 44–48 (2004).

2003 (1)

L. R. Dalton, “Rational design of organic electro-optic materials,” J. Phys. Condens. Matter 15, R897–R934 (2003).

2001 (1)

N. Miyazaki, K. Ooizumi, T. Hara, M. Yamada, H. Nagata, and T. Sakane, “LiNbO3 optical intensity modulator packaged with monitor photodiode,” IEEE Photonics Technol. Lett. 13, 442–444 (2001).

2000 (1)

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).

1999 (1)

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

1987 (1)

1982 (1)

R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 30, 1121–1137 (1982).

1977 (1)

J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,” J. Chem. Phys. 66, 2664–2668 (1977).

1971 (2)

D. Marcuse, “Bending Losses of the Asymmetric Slab Waveguide,” Bell Syst. Tech. J. 50, 2551–2563 (1971).

P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971).
[PubMed]

Alferness, R. C.

R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 30, 1121–1137 (1982).

Alloatti, L.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[PubMed]

Aniszfeld, R.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Aoki, I.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).

Baets, R.

Baeuerle, B.

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express 25, 1762 (2017).

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Balakrishnan, M.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, W. Verboom, A. Driessen, D. N. Reinhoudt, and A. Leinse, “Photodefinable electro-optic polymer for high-speed modulators,” Electron. Lett. 42, 51 (2006).

Bale, D. H.

L. R. Dalton, D. Lao, B. C. Olbricht, S. Benight, D. H. Bale, J. A. Davies, T. Ewy, S. R. Hammond, and P. A. Sullivan, “Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices,” Opt. Mater. 32, 658–668 (2010).

Barklund, A.

Bêche, B.

B. Bêche, “Integrated photonics devices on SU8 organic materials,” Int. J. Phys. Sci. 5, 612–618 (2010).

Bechtel, J. H.

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).

Benight, S.

L. R. Dalton, D. Lao, B. C. Olbricht, S. Benight, D. H. Bale, J. A. Davies, T. Ewy, S. R. Hammond, and P. A. Sullivan, “Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices,” Opt. Mater. 32, 658–668 (2010).

Bogaerts, W.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[PubMed]

Boisen, A.

Chemla, D. S.

J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,” J. Chem. Phys. 66, 2664–2668 (1977).

Chen, A.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Cheng, B.

Cottier, R.

Cui, Z.-C.

C.-T. Zheng, L.-J. Zhang, L.-C. Qv, L. Liang, C.-S. Ma, D.-M. Zhang, and Z.-C. Cui, “Nanosecond polymer Mach-Zehnder interferometer electro-optic modulator using optimized micro-strip line electrode,” Opt. Quantum Electron. 45, 279–293 (2012).

Dalton, L. R.

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express 25, 1762 (2017).

W. Heni, C. Haffner, D. L. Elder, A. F. Tillack, Y. Fedoryshyn, R. Cottier, Y. Salamin, C. Hoessbacher, U. Koch, B. Cheng, B. Robinson, L. R. Dalton, and J. Leuthold, “Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design,” Opt. Express 25, 2627 (2017).

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. R. Dalton, D. Lao, B. C. Olbricht, S. Benight, D. H. Bale, J. A. Davies, T. Ewy, S. R. Hammond, and P. A. Sullivan, “Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices,” Opt. Mater. 32, 658–668 (2010).

L. R. Dalton, “Rational design of organic electro-optic materials,” J. Phys. Condens. Matter 15, R897–R934 (2003).

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Davies, J. A.

L. R. Dalton, D. Lao, B. C. Olbricht, S. Benight, D. H. Bale, J. A. Davies, T. Ewy, S. R. Hammond, and P. A. Sullivan, “Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices,” Opt. Mater. 32, 658–668 (2010).

Dementjev, A.

E. Nitiss, E. Titavs, K. Kundzins, A. Dementjev, V. Gulbinas, and M. Rutkis, “Poling induced mass transport in thin polymer films,” J. Phys. Chem. B 117(9), 2812–2819 (2013).
[PubMed]

Derose, C.

R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).

Dey, P. K.

P. K. Dey and P. Ganguly, “A technical report on fabrication of SU-8 optical waveguides,” J. Opt. 43, 79–83 (2014).

Diemeer, M. B. J.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, W. Verboom, A. Driessen, D. N. Reinhoudt, and A. Leinse, “Photodefinable electro-optic polymer for high-speed modulators,” Electron. Lett. 42, 51 (2006).

A. Leinse, M. B. J. Diemeer, A. Rousseau, and A. Driessen, “A novel high-speed polymeric EO Modulator based on a combination of a microring resonator and an MZI,” IEEE Photonics Technol. Lett. 17, 2074–2076 (2005).

Dinu, R.

Driessen, A.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, W. Verboom, A. Driessen, D. N. Reinhoudt, and A. Leinse, “Photodefinable electro-optic polymer for high-speed modulators,” Electron. Lett. 42, 51 (2006).

A. Leinse, M. B. J. Diemeer, A. Rousseau, and A. Driessen, “A novel high-speed polymeric EO Modulator based on a combination of a microring resonator and an MZI,” IEEE Photonics Technol. Lett. 17, 2074–2076 (2005).

Ducry, F.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Dulkeith, E.

Dumon, P.

Elder, D. L.

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express 25, 1762 (2017).

W. Heni, C. Haffner, D. L. Elder, A. F. Tillack, Y. Fedoryshyn, R. Cottier, Y. Salamin, C. Hoessbacher, U. Koch, B. Cheng, B. Robinson, L. R. Dalton, and J. Leuthold, “Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design,” Opt. Express 25, 2627 (2017).

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Emboras, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Enami, Y.

R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).

Ewy, T.

L. R. Dalton, D. Lao, B. C. Olbricht, S. Benight, D. H. Bale, J. A. Davies, T. Ewy, S. R. Hammond, and P. A. Sullivan, “Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices,” Opt. Mater. 32, 658–668 (2010).

Faccini, M.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, W. Verboom, A. Driessen, D. N. Reinhoudt, and A. Leinse, “Photodefinable electro-optic polymer for high-speed modulators,” Electron. Lett. 42, 51 (2006).

Fallahi, M.

R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).

Fedeli, J.

Fedoryshyn, Y.

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express 25, 1762 (2017).

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

W. Heni, C. Haffner, D. L. Elder, A. F. Tillack, Y. Fedoryshyn, R. Cottier, Y. Salamin, C. Hoessbacher, U. Koch, B. Cheng, B. Robinson, L. R. Dalton, and J. Leuthold, “Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design,” Opt. Express 25, 2627 (2017).

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Fournier, M.

Freude, W.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[PubMed]

Gan, H.

R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).

Ganguly, P.

P. K. Dey and P. Ganguly, “A technical report on fabrication of SU-8 optical waveguides,” J. Opt. 43, 79–83 (2014).

Garner, S.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Gharavi, A.

Green, W. M. J.

Greenlee, C.

R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).

Gulbinas, V.

E. Nitiss, E. Titavs, K. Kundzins, A. Dementjev, V. Gulbinas, and M. Rutkis, “Poling induced mass transport in thin polymer films,” J. Phys. Chem. B 117(9), 2812–2819 (2013).
[PubMed]

Haffner, C.

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express 25, 1762 (2017).

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

W. Heni, C. Haffner, D. L. Elder, A. F. Tillack, Y. Fedoryshyn, R. Cottier, Y. Salamin, C. Hoessbacher, U. Koch, B. Cheng, B. Robinson, L. R. Dalton, and J. Leuthold, “Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design,” Opt. Express 25, 2627 (2017).

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Hafner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Hammond, S. R.

L. R. Dalton, D. Lao, B. C. Olbricht, S. Benight, D. H. Bale, J. A. Davies, T. Ewy, S. R. Hammond, and P. A. Sullivan, “Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices,” Opt. Mater. 32, 658–668 (2010).

Hara, T.

N. Miyazaki, K. Ooizumi, T. Hara, M. Yamada, H. Nagata, and T. Sakane, “LiNbO3 optical intensity modulator packaged with monitor photodiode,” IEEE Photonics Technol. Lett. 13, 442–444 (2001).

Harper, A. W.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Heni, W.

W. Heni, C. Haffner, D. L. Elder, A. F. Tillack, Y. Fedoryshyn, R. Cottier, Y. Salamin, C. Hoessbacher, U. Koch, B. Cheng, B. Robinson, L. R. Dalton, and J. Leuthold, “Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design,” Opt. Express 25, 2627 (2017).

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express 25, 1762 (2017).

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Herrera, O. D.

Hettrich, H.

Hillerkuss, D.

Himmelhuber, R.

R. Himmelhuber, O. D. Herrera, R. Voorakaranam, L. Li, A. M. Jones, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “A Silicon-Polymer Hybrid Modulator—Design, Simulation and Proof of Principle,” J. Lightwave Technol. 31, 4067–4072 (2013).

R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).

Hoessbacher, C.

Houbrecht, S.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Huang, Y.

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of Flexible Freestanding All-Polymer Integrated Optical Ring Resonator Devices,” Adv. Mater. 16, 44–48 (2004).

Hubner, J.

Jen, A. K. Y.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Jen, A. K.-Y.

Johnson, L. E.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

Jones, A. M.

Josten, A.

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express 25, 1762 (2017).

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Juchli, L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Jurgis, A.

K. Traskovskis, I. Mihailovs, A. Tokmakovs, A. Jurgis, V. Kokars, and M. Rutkis, “Triphenyl moieties as building blocks for obtaining molecular glasses with nonlinear optical activity,” J. Mater. Chem. 22, 11268–11276 (2012).

Kaiser, C.

Kashino, T.

Kieninger, C.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

Kikuchi, T.

Klein, E. J.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).

Koch, U.

W. Heni, C. Haffner, D. L. Elder, A. F. Tillack, Y. Fedoryshyn, R. Cottier, Y. Salamin, C. Hoessbacher, U. Koch, B. Cheng, B. Robinson, L. R. Dalton, and J. Leuthold, “Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design,” Opt. Express 25, 2627 (2017).

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Koeber, S.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Koenig, S.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Kohl, M.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Kokars, V.

K. Traskovskis, I. Mihailovs, A. Tokmakovs, A. Jurgis, V. Kokars, and M. Rutkis, “Triphenyl moieties as building blocks for obtaining molecular glasses with nonlinear optical activity,” J. Mater. Chem. 22, 11268–11276 (2012).

Koos, C.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[PubMed]

Korn, D.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[PubMed]

Kropachev, O.

R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).

Kundzins, K.

E. Nitiss, E. Titavs, K. Kundzins, A. Dementjev, V. Gulbinas, and M. Rutkis, “Poling induced mass transport in thin polymer films,” J. Phys. Chem. B 117(9), 2812–2819 (2013).
[PubMed]

Kutuvantavida, Y.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

Kuzyk, M. G.

Laizane, E.

A. Vembris, M. Rutkis, and E. Laizane, “Effect of corona poling and thermo cycling sequence on NLO properties of the guest-host system,” Molecular Crystals Liquid Crystals 485, 922684 (2008).

Lao, D.

L. R. Dalton, D. Lao, B. C. Olbricht, S. Benight, D. H. Bale, J. A. Davies, T. Ewy, S. R. Hammond, and P. A. Sullivan, “Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices,” Opt. Mater. 32, 658–668 (2010).

Lauermann, M.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Ledoux, I.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Lee, M.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Leinse, A.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, W. Verboom, A. Driessen, D. N. Reinhoudt, and A. Leinse, “Photodefinable electro-optic polymer for high-speed modulators,” Electron. Lett. 42, 51 (2006).

A. Leinse, M. B. J. Diemeer, A. Rousseau, and A. Driessen, “A novel high-speed polymeric EO Modulator based on a combination of a microring resonator and an MZI,” IEEE Photonics Technol. Lett. 17, 2074–2076 (2005).

Leuthold, J.

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express 25, 1762 (2017).

W. Heni, C. Haffner, D. L. Elder, A. F. Tillack, Y. Fedoryshyn, R. Cottier, Y. Salamin, C. Hoessbacher, U. Koch, B. Cheng, B. Robinson, L. R. Dalton, and J. Leuthold, “Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design,” Opt. Express 25, 2627 (2017).

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[PubMed]

Li, J.

Li, L.

Liang, L.

C.-T. Zheng, L.-J. Zhang, L.-C. Qv, L. Liang, C.-S. Ma, D.-M. Zhang, and Z.-C. Cui, “Nanosecond polymer Mach-Zehnder interferometer electro-optic modulator using optimized micro-strip line electrode,” Opt. Quantum Electron. 45, 279–293 (2012).

Lin, W.

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).

Loychik, C.

R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).

Luo, J.

Ma, C.-S.

C.-T. Zheng, L.-J. Zhang, L.-C. Qv, L. Liang, C.-S. Ma, D.-M. Zhang, and Z.-C. Cui, “Nanosecond polymer Mach-Zehnder interferometer electro-optic modulator using optimized micro-strip line electrode,” Opt. Quantum Electron. 45, 279–293 (2012).

Marcuse, D.

D. Marcuse, “Bending Losses of the Asymmetric Slab Waveguide,” Bell Syst. Tech. J. 50, 2551–2563 (1971).

Mathine, D.

R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).

Melikyan, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Meng, J.

X. Wang, J. Meng, Y. Yue, J. Sun, X. Sun, F. Wang, and D. Zhang, “Fabrication of single-mode ridge SU-8 waveguides based on inductively coupled plasma etching,” Appl. Phys., A Mater. Sci. Process. 113, 195–200 (2013).

Merzlyak, Y.

R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).

Mihailovs, I.

K. Traskovskis, I. Mihailovs, A. Tokmakovs, A. Jurgis, V. Kokars, and M. Rutkis, “Triphenyl moieties as building blocks for obtaining molecular glasses with nonlinear optical activity,” J. Mater. Chem. 22, 11268–11276 (2012).

Miura, H.

Miyazaki, N.

N. Miyazaki, K. Ooizumi, T. Hara, M. Yamada, H. Nagata, and T. Sakane, “LiNbO3 optical intensity modulator packaged with monitor photodiode,” IEEE Photonics Technol. Lett. 13, 442–444 (2001).

Möller, M.

Moshkani, M.

Nagata, H.

N. Miyazaki, K. Ooizumi, T. Hara, M. Yamada, H. Nagata, and T. Sakane, “LiNbO3 optical intensity modulator packaged with monitor photodiode,” IEEE Photonics Technol. Lett. 13, 442–444 (2001).

Nawata, H.

Niegemann, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Nitiss, E.

E. Nitiss, “Evaluation of performance of a hybrid electro-optic directional coupler and a Mach–Zehnder switch,” J. Nanophotonics 11, 16013 (2017).

E. Nitiss, E. Titavs, K. Kundzins, A. Dementjev, V. Gulbinas, and M. Rutkis, “Poling induced mass transport in thin polymer films,” J. Phys. Chem. B 117(9), 2812–2819 (2013).
[PubMed]

Nordstrom, M.

Norwood, R. A.

R. Himmelhuber, O. D. Herrera, R. Voorakaranam, L. Li, A. M. Jones, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “A Silicon-Polymer Hybrid Modulator—Design, Simulation and Proof of Principle,” J. Lightwave Technol. 31, 4067–4072 (2013).

R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).

Odoi, K.

Olbricht, B. C.

L. R. Dalton, D. Lao, B. C. Olbricht, S. Benight, D. H. Bale, J. A. Davies, T. Ewy, S. R. Hammond, and P. A. Sullivan, “Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices,” Opt. Mater. 32, 658–668 (2010).

Olson, D. J.

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).

Ooizumi, K.

N. Miyazaki, K. Ooizumi, T. Hara, M. Yamada, H. Nagata, and T. Sakane, “LiNbO3 optical intensity modulator packaged with monitor photodiode,” IEEE Photonics Technol. Lett. 13, 442–444 (2001).

Otomo, A.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).

Oudar, J. L.

J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,” J. Chem. Phys. 66, 2664–2668 (1977).

Ozawa, M.

Palmer, R.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[PubMed]

Paloczi, G. T.

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of Flexible Freestanding All-Polymer Integrated Optical Ring Resonator Devices,” Adv. Mater. 16, 44–48 (2004).

Parsanasab, G.-M.

Persoons, A.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Peyghambarian, N.

R. Himmelhuber, O. D. Herrera, R. Voorakaranam, L. Li, A. M. Jones, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “A Silicon-Polymer Hybrid Modulator—Design, Simulation and Proof of Principle,” J. Lightwave Technol. 31, 4067–4072 (2013).

R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).

Poon, J. K. S.

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of Flexible Freestanding All-Polymer Integrated Optical Ring Resonator Devices,” Adv. Mater. 16, 44–48 (2004).

Qiu, F.

Qv, L.-C.

C.-T. Zheng, L.-J. Zhang, L.-C. Qv, L. Liang, C.-S. Ma, D.-M. Zhang, and Z.-C. Cui, “Nanosecond polymer Mach-Zehnder interferometer electro-optic modulator using optimized micro-strip line electrode,” Opt. Quantum Electron. 45, 279–293 (2012).

Reinhoudt, D. N.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, W. Verboom, A. Driessen, D. N. Reinhoudt, and A. Leinse, “Photodefinable electro-optic polymer for high-speed modulators,” Electron. Lett. 42, 51 (2006).

Ren, A.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Robinson, B.

Robinson, B. H.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Rousseau, A.

A. Leinse, M. B. J. Diemeer, A. Rousseau, and A. Driessen, “A novel high-speed polymeric EO Modulator based on a combination of a microring resonator and an MZI,” IEEE Photonics Technol. Lett. 17, 2074–2076 (2005).

Rutkis, M.

E. Nitiss, E. Titavs, K. Kundzins, A. Dementjev, V. Gulbinas, and M. Rutkis, “Poling induced mass transport in thin polymer films,” J. Phys. Chem. B 117(9), 2812–2819 (2013).
[PubMed]

K. Traskovskis, I. Mihailovs, A. Tokmakovs, A. Jurgis, V. Kokars, and M. Rutkis, “Triphenyl moieties as building blocks for obtaining molecular glasses with nonlinear optical activity,” J. Mater. Chem. 22, 11268–11276 (2012).

A. Vembris, M. Rutkis, and E. Laizane, “Effect of corona poling and thermo cycling sequence on NLO properties of the guest-host system,” Molecular Crystals Liquid Crystals 485, 922684 (2008).

Sakane, T.

N. Miyazaki, K. Ooizumi, T. Hara, M. Yamada, H. Nagata, and T. Sakane, “LiNbO3 optical intensity modulator packaged with monitor photodiode,” IEEE Photonics Technol. Lett. 13, 442–444 (2001).

Salamin, Y.

Sato, H.

Schares, L.

Schindler, P. C.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Schmid, R.

Sengo, G.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).

Shi, Y.

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).

Singer, K. D.

Sohn, J. E.

Spring, A. M.

Steier, W. H.

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Sullivan, P. A.

L. R. Dalton, D. Lao, B. C. Olbricht, S. Benight, D. H. Bale, J. A. Davies, T. Ewy, S. R. Hammond, and P. A. Sullivan, “Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices,” Opt. Mater. 32, 658–668 (2010).

Sun, J.

X. Wang, J. Meng, Y. Yue, J. Sun, X. Sun, F. Wang, and D. Zhang, “Fabrication of single-mode ridge SU-8 waveguides based on inductively coupled plasma etching,” Appl. Phys., A Mater. Sci. Process. 113, 195–200 (2013).

Sun, X.

X. Wang, J. Meng, Y. Yue, J. Sun, X. Sun, F. Wang, and D. Zhang, “Fabrication of single-mode ridge SU-8 waveguides based on inductively coupled plasma etching,” Appl. Phys., A Mater. Sci. Process. 113, 195–200 (2013).

Tien, P. K.

Tillack, A. F.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

W. Heni, C. Haffner, D. L. Elder, A. F. Tillack, Y. Fedoryshyn, R. Cottier, Y. Salamin, C. Hoessbacher, U. Koch, B. Cheng, B. Robinson, L. R. Dalton, and J. Leuthold, “Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design,” Opt. Express 25, 2627 (2017).

Titavs, E.

E. Nitiss, E. Titavs, K. Kundzins, A. Dementjev, V. Gulbinas, and M. Rutkis, “Poling induced mass transport in thin polymer films,” J. Phys. Chem. B 117(9), 2812–2819 (2013).
[PubMed]

Todorova, G.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Tokmakovs, A.

K. Traskovskis, I. Mihailovs, A. Tokmakovs, A. Jurgis, V. Kokars, and M. Rutkis, “Triphenyl moieties as building blocks for obtaining molecular glasses with nonlinear optical activity,” J. Mater. Chem. 22, 11268–11276 (2012).

Traskovskis, K.

K. Traskovskis, I. Mihailovs, A. Tokmakovs, A. Jurgis, V. Kokars, and M. Rutkis, “Triphenyl moieties as building blocks for obtaining molecular glasses with nonlinear optical activity,” J. Mater. Chem. 22, 11268–11276 (2012).

Vembris, A.

A. Vembris, M. Rutkis, and E. Laizane, “Effect of corona poling and thermo cycling sequence on NLO properties of the guest-host system,” Molecular Crystals Liquid Crystals 485, 922684 (2008).

Verboom, W.

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, W. Verboom, A. Driessen, D. N. Reinhoudt, and A. Leinse, “Photodefinable electro-optic polymer for high-speed modulators,” Electron. Lett. 42, 51 (2006).

Vlasov, Y. A.

Voorakaranam, R.

Wang, F.

X. Wang, J. Meng, Y. Yue, J. Sun, X. Sun, F. Wang, and D. Zhang, “Fabrication of single-mode ridge SU-8 waveguides based on inductively coupled plasma etching,” Appl. Phys., A Mater. Sci. Process. 113, 195–200 (2013).

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Wang, X.

X. Wang, J. Meng, Y. Yue, J. Sun, X. Sun, F. Wang, and D. Zhang, “Fabrication of single-mode ridge SU-8 waveguides based on inductively coupled plasma etching,” Appl. Phys., A Mater. Sci. Process. 113, 195–200 (2013).

Wieland, J.

Woessner, M.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Wolf, S.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

Xia, F.

Yamada, M.

N. Miyazaki, K. Ooizumi, T. Hara, M. Yamada, H. Nagata, and T. Sakane, “LiNbO3 optical intensity modulator packaged with monitor photodiode,” IEEE Photonics Technol. Lett. 13, 442–444 (2001).

Yariv, A.

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of Flexible Freestanding All-Polymer Integrated Optical Ring Resonator Devices,” Adv. Mater. 16, 44–48 (2004).

Yokoyama, S.

Yu, F.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).

Yu, H.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[PubMed]

Yue, Y.

X. Wang, J. Meng, Y. Yue, J. Sun, X. Sun, F. Wang, and D. Zhang, “Fabrication of single-mode ridge SU-8 waveguides based on inductively coupled plasma etching,” Appl. Phys., A Mater. Sci. Process. 113, 195–200 (2013).

Zauner, D. A.

Zhang, C.

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Zhang, D.

X. Wang, J. Meng, Y. Yue, J. Sun, X. Sun, F. Wang, and D. Zhang, “Fabrication of single-mode ridge SU-8 waveguides based on inductively coupled plasma etching,” Appl. Phys., A Mater. Sci. Process. 113, 195–200 (2013).

Zhang, D.-M.

C.-T. Zheng, L.-J. Zhang, L.-C. Qv, L. Liang, C.-S. Ma, D.-M. Zhang, and Z.-C. Cui, “Nanosecond polymer Mach-Zehnder interferometer electro-optic modulator using optimized micro-strip line electrode,” Opt. Quantum Electron. 45, 279–293 (2012).

Zhang, H.

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).

Zhang, L.-J.

C.-T. Zheng, L.-J. Zhang, L.-C. Qv, L. Liang, C.-S. Ma, D.-M. Zhang, and Z.-C. Cui, “Nanosecond polymer Mach-Zehnder interferometer electro-optic modulator using optimized micro-strip line electrode,” Opt. Quantum Electron. 45, 279–293 (2012).

Zheng, C.-T.

C.-T. Zheng, L.-J. Zhang, L.-C. Qv, L. Liang, C.-S. Ma, D.-M. Zhang, and Z.-C. Cui, “Nanosecond polymer Mach-Zehnder interferometer electro-optic modulator using optimized micro-strip line electrode,” Opt. Quantum Electron. 45, 279–293 (2012).

Zwickel, H.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

Zyss, J.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

ACS Photonics (1)

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koos, J. Leuthold, and L. R. Dalton, “Silicon–Organic and Plasmonic–Organic Hybrid Photonics,” ACS Photonics 4, 1576–1590 (2017).

Adv. Mater. (1)

Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Demonstration of Flexible Freestanding All-Polymer Integrated Optical Ring Resonator Devices,” Adv. Mater. 16, 44–48 (2004).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77, 1–3 (2000).

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, E. J. Klein, G. Sengo, A. Driessen, W. Verboom, and D. N. Reinhoudt, “Microring resonator based modulator made by direct photodefinition of an electro-optic polymer,” Appl. Phys. Lett. 92, 153310 (2008).

Appl. Phys., A Mater. Sci. Process. (1)

X. Wang, J. Meng, Y. Yue, J. Sun, X. Sun, F. Wang, and D. Zhang, “Fabrication of single-mode ridge SU-8 waveguides based on inductively coupled plasma etching,” Appl. Phys., A Mater. Sci. Process. 113, 195–200 (2013).

Bell Syst. Tech. J. (1)

D. Marcuse, “Bending Losses of the Asymmetric Slab Waveguide,” Bell Syst. Tech. J. 50, 2551–2563 (1971).

Chem. Phys. (1)

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).

Electron. Lett. (1)

M. Balakrishnan, M. Faccini, M. B. J. Diemeer, W. Verboom, A. Driessen, D. N. Reinhoudt, and A. Leinse, “Photodefinable electro-optic polymer for high-speed modulators,” Electron. Lett. 42, 51 (2006).

IEEE Photonics Technol. Lett. (2)

A. Leinse, M. B. J. Diemeer, A. Rousseau, and A. Driessen, “A novel high-speed polymeric EO Modulator based on a combination of a microring resonator and an MZI,” IEEE Photonics Technol. Lett. 17, 2074–2076 (2005).

N. Miyazaki, K. Ooizumi, T. Hara, M. Yamada, H. Nagata, and T. Sakane, “LiNbO3 optical intensity modulator packaged with monitor photodiode,” IEEE Photonics Technol. Lett. 13, 442–444 (2001).

IEEE Trans. Microw. Theory Tech. (1)

R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 30, 1121–1137 (1982).

Int. J. Phys. Sci. (1)

B. Bêche, “Integrated photonics devices on SU8 organic materials,” Int. J. Phys. Sci. 5, 612–618 (2010).

J. Chem. Phys. (1)

J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,” J. Chem. Phys. 66, 2664–2668 (1977).

J. Lightwave Technol. (2)

J. Mater. Chem. (1)

K. Traskovskis, I. Mihailovs, A. Tokmakovs, A. Jurgis, V. Kokars, and M. Rutkis, “Triphenyl moieties as building blocks for obtaining molecular glasses with nonlinear optical activity,” J. Mater. Chem. 22, 11268–11276 (2012).

J. Nanophotonics (1)

E. Nitiss, “Evaluation of performance of a hybrid electro-optic directional coupler and a Mach–Zehnder switch,” J. Nanophotonics 11, 16013 (2017).

J. Nonlinear Opt. Phys. Mater. (1)

R. A. Norwood, C. Derose, Y. Enami, H. Gan, C. Greenlee, R. Himmelhuber, O. Kropachev, C. Loychik, D. Mathine, Y. Merzlyak, M. Fallahi, and N. Peyghambarian, “Hybrid sol-gel electro-optic polymer modulators: Beating the drive voltage/loss tradeoff,” J. Nonlinear Opt. Phys. Mater. 16, 217–230 (2007).

J. Opt. (1)

P. K. Dey and P. Ganguly, “A technical report on fabrication of SU-8 optical waveguides,” J. Opt. 43, 79–83 (2014).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

E. Nitiss, E. Titavs, K. Kundzins, A. Dementjev, V. Gulbinas, and M. Rutkis, “Poling induced mass transport in thin polymer films,” J. Phys. Chem. B 117(9), 2812–2819 (2013).
[PubMed]

J. Phys. Condens. Matter (1)

L. R. Dalton, “Rational design of organic electro-optic materials,” J. Phys. Condens. Matter 15, R897–R934 (2003).

Light Sci. Appl. (1)

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon–organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Molecular Crystals Liquid Crystals (1)

A. Vembris, M. Rutkis, and E. Laizane, “Effect of corona poling and thermo cycling sequence on NLO properties of the guest-host system,” Molecular Crystals Liquid Crystals 485, 922684 (2008).

Nat. Photonics (1)

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Opt. Express (6)

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[PubMed]

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
[PubMed]

G.-M. Parsanasab, M. Moshkani, and A. Gharavi, “Femtosecond laser direct writing of single mode polymer micro ring laser with high stability and low pumping threshold,” Opt. Express 23(7), 8310–8316 (2015).
[PubMed]

H. Sato, H. Miura, F. Qiu, A. M. Spring, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, and S. Yokoyama, “Low driving voltage Mach-Zehnder interference modulator constructed from an electro-optic polymer on ultra-thin silicon with a broadband operation,” Opt. Express 25(2), 768–775 (2017).
[PubMed]

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express 25, 1762 (2017).

W. Heni, C. Haffner, D. L. Elder, A. F. Tillack, Y. Fedoryshyn, R. Cottier, Y. Salamin, C. Hoessbacher, U. Koch, B. Cheng, B. Robinson, L. R. Dalton, and J. Leuthold, “Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design,” Opt. Express 25, 2627 (2017).

Opt. Mater. (1)

L. R. Dalton, D. Lao, B. C. Olbricht, S. Benight, D. H. Bale, J. A. Davies, T. Ewy, S. R. Hammond, and P. A. Sullivan, “Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices,” Opt. Mater. 32, 658–668 (2010).

Opt. Quantum Electron. (1)

C.-T. Zheng, L.-J. Zhang, L.-C. Qv, L. Liang, C.-S. Ma, D.-M. Zhang, and Z.-C. Cui, “Nanosecond polymer Mach-Zehnder interferometer electro-optic modulator using optimized micro-strip line electrode,” Opt. Quantum Electron. 45, 279–293 (2012).

Other (4)

Y. Huang, A. George, T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Fabrication and Replication of Polymer Integrated Optical Devices Using Electron-Beam Lithography and Soft Lithography,” (2004).

A. S. Holland, A. Mitchell, V. S. Balkunje, M. W. Austin, and M. K. Raghunathan, “Fabrication of raised and inverted SU8 polymer waveguides,” in H. Ming, X. Zhang, and M. Y. Chen, eds. (International Society for Optics and Photonics, 2005), p. 353.

K. Traskovskis, I. Mihailovs, A. Tokmakovs, V. Kokars, and M. Rutkis, “An improved molecular design of obtaining NLO active molecular glasses using triphenyl moieties as amorphous phase formation enhancers,” in B. J. Eggleton, A. L. Gaeta, and N. G. Broderick, eds. (International Society for Optics and Photonics, 2012), Vol. 8434, p. 84341P.

M. Rutkis, A. Vembris, V. Zauls, A. Tokmakovs, E. Fonavs, A. Jurgis, and V. Kampars, “Novel second-order non-linear optical polymer materials containing indandione derivativatives as a chromophore,” in Organic Optoelectronics and Photonics II, P. L. Heremans, M. Muccini, and E. A. Meulenkamp, eds. (2006), Vol. 6192, p. 61922Q–61922Q–8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A. The top-view and the dimensions of elements of the waveguide MZI, where Iin and Iout are the light input and output intensities, respectively; Io – the light intensity in the MZI arm, R is the bend radius of the waveguide, w is the electrode separation length and L is the central electrode length. In the design the light input and output waveguides are purposely made to be far apart in order to avoid the scattered and uncoupled light reaching the detector at the output. B. The cross-section with dimensions of elements as well as refractive indexes at 633 nm of the waveguide MZI. The waveguide core is made of SU-8 and has the width W and the height H. The electrodes are made of Chromium (Cr) and have a height of h. Voltages V1 and V2 can be applied during poling and modulation.

Fig. 2
Fig. 2

A. An absorbance spectrum as well as the molecular structure of nonlinear optical chromophore 2-(4-(bis(5,5,5-triphenylpentyl)amino)benzylidene)-1H-indene-1,3(2H)-dione (DMABI-Ph6). Absorbance was measured for a 300 nm thick DMABI-Ph6 film on a quartz glass substrate. B. The glass transition temperature (black line plotted against the primary y axis) and the NLO coefficient at zero frequency (grey line plotted against the secondary y axis) as a function of DMABI-Ph6 concentration in PMMA.

Fig. 3
Fig. 3

The blue lines plotted on primary y axis indicate the effective refractive index neff of first and second TE modes as a function of DMABI-Ph6 concentration in PMMA matrix, while the red line plotted on secondary y axis indicates the overlap integral Γ of the 1st mode. The first dotted vertical line indicates concentration threshold above which the waveguide operates in single mode regime. The second dotted vertical line indicates the concentration at which the EO polymer becomes the waveguide core. The secondary x axis shows the corresponding refractive index np of EO material.

Fig. 4
Fig. 4

A. An optical image of SU-8 waveguide splitter. B. The setup for electro-optic characterization of the device: He-Ne 633 – laser, M – mirrors, D – detector DET36A (Thorlabs), OSC – oscilloscope, FG – function generator, PI – phase inverter, and AMP – amplifier. C. An optical image of the waveguide MZI with excited guiding mode.

Fig. 5
Fig. 5

The applied modulating field intensity V/w (the grey line plotted against the primary y axis) and the output light intensity Iout (the red line plotted against the secondary y axis) as a function of time.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I out = I o ( 1+cos( φ o +Δφ ) )
Δφ= kr n g 3 VLΓ 2w ,
n g = n eff λ d n eff dλ ,
C= m DMABIPh6 m DMABIPh6 + m PMMA ,
I m = d I out dφ Δφ.
r= I m I o λw π n g 3 VLΓ .