Abstract

We propose and demonstrate a simple and low-cost method to lock the wavelength of a diode laser to a point with a particular normalized slope on the spectrum of a fiber-optic sensor. The wavelength locking point is independent of the laser intensity variations. The locking involves simultaneously and independently modulating both the laser wavelength and the laser intensity. On the spectral slope, the wavelength modulation is also converted to intensity modulation that is superimposed to the direct intensity modulation. The error signal is the amplitude of the overall intensity modulation. We demonstrate a potential application of the locking method in a fiber-optic ultrasonic detection system using a distributed feedback diode laser and a phase-shifted fiber Bragg grating sensor.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Acoustic emission sensor system using a chirped fiber-Bragg-grating Fabry–Perot interferometer and smart feedback control

Qi Zhang, Yupeng Zhu, Xiangyu Luo, Guigen Liu, and Ming Han
Opt. Lett. 42(3) 631-634 (2017)

Musical instrument pickup based on a laser locked to an optical fiber resonator

Saverio Avino, Jack A. Barnes, Gianluca Gagliardi, Xijia Gu, David Gutstein, James R. Mester, Costa Nicholaou, and Hans-Peter Loock
Opt. Express 19(25) 25057-25065 (2011)

References

  • View by:
  • |
  • |
  • |

  1. I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).
  2. D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003).
  3. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
    [PubMed]
  4. T. Q. Liu and M. Han, “Analysis of pi-Phase-Shifted Fiber Bragg Gratings for Ultrasonic Detection,” IEEE Sens. J. 12(7), 2368–2373 (2012).
  5. Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
    [PubMed]
  6. M. Han, T. Liu, L. Hu, and Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express 21(24), 29269–29276 (2013).
    [PubMed]
  7. R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
  8. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75(6), 613–619 (2002).
  9. T. Day, E. K. Gustafson, and R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd: YAG lasers locked to a Fabry-Perot interferometer,” IEEE J. Quantum Electron. 28(4), 1106–1117 (1992).
  10. Q. Zhang, Y. Zhu, X. Luo, G. Liu, and M. Han, “Acoustic emission sensor system using a chirped fiber-Bragg-grating Fabry-Perot interferometer and smart feedback control,” Opt. Lett. 42(3), 631–634 (2017).
    [PubMed]
  11. Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-Optic Pressure Sensor Based on π -Phase-Shifted Fiber Bragg Grating on Side-Hole Fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).
  12. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a pi-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16(3), 1945–1950 (2008).
    [PubMed]
  13. J. H. Chow, I. C. Littler, G. De Vine, D. E. McClelland, and M. B. Gray, “Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications,” J. Lightwave Technol. 23(5), 1881–1889 (2005).
  14. Y. Yoshikuni, K. Oe, G. Motosugi, and T. Matsuoka, “Broad wavelength tuning under single-mode oscillation with a multi-electrode distributed feedback laser,” Electron. Lett. 22(22), 1153–1154 (1986).
  15. M. Kuznetsov, “Theory of wavelength tuning in two-segment distributed feedback lasers,” IEEE J. Quantum Electron. 24(9), 1837–1844 (1988).

2017 (1)

2013 (1)

2012 (3)

Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
[PubMed]

T. Q. Liu and M. Han, “Analysis of pi-Phase-Shifted Fiber Bragg Gratings for Ultrasonic Detection,” IEEE Sens. J. 12(7), 2368–2373 (2012).

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-Optic Pressure Sensor Based on π -Phase-Shifted Fiber Bragg Grating on Side-Hole Fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).

2011 (1)

2008 (1)

2005 (1)

2003 (1)

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003).

2002 (1)

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75(6), 613–619 (2002).

2001 (1)

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).

1992 (1)

T. Day, E. K. Gustafson, and R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd: YAG lasers locked to a Fabry-Perot interferometer,” IEEE J. Quantum Electron. 28(4), 1106–1117 (1992).

1988 (1)

M. Kuznetsov, “Theory of wavelength tuning in two-segment distributed feedback lasers,” IEEE J. Quantum Electron. 24(9), 1837–1844 (1988).

1986 (1)

Y. Yoshikuni, K. Oe, G. Motosugi, and T. Matsuoka, “Broad wavelength tuning under single-mode oscillation with a multi-electrode distributed feedback laser,” Electron. Lett. 22(22), 1153–1154 (1986).

1983 (1)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).

Betz, D. C.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003).

Byer, R. L.

T. Day, E. K. Gustafson, and R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd: YAG lasers locked to a Fabry-Perot interferometer,” IEEE J. Quantum Electron. 28(4), 1106–1117 (1992).

Chow, J. H.

Cui, H. L.

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).

Culshaw, B.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003).

Day, T.

T. Day, E. K. Gustafson, and R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd: YAG lasers locked to a Fabry-Perot interferometer,” IEEE J. Quantum Electron. 28(4), 1106–1117 (1992).

De Vine, G.

Drever, R.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).

Fink, T.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-Optic Pressure Sensor Based on π -Phase-Shifted Fiber Bragg Grating on Side-Hole Fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).

Ford, G.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).

Galzerano, G.

Gatti, D.

Gawlik, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75(6), 613–619 (2002).

Gray, M. B.

Gustafson, E. K.

T. Day, E. K. Gustafson, and R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd: YAG lasers locked to a Fabry-Perot interferometer,” IEEE J. Quantum Electron. 28(4), 1106–1117 (1992).

Hall, J. L.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).

Han, M.

Q. Zhang, Y. Zhu, X. Luo, G. Liu, and M. Han, “Acoustic emission sensor system using a chirped fiber-Bragg-grating Fabry-Perot interferometer and smart feedback control,” Opt. Lett. 42(3), 631–634 (2017).
[PubMed]

M. Han, T. Liu, L. Hu, and Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express 21(24), 29269–29276 (2013).
[PubMed]

T. Q. Liu and M. Han, “Analysis of pi-Phase-Shifted Fiber Bragg Gratings for Ultrasonic Detection,” IEEE Sens. J. 12(7), 2368–2373 (2012).

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-Optic Pressure Sensor Based on π -Phase-Shifted Fiber Bragg Grating on Side-Hole Fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).

Hough, J.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).

Hu, L.

Janner, D.

Kowalski, F.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).

Kuznetsov, M.

M. Kuznetsov, “Theory of wavelength tuning in two-segment distributed feedback lasers,” IEEE J. Quantum Electron. 24(9), 1837–1844 (1988).

Laporta, P.

Li, H.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-Optic Pressure Sensor Based on π -Phase-Shifted Fiber Bragg Grating on Side-Hole Fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).

Littler, I. C.

Liu, G.

Liu, N.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-Optic Pressure Sensor Based on π -Phase-Shifted Fiber Bragg Grating on Side-Hole Fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).

Liu, T.

Liu, T. Q.

T. Q. Liu and M. Han, “Analysis of pi-Phase-Shifted Fiber Bragg Gratings for Ultrasonic Detection,” IEEE Sens. J. 12(7), 2368–2373 (2012).

Longhi, S.

Luo, X.

Matsuoka, T.

Y. Yoshikuni, K. Oe, G. Motosugi, and T. Matsuoka, “Broad wavelength tuning under single-mode oscillation with a multi-electrode distributed feedback laser,” Electron. Lett. 22(22), 1153–1154 (1986).

McClelland, D. E.

Motosugi, G.

Y. Yoshikuni, K. Oe, G. Motosugi, and T. Matsuoka, “Broad wavelength tuning under single-mode oscillation with a multi-electrode distributed feedback laser,” Electron. Lett. 22(22), 1153–1154 (1986).

Munley, A.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).

Ntziachristos, V.

Oe, K.

Y. Yoshikuni, K. Oe, G. Motosugi, and T. Matsuoka, “Broad wavelength tuning under single-mode oscillation with a multi-electrode distributed feedback laser,” Electron. Lett. 22(22), 1153–1154 (1986).

Okabe, Y.

Peng, W.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-Optic Pressure Sensor Based on π -Phase-Shifted Fiber Bragg Grating on Side-Hole Fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).

Perez, I. M.

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).

Razansky, D.

Rosenthal, A.

Staszewski, W. J.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003).

Thursby, G.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003).

Udd, E.

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).

Ward, H.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).

Wasik, G.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75(6), 613–619 (2002).

Wu, Q.

Yoshikuni, Y.

Y. Yoshikuni, K. Oe, G. Motosugi, and T. Matsuoka, “Broad wavelength tuning under single-mode oscillation with a multi-electrode distributed feedback laser,” Electron. Lett. 22(22), 1153–1154 (1986).

Zachorowski, J.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75(6), 613–619 (2002).

Zawadzki, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75(6), 613–619 (2002).

Zhang, Q.

Zhu, Y.

Appl. Phys. B (2)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75(6), 613–619 (2002).

Electron. Lett. (1)

Y. Yoshikuni, K. Oe, G. Motosugi, and T. Matsuoka, “Broad wavelength tuning under single-mode oscillation with a multi-electrode distributed feedback laser,” Electron. Lett. 22(22), 1153–1154 (1986).

IEEE J. Quantum Electron. (2)

M. Kuznetsov, “Theory of wavelength tuning in two-segment distributed feedback lasers,” IEEE J. Quantum Electron. 24(9), 1837–1844 (1988).

T. Day, E. K. Gustafson, and R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd: YAG lasers locked to a Fabry-Perot interferometer,” IEEE J. Quantum Electron. 28(4), 1106–1117 (1992).

IEEE Photonics Technol. Lett. (1)

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-Optic Pressure Sensor Based on π -Phase-Shifted Fiber Bragg Grating on Side-Hole Fiber,” IEEE Photonics Technol. Lett. 24(17), 1519–1522 (2012).

IEEE Sens. J. (1)

T. Q. Liu and M. Han, “Analysis of pi-Phase-Shifted Fiber Bragg Gratings for Ultrasonic Detection,” IEEE Sens. J. 12(7), 2368–2373 (2012).

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (1)

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).

Smart Mater. Struct. (1)

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of a conventional method to lock the laser wavelength to the spectral slope of the sensor using the reflection from the ultrasonic sensor. (b) The error signal vs. wavelength for intensity-based wavelength locking.
Fig. 2
Fig. 2 Layout of the proposed method for locking the laser wavelength to a spectral slope of the sensor. (a) is the optical part of the system; (b) shows the diagram to retrieve the error signal from the PD output.
Fig. 3
Fig. 3 Error signal vs. normalized relative wavelength when the laser is locked to (a) the side with negative spectrum slope and (b) the side with positive spectrum slope.
Fig. 4
Fig. 4 Schematics of the experiment setup for demonstration of laser wavelength locking and ultrasonic detection.
Fig. 5
Fig. 5 The reflection spectrum of the sensor at different light intensity levels (a) and the corresponding error signal vs. wavelength (b).
Fig. 6
Fig. 6 Error signal at different intensity modulation depths relative to the sensor reflection spectrum when the wavelength modulation depth from (a) a = 0.04 (b) a = 0.05.
Fig. 7
Fig. 7 (a) The strength of the detected ultrasonic signals (represented by the rms value of the signal) vs. light intensity. (b) Detected ultrasonic signals at different light intensity levels.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I(t)= I 0 (1+acosΩt)(1+bcosΩt)(R+k λ m cosΩt) 
I( t ) I 0 { R+[ R( a+b )+k λ m ]cosΩt }
ϵ I 0 [ R( a+b )+k λ m ]
R=1 e ( λ λ 0 δλ ) 2
k= dR dλ = 2( λ λ 0 ) δλ e ( λ λ 0 δλ ) 2
ϵ [ 1 e ( λ λ 0 δλ ) 2 ]( a+b )+ 2( λ λ 0 ) λ m δ λ 2 e ( λ λ 0 δλ ) 2
x=( λ λ 0 )/δλ
y= λ m /δλ a+b
ϵ[ 1+( 2xy1 ) e x 2 ]
I(t)= I 0 (1+acosΩt)(1+bcosΩt)(Rk λ m cosΩt) 
ϵ[ 1( 2xy+1 ) e x 2 ]

Metrics