Abstract

In satellite laser communication systems, accurate positioning of the beacon is essential for establishing a steady laser communication link. For satellite-to-ground optical communication, the main influencing factors on the acquisition of the beacon are background noise and atmospheric turbulence. In this paper, we consider the influence of background noise and atmospheric turbulence on the beacon in satellite-to-ground optical communication, and propose a new locating algorithm for the beacon, which takes the correlation coefficient obtained by curve fitting for image data as weights. By performing a long distance laser communication experiment (11.16 km), we verified the feasibility of this method. Both simulation and experiment showed that the new algorithm can accurately obtain the position of the centroid of beacon. Furthermore, for the distortion of the light spot through atmospheric turbulence, the locating accuracy of the new algorithm was 50% higher than that of the conventional gray centroid algorithm. This new approach will be beneficial for the design of satellite-to ground optical communication systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quick acquisition and recognition method for the beacon in deep space optical communications

Qiang Wang, Yuefei Liu, Jing Ma, Liying Tan, Siyuan Yu, and Changjiang Li
Appl. Opt. 55(34) 9738-9743 (2016)

Low-loss reciprocal optical terminals for two-way time-frequency transfer

W. C. Swann, L. C. Sinclair, I. Khader, H. Bergeron, J.-D. Deschênes, and N. R. Newbury
Appl. Opt. 56(34) 9406-9413 (2017)

Research on the standards of indicators associated with maintain time in bidirectional beam tracking in inter-satellites optical communication links

Siyuan Yu, Feng Wu, Liying Tan, Pengzhen Guo, and Jing Ma
Opt. Express 23(21) 27618-27626 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. Sodnik, H. Lutz, and B. Furch, “Optical satellite communications in Europe,” Proc. SPIE 7587, 1–9 (2010).
  2. M. Toyoshima, T. Fuse, and D. R. Kolev, “Current status of research and development on space laser communications technologies and future plans in NICT,” in Proceedings of 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), 1–5 (2015).
  3. V. Sharma and N. Kumar, “Improved analysis of 2.5 Gbps-inter-satellite link (ISL) in inter-satellite optical-wireless communication (IsOWC) system,” Opt. Commun. 64 (2013), 99–102 (2013).
  4. M. K. Arti, “Two-way satellite relaying with estimated channel gains,” IEEE Trans. Commun. 64(7), 2808–2820 (2016).
  5. R. Manav, “Making two-way satellite relaying feasible: a differential modulation based approach,” IEEE Trans. Commun. 63(8), 2836–2845 (2015).
  6. K. Miyatake, Y. Fujii, and M. Haruna, “Development of acquisition and tracking sensor for next-generation optical inter-satellite communication,” Space Optical Systems and Applications (ICSOS) 2011 International Conference on, 132–135 (2011).
  7. X. Ma, C. Rao, and H. Zheng, “Variance analysis of CCD-based point source centroid computation under the background light,” Opt. Express 17(10), 8525–8541 (2009).
    [PubMed]
  8. J. H. Campbell, R. A. Hawley-Fedder, and C. J. Stolz, “NIF optical materials and fabrication technologies,” Proc. SPIE 5341, 84–101 (2004).
  9. J. Ma, S. Jiang, S. Yu, L. Tan, Q. Yang, and Q. Yang, “Research on real time detection of departure angle for the laser beam through atmospheric channels,” Appl. Opt. 50(29), 5615–5623 (2011).
    [PubMed]
  10. H. L. Liu, W. Hou, Y. L. Fan, W. G. Ding, and S. Y. Wan, “An improved algorithm of laser spot center location,” Comput. Meas. Control 22(1), 139–141 (2014).
  11. K. M. Birnbaum, A. Sahasrabudhe, and W. H. Farr, “Separating and tracking multiple beacon sources for deep space optical communications,” Proc. SPIE 7587, 75870Q (2010).
  12. C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
    [PubMed]
  13. Q. Wang, L. Tan, J. Ma, S. Yu, and Y. Jiang, “A novel approach for simulating the optical misalignment caused by satellite platform vibration in the ground test of satellite optical communication systems,” Opt. Express 20(2), 1033–1045 (2012).
    [PubMed]
  14. C. Leroux and C. Dainty, “A simple and robust method to extend the dynamic range of an aberrometer,” Opt. Express 17(21), 19055–19061 (2009).
    [PubMed]
  15. S. Q. Jiang, Research on algorithm for precision tracking departure angle in satellite-ground laser links (Academic, 2014), Chap. 2.
  16. Y. Jiang, J. Ma, L. Tan, S. Yu, and W. Du, “Measurement of optical intensity fluctuation over an 11.8 km turbulent path,” Opt. Express 16(10), 6963–6973 (2008).
    [PubMed]

2016 (1)

M. K. Arti, “Two-way satellite relaying with estimated channel gains,” IEEE Trans. Commun. 64(7), 2808–2820 (2016).

2015 (1)

R. Manav, “Making two-way satellite relaying feasible: a differential modulation based approach,” IEEE Trans. Commun. 63(8), 2836–2845 (2015).

2014 (1)

H. L. Liu, W. Hou, Y. L. Fan, W. G. Ding, and S. Y. Wan, “An improved algorithm of laser spot center location,” Comput. Meas. Control 22(1), 139–141 (2014).

2013 (1)

V. Sharma and N. Kumar, “Improved analysis of 2.5 Gbps-inter-satellite link (ISL) in inter-satellite optical-wireless communication (IsOWC) system,” Opt. Commun. 64 (2013), 99–102 (2013).

2012 (1)

2011 (1)

2010 (1)

Z. Sodnik, H. Lutz, and B. Furch, “Optical satellite communications in Europe,” Proc. SPIE 7587, 1–9 (2010).

2009 (2)

2008 (1)

2005 (1)

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

2004 (1)

J. H. Campbell, R. A. Hawley-Fedder, and C. J. Stolz, “NIF optical materials and fabrication technologies,” Proc. SPIE 5341, 84–101 (2004).

Arti, M. K.

M. K. Arti, “Two-way satellite relaying with estimated channel gains,” IEEE Trans. Commun. 64(7), 2808–2820 (2016).

Bao, X. H.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

Campbell, J. H.

J. H. Campbell, R. A. Hawley-Fedder, and C. J. Stolz, “NIF optical materials and fabrication technologies,” Proc. SPIE 5341, 84–101 (2004).

Dainty, C.

Ding, W. G.

H. L. Liu, W. Hou, Y. L. Fan, W. G. Ding, and S. Y. Wan, “An improved algorithm of laser spot center location,” Comput. Meas. Control 22(1), 139–141 (2014).

Du, W.

Fan, Y. L.

H. L. Liu, W. Hou, Y. L. Fan, W. G. Ding, and S. Y. Wan, “An improved algorithm of laser spot center location,” Comput. Meas. Control 22(1), 139–141 (2014).

Feng, F. Y.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

Furch, B.

Z. Sodnik, H. Lutz, and B. Furch, “Optical satellite communications in Europe,” Proc. SPIE 7587, 1–9 (2010).

Fuse, T.

M. Toyoshima, T. Fuse, and D. R. Kolev, “Current status of research and development on space laser communications technologies and future plans in NICT,” in Proceedings of 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), 1–5 (2015).

Hawley-Fedder, R. A.

J. H. Campbell, R. A. Hawley-Fedder, and C. J. Stolz, “NIF optical materials and fabrication technologies,” Proc. SPIE 5341, 84–101 (2004).

Hou, W.

H. L. Liu, W. Hou, Y. L. Fan, W. G. Ding, and S. Y. Wan, “An improved algorithm of laser spot center location,” Comput. Meas. Control 22(1), 139–141 (2014).

Jiang, S.

Jiang, Y.

Jin, X. M.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

Kolev, D. R.

M. Toyoshima, T. Fuse, and D. R. Kolev, “Current status of research and development on space laser communications technologies and future plans in NICT,” in Proceedings of 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), 1–5 (2015).

Kumar, N.

V. Sharma and N. Kumar, “Improved analysis of 2.5 Gbps-inter-satellite link (ISL) in inter-satellite optical-wireless communication (IsOWC) system,” Opt. Commun. 64 (2013), 99–102 (2013).

Leroux, C.

Li, N.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

Liu, H. L.

H. L. Liu, W. Hou, Y. L. Fan, W. G. Ding, and S. Y. Wan, “An improved algorithm of laser spot center location,” Comput. Meas. Control 22(1), 139–141 (2014).

Lutz, H.

Z. Sodnik, H. Lutz, and B. Furch, “Optical satellite communications in Europe,” Proc. SPIE 7587, 1–9 (2010).

Ma, J.

Ma, X.

Manav, R.

R. Manav, “Making two-way satellite relaying feasible: a differential modulation based approach,” IEEE Trans. Commun. 63(8), 2836–2845 (2015).

Pan, J. W.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

Peng, C. Z.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

Rao, C.

Sharma, V.

V. Sharma and N. Kumar, “Improved analysis of 2.5 Gbps-inter-satellite link (ISL) in inter-satellite optical-wireless communication (IsOWC) system,” Opt. Commun. 64 (2013), 99–102 (2013).

Sodnik, Z.

Z. Sodnik, H. Lutz, and B. Furch, “Optical satellite communications in Europe,” Proc. SPIE 7587, 1–9 (2010).

Stolz, C. J.

J. H. Campbell, R. A. Hawley-Fedder, and C. J. Stolz, “NIF optical materials and fabrication technologies,” Proc. SPIE 5341, 84–101 (2004).

Tan, L.

Tian, B. L.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

Toyoshima, M.

M. Toyoshima, T. Fuse, and D. R. Kolev, “Current status of research and development on space laser communications technologies and future plans in NICT,” in Proceedings of 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), 1–5 (2015).

Wan, S. Y.

H. L. Liu, W. Hou, Y. L. Fan, W. G. Ding, and S. Y. Wan, “An improved algorithm of laser spot center location,” Comput. Meas. Control 22(1), 139–141 (2014).

Wang, Q.

Yang, B.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

Yang, J.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

Yang, Q.

Yang, T.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

Yin, J.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

Yu, S.

Zhang, J.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

Zhang, Q.

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

Zheng, H.

Appl. Opt. (1)

Comput. Meas. Control (1)

H. L. Liu, W. Hou, Y. L. Fan, W. G. Ding, and S. Y. Wan, “An improved algorithm of laser spot center location,” Comput. Meas. Control 22(1), 139–141 (2014).

IEEE Trans. Commun. (2)

M. K. Arti, “Two-way satellite relaying with estimated channel gains,” IEEE Trans. Commun. 64(7), 2808–2820 (2016).

R. Manav, “Making two-way satellite relaying feasible: a differential modulation based approach,” IEEE Trans. Commun. 63(8), 2836–2845 (2015).

Opt. Commun. (1)

V. Sharma and N. Kumar, “Improved analysis of 2.5 Gbps-inter-satellite link (ISL) in inter-satellite optical-wireless communication (IsOWC) system,” Opt. Commun. 64 (2013), 99–102 (2013).

Opt. Express (4)

Phys. Rev. Lett. (1)

C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94(15), 150501 (2005).
[PubMed]

Proc. SPIE (2)

J. H. Campbell, R. A. Hawley-Fedder, and C. J. Stolz, “NIF optical materials and fabrication technologies,” Proc. SPIE 5341, 84–101 (2004).

Z. Sodnik, H. Lutz, and B. Furch, “Optical satellite communications in Europe,” Proc. SPIE 7587, 1–9 (2010).

Other (4)

M. Toyoshima, T. Fuse, and D. R. Kolev, “Current status of research and development on space laser communications technologies and future plans in NICT,” in Proceedings of 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), 1–5 (2015).

K. Miyatake, Y. Fujii, and M. Haruna, “Development of acquisition and tracking sensor for next-generation optical inter-satellite communication,” Space Optical Systems and Applications (ICSOS) 2011 International Conference on, 132–135 (2011).

S. Q. Jiang, Research on algorithm for precision tracking departure angle in satellite-ground laser links (Academic, 2014), Chap. 2.

K. M. Birnbaum, A. Sahasrabudhe, and W. H. Farr, “Separating and tracking multiple beacon sources for deep space optical communications,” Proc. SPIE 7587, 75870Q (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Flow chart of the new algorithm.

Fig. 2
Fig. 2

The gray-scale image.

Fig. 3
Fig. 3

Light intensity distribution.

Fig. 4
Fig. 4

The image with impulse noise.

Fig. 5
Fig. 5

The gray-scale image with impulse noise.

Fig. 6
Fig. 6

Average centroid errors with different algorithms.

Fig. 7
Fig. 7

The experimental setup.

Fig. 8
Fig. 8

Tracking error with different algorithms in near field experiment.

Fig. 9
Fig. 9

Transmitting and receiving devices.

Fig. 10
Fig. 10

Light intensity distribution through atmospheric turbulence and the corresponding gray-scale image.

Fig. 11
Fig. 11

Tracking error with different algorithms in far field experiment.

Tables (2)

Tables Icon

Table 1 Simulation results of the laser spots

Tables Icon

Table 2 Comparison results of two different algorithms

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

x c = i=1 M j=1 N i × f ij i=1 M j=1 N f ij , y c = i=1 M j=1 N j × f ij i=1 M j=1 N f ij
R ij = ( i=1 7 K m 2 m=1 7 K m 2 m=1 7 ( K m P m ) 2 ) 1 2
x r = i=1 M j=1 N i× R ij i=1 M j=1 N R ij
y r = i=1 M j=1 N j× R ij i=1 M j=1 N R ij
C n 2 σ α 2 1.093 zD -1/3