Abstract

Full exploitation of fibre Raman probes has been limited by the obstruction of weak Raman signals by background fluorescence of the sample and the intrinsic Raman signal of the delivery fibre. Here we utilised functionalised gold nanoshells (NS) to take advantage of the surface-enhanced Raman spectroscopy (SERS) effect to enhance the pH responsive spectrum of 4-mercaptobenzoic acid (MBA). However, the fibre background is still dominant. Using the photon arrival time-resolving capability of a CMOS single-photon avalanche diode (SPAD) based line sensor, we recover the SERS spectrum without a fibre background in a 10 s measurement. In this manner, pH sensing through a multimode fibre at a low excitation power that is safe for future in vivo applications, with short acquisition times (10 or 60 s), is demonstrated. A measurement precision of ± 0.07 pH units is thus achieved.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Optical fibre-tip probes for SERS: numerical study for design considerations

Tanya Hutter, Stephen R. Elliott, and Sumeet Mahajan
Opt. Express 26(12) 15539-15550 (2018)

Ballistic and snake photon imaging for locating optical endomicroscopy fibres

M. G. Tanner, T. R. Choudhary, T. H. Craven, B. Mills, M. Bradley, R. K. Henderson, K. Dhaliwal, and R. R. Thomson
Biomed. Opt. Express 8(9) 4077-4095 (2017)

Endoscopic sensing of alveolar pH

D. Choudhury, M. G. Tanner, S. McAughtrie, F. Yu, B. Mills, T. R. Choudhary, S. Seth, T. H. Craven, J. M. Stone, I. K. Mati, C. J. Campbell, M. Bradley, C. K. I. Williams, K. Dhaliwal, T. A. Birks, and R. R. Thomson
Biomed. Opt. Express 8(1) 243-259 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
    [PubMed]
  2. P. Crow, B. Barrass, C. Kendall, M. Hart-Prieto, M. Wright, R. Persad, and N. Stone, “The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines,” Br. J. Cancer 92(12), 2166–2170 (2005).
    [PubMed]
  3. C. A. Lieber, H. E. Nethercott, and M. H. Kabeer, “Cancer field effects in normal tissues revealed by Raman spectroscopy,” Biomed. Opt. Express 1(3), 975–982 (2010).
    [PubMed]
  4. E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
    [PubMed]
  5. O. Stevens, I. E. Iping Petterson, J. C. C. Day, and N. Stone, “Developing fibre optic Raman probes for applications in clinical spectroscopy,” Chem. Soc. Rev. 45(7), 1919–1934 (2016).
    [PubMed]
  6. M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, “Study of Fiber-Optic Probes for in Vivo Medical Raman Spectroscopy,” Appl. Spectrosc. 53, 619–627 (1999).
  7. D. Wei, S. Chen, and Q. Liu, “Review of Fluorescence Suppression Techniques in Raman Spectroscopy,” Appl. Spectrosc. Rev. 50, 387–406 (2015).
  8. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
    [PubMed]
  9. J. C. C. Day and N. Stone, “A Subcutaneous Raman Needle Probe,” Appl. Spectrosc. 67(3), 349–354 (2013).
    [PubMed]
  10. D. Choudhury, M. G. Tanner, S. McAughtrie, F. Yu, B. Mills, T. R. Choudhary, S. Seth, T. H. Craven, J. M. Stone, I. K. Mati, C. J. Campbell, M. Bradley, C. K. I. Williams, K. Dhaliwal, T. A. Birks, and R. R. Thomson, “Endoscopic sensing of alveolar pH,” Biomed. Opt. Express 8(1), 243–259 (2016).
    [PubMed]
  11. I. Gusachenko, M. Chen, and K. Dholakia, “Raman imaging through a single multimode fibre,” Opt. Express 25(12), 13782–13798 (2017).
    [PubMed]
  12. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer Berlin Heidelberg, 2005).
  13. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241 (1998).
  14. P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem. 394(7), 1761–1774 (2009).
    [PubMed]
  15. S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
    [PubMed]
  16. T. Rojalin, L. Kurki, T. Laaksonen, T. Viitala, J. Kostamovaara, K. C. Gordon, L. Galvis, S. Wachsmann-Hogiu, C. J. Strachan, and M. Yliperttula, “Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector,” Anal. Bioanal. Chem. 408(3), 761–774 (2016).
    [PubMed]
  17. J. Kostamovaara, J. Tenhunen, M. Kögler, I. Nissinen, J. Nissinen, and P. Keränen, “Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD,” Opt. Express 21(25), 31632–31645 (2013).
    [PubMed]
  18. I. Nissinen, J. Nissinen, P. Keränen, A. K. Länsman, J. Holma, and J. Kostamovaara, “A Multitime-Gated SPAD Line Detector for Pulsed Raman Spectroscopy,” IEEE Sens. J. 15, 1358–1365 (2015).
  19. C. Zhang, L. Zhang, R. Yang, K. Liang, and D. Han, “Time-Correlated Raman and Fluorescence Spectroscopy Based on a Silicon Photomultiplier and Time-Correlated Single Photon Counting Technique,” Appl. Spectrosc. 67(2), 136–140 (2013).
    [PubMed]
  20. K. Ehrlich, A. Kufcsák, N. Krstajić, R. K. Henderson, R. R. Thomson, and M. G. Tanner, “Fibre optic time-resolved spectroscopy using CMOS-SPAD arrays,” Proc. SPIE 10058, 100580H (2017).
  21. E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology,” IEEE Electron Device Lett. 33, 1589–1591 (2012).
  22. N. Krstajić, J. Levitt, S. Poland, S. Ameer-Beg, and R. Henderson, “256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy,” Opt. Express 23(5), 5653–5669 (2015).
    [PubMed]
  23. A. Kufcsák, A. Erdogan, R. Walker, K. Ehrlich, M. Tanner, A. Megia-Fernandez, E. Scholefield, P. Emanuel, K. Dhaliwal, M. Bradley, R. K. Henderson, and N. Krstajić, “Time-resolved spectroscopy at 19,000 lines per second using a CMOS SPAD line array enables advanced biophotonics applications,” Opt. Express 25(10), 11103–11123 (2017).
    [PubMed]
  24. A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, and R. K. Henderson, “A 16.5 giga events/s 1024 x 8 SPAD line sensor with per-pixel zoomable 50ps-6.4ns/bin histogramming TDC,” in 2017 Symposium on VLSI Circuits (2017), pp. C292–C293.
  25. P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).
  26. J. Holma, I. Nissinen, J. Nissinen, and J. Kostamovaara, “Characterization of the Timing Homogeneity in a CMOS SPAD Array Designed for Time-Gated Raman Spectroscopy,” IEEE Trans. Instrum. Meas. 66, 1837–1844 (2017).
  27. S. A. Grant and R. S. Glass, “Sol-gel-based biosensor for use in stroke treatment,” IEEE Trans. Biomed. Eng. 46(10), 1207–1211 (1999).

2017 (4)

K. Ehrlich, A. Kufcsák, N. Krstajić, R. K. Henderson, R. R. Thomson, and M. G. Tanner, “Fibre optic time-resolved spectroscopy using CMOS-SPAD arrays,” Proc. SPIE 10058, 100580H (2017).

J. Holma, I. Nissinen, J. Nissinen, and J. Kostamovaara, “Characterization of the Timing Homogeneity in a CMOS SPAD Array Designed for Time-Gated Raman Spectroscopy,” IEEE Trans. Instrum. Meas. 66, 1837–1844 (2017).

A. Kufcsák, A. Erdogan, R. Walker, K. Ehrlich, M. Tanner, A. Megia-Fernandez, E. Scholefield, P. Emanuel, K. Dhaliwal, M. Bradley, R. K. Henderson, and N. Krstajić, “Time-resolved spectroscopy at 19,000 lines per second using a CMOS SPAD line array enables advanced biophotonics applications,” Opt. Express 25(10), 11103–11123 (2017).
[PubMed]

I. Gusachenko, M. Chen, and K. Dholakia, “Raman imaging through a single multimode fibre,” Opt. Express 25(12), 13782–13798 (2017).
[PubMed]

2016 (3)

D. Choudhury, M. G. Tanner, S. McAughtrie, F. Yu, B. Mills, T. R. Choudhary, S. Seth, T. H. Craven, J. M. Stone, I. K. Mati, C. J. Campbell, M. Bradley, C. K. I. Williams, K. Dhaliwal, T. A. Birks, and R. R. Thomson, “Endoscopic sensing of alveolar pH,” Biomed. Opt. Express 8(1), 243–259 (2016).
[PubMed]

T. Rojalin, L. Kurki, T. Laaksonen, T. Viitala, J. Kostamovaara, K. C. Gordon, L. Galvis, S. Wachsmann-Hogiu, C. J. Strachan, and M. Yliperttula, “Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector,” Anal. Bioanal. Chem. 408(3), 761–774 (2016).
[PubMed]

O. Stevens, I. E. Iping Petterson, J. C. C. Day, and N. Stone, “Developing fibre optic Raman probes for applications in clinical spectroscopy,” Chem. Soc. Rev. 45(7), 1919–1934 (2016).
[PubMed]

2015 (3)

D. Wei, S. Chen, and Q. Liu, “Review of Fluorescence Suppression Techniques in Raman Spectroscopy,” Appl. Spectrosc. Rev. 50, 387–406 (2015).

I. Nissinen, J. Nissinen, P. Keränen, A. K. Länsman, J. Holma, and J. Kostamovaara, “A Multitime-Gated SPAD Line Detector for Pulsed Raman Spectroscopy,” IEEE Sens. J. 15, 1358–1365 (2015).

N. Krstajić, J. Levitt, S. Poland, S. Ameer-Beg, and R. Henderson, “256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy,” Opt. Express 23(5), 5653–5669 (2015).
[PubMed]

2013 (3)

2012 (1)

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology,” IEEE Electron Device Lett. 33, 1589–1591 (2012).

2010 (1)

2009 (1)

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem. 394(7), 1761–1774 (2009).
[PubMed]

2006 (1)

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[PubMed]

2005 (1)

P. Crow, B. Barrass, C. Kendall, M. Hart-Prieto, M. Wright, R. Persad, and N. Stone, “The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines,” Br. J. Cancer 92(12), 2166–2170 (2005).
[PubMed]

2004 (1)

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
[PubMed]

2003 (1)

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[PubMed]

2001 (1)

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).

2000 (1)

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[PubMed]

1999 (2)

S. A. Grant and R. S. Glass, “Sol-gel-based biosensor for use in stroke treatment,” IEEE Trans. Biomed. Eng. 46(10), 1207–1211 (1999).

M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, “Study of Fiber-Optic Probes for in Vivo Medical Raman Spectroscopy,” Appl. Spectrosc. 53, 619–627 (1999).

1998 (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241 (1998).

Ameer-Beg, S.

Barr, H.

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
[PubMed]

Barrass, B.

P. Crow, B. Barrass, C. Kendall, M. Hart-Prieto, M. Wright, R. Persad, and N. Stone, “The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines,” Br. J. Cancer 92(12), 2166–2170 (2005).
[PubMed]

Birks, T. A.

Bishnoi, S. W.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[PubMed]

Bradley, M.

Campbell, C. J.

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241 (1998).

Chen, M.

Chen, S.

D. Wei, S. Chen, and Q. Liu, “Review of Fluorescence Suppression Techniques in Raman Spectroscopy,” Appl. Spectrosc. Rev. 50, 387–406 (2015).

Choudhary, T. R.

Choudhury, D.

Craven, T. H.

Crow, P.

P. Crow, B. Barrass, C. Kendall, M. Hart-Prieto, M. Wright, R. Persad, and N. Stone, “The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines,” Br. J. Cancer 92(12), 2166–2170 (2005).
[PubMed]

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
[PubMed]

Dasari, R. R.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[PubMed]

Day, J. C. C.

O. Stevens, I. E. Iping Petterson, J. C. C. Day, and N. Stone, “Developing fibre optic Raman probes for applications in clinical spectroscopy,” Chem. Soc. Rev. 45(7), 1919–1934 (2016).
[PubMed]

J. C. C. Day and N. Stone, “A Subcutaneous Raman Needle Probe,” Appl. Spectrosc. 67(3), 349–354 (2013).
[PubMed]

Dhaliwal, K.

Dholakia, K.

Ehrlich, K.

Emanuel, P.

Erdogan, A.

Erdogan, A. T.

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, and R. K. Henderson, “A 16.5 giga events/s 1024 x 8 SPAD line sensor with per-pixel zoomable 50ps-6.4ns/bin histogramming TDC,” in 2017 Symposium on VLSI Circuits (2017), pp. C292–C293.

Feld, M. S.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[PubMed]

Finlayson, N.

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, and R. K. Henderson, “A 16.5 giga events/s 1024 x 8 SPAD line sensor with per-pixel zoomable 50ps-6.4ns/bin histogramming TDC,” in 2017 Symposium on VLSI Circuits (2017), pp. C292–C293.

Fitzmaurice, M.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[PubMed]

Galvis, L.

T. Rojalin, L. Kurki, T. Laaksonen, T. Viitala, J. Kostamovaara, K. C. Gordon, L. Galvis, S. Wachsmann-Hogiu, C. J. Strachan, and M. Yliperttula, “Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector,” Anal. Bioanal. Chem. 408(3), 761–774 (2016).
[PubMed]

Gheith, M. K.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[PubMed]

Glass, R. S.

S. A. Grant and R. S. Glass, “Sol-gel-based biosensor for use in stroke treatment,” IEEE Trans. Biomed. Eng. 46(10), 1207–1211 (1999).

Gordon, K. C.

T. Rojalin, L. Kurki, T. Laaksonen, T. Viitala, J. Kostamovaara, K. C. Gordon, L. Galvis, S. Wachsmann-Hogiu, C. J. Strachan, and M. Yliperttula, “Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector,” Anal. Bioanal. Chem. 408(3), 761–774 (2016).
[PubMed]

Grant, L. A.

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology,” IEEE Electron Device Lett. 33, 1589–1591 (2012).

Grant, S. A.

S. A. Grant and R. S. Glass, “Sol-gel-based biosensor for use in stroke treatment,” IEEE Trans. Biomed. Eng. 46(10), 1207–1211 (1999).

Gusachenko, I.

Halas, N. J.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[PubMed]

Han, D.

Hanlon, E. B.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[PubMed]

Hart-Prieto, M.

P. Crow, B. Barrass, C. Kendall, M. Hart-Prieto, M. Wright, R. Persad, and N. Stone, “The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines,” Br. J. Cancer 92(12), 2166–2170 (2005).
[PubMed]

Henderson, R.

Henderson, R. K.

A. Kufcsák, A. Erdogan, R. Walker, K. Ehrlich, M. Tanner, A. Megia-Fernandez, E. Scholefield, P. Emanuel, K. Dhaliwal, M. Bradley, R. K. Henderson, and N. Krstajić, “Time-resolved spectroscopy at 19,000 lines per second using a CMOS SPAD line array enables advanced biophotonics applications,” Opt. Express 25(10), 11103–11123 (2017).
[PubMed]

K. Ehrlich, A. Kufcsák, N. Krstajić, R. K. Henderson, R. R. Thomson, and M. G. Tanner, “Fibre optic time-resolved spectroscopy using CMOS-SPAD arrays,” Proc. SPIE 10058, 100580H (2017).

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology,” IEEE Electron Device Lett. 33, 1589–1591 (2012).

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, and R. K. Henderson, “A 16.5 giga events/s 1024 x 8 SPAD line sensor with per-pixel zoomable 50ps-6.4ns/bin histogramming TDC,” in 2017 Symposium on VLSI Circuits (2017), pp. C292–C293.

Holma, J.

J. Holma, I. Nissinen, J. Nissinen, and J. Kostamovaara, “Characterization of the Timing Homogeneity in a CMOS SPAD Array Designed for Time-Gated Raman Spectroscopy,” IEEE Trans. Instrum. Meas. 66, 1837–1844 (2017).

I. Nissinen, J. Nissinen, P. Keränen, A. K. Länsman, J. Holma, and J. Kostamovaara, “A Multitime-Gated SPAD Line Detector for Pulsed Raman Spectroscopy,” IEEE Sens. J. 15, 1358–1365 (2015).

Iping Petterson, I. E.

O. Stevens, I. E. Iping Petterson, J. C. C. Day, and N. Stone, “Developing fibre optic Raman probes for applications in clinical spectroscopy,” Chem. Soc. Rev. 45(7), 1919–1934 (2016).
[PubMed]

Itzkan, I.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[PubMed]

Johnson, B. R.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[PubMed]

Johnson, D. H.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[PubMed]

Kabeer, M. H.

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241 (1998).

Kendall, C.

P. Crow, B. Barrass, C. Kendall, M. Hart-Prieto, M. Wright, R. Persad, and N. Stone, “The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines,” Br. J. Cancer 92(12), 2166–2170 (2005).
[PubMed]

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
[PubMed]

Keränen, P.

I. Nissinen, J. Nissinen, P. Keränen, A. K. Länsman, J. Holma, and J. Kostamovaara, “A Multitime-Gated SPAD Line Detector for Pulsed Raman Spectroscopy,” IEEE Sens. J. 15, 1358–1365 (2015).

J. Kostamovaara, J. Tenhunen, M. Kögler, I. Nissinen, J. Nissinen, and P. Keränen, “Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD,” Opt. Express 21(25), 31632–31645 (2013).
[PubMed]

Kögler, M.

Koo, T.-W.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[PubMed]

Kostamovaara, J.

J. Holma, I. Nissinen, J. Nissinen, and J. Kostamovaara, “Characterization of the Timing Homogeneity in a CMOS SPAD Array Designed for Time-Gated Raman Spectroscopy,” IEEE Trans. Instrum. Meas. 66, 1837–1844 (2017).

T. Rojalin, L. Kurki, T. Laaksonen, T. Viitala, J. Kostamovaara, K. C. Gordon, L. Galvis, S. Wachsmann-Hogiu, C. J. Strachan, and M. Yliperttula, “Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector,” Anal. Bioanal. Chem. 408(3), 761–774 (2016).
[PubMed]

I. Nissinen, J. Nissinen, P. Keränen, A. K. Länsman, J. Holma, and J. Kostamovaara, “A Multitime-Gated SPAD Line Detector for Pulsed Raman Spectroscopy,” IEEE Sens. J. 15, 1358–1365 (2015).

J. Kostamovaara, J. Tenhunen, M. Kögler, I. Nissinen, J. Nissinen, and P. Keränen, “Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD,” Opt. Express 21(25), 31632–31645 (2013).
[PubMed]

Kramer, J. R.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[PubMed]

Krstajic, N.

K. Ehrlich, A. Kufcsák, N. Krstajić, R. K. Henderson, R. R. Thomson, and M. G. Tanner, “Fibre optic time-resolved spectroscopy using CMOS-SPAD arrays,” Proc. SPIE 10058, 100580H (2017).

A. Kufcsák, A. Erdogan, R. Walker, K. Ehrlich, M. Tanner, A. Megia-Fernandez, E. Scholefield, P. Emanuel, K. Dhaliwal, M. Bradley, R. K. Henderson, and N. Krstajić, “Time-resolved spectroscopy at 19,000 lines per second using a CMOS SPAD line array enables advanced biophotonics applications,” Opt. Express 25(10), 11103–11123 (2017).
[PubMed]

N. Krstajić, J. Levitt, S. Poland, S. Ameer-Beg, and R. Henderson, “256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy,” Opt. Express 23(5), 5653–5669 (2015).
[PubMed]

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, and R. K. Henderson, “A 16.5 giga events/s 1024 x 8 SPAD line sensor with per-pixel zoomable 50ps-6.4ns/bin histogramming TDC,” in 2017 Symposium on VLSI Circuits (2017), pp. C292–C293.

Kufcsák, A.

Kurki, L.

T. Rojalin, L. Kurki, T. Laaksonen, T. Viitala, J. Kostamovaara, K. C. Gordon, L. Galvis, S. Wachsmann-Hogiu, C. J. Strachan, and M. Yliperttula, “Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector,” Anal. Bioanal. Chem. 408(3), 761–774 (2016).
[PubMed]

Kwok, W. M.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).

Laaksonen, T.

T. Rojalin, L. Kurki, T. Laaksonen, T. Viitala, J. Kostamovaara, K. C. Gordon, L. Galvis, S. Wachsmann-Hogiu, C. J. Strachan, and M. Yliperttula, “Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector,” Anal. Bioanal. Chem. 408(3), 761–774 (2016).
[PubMed]

Länsman, A. K.

I. Nissinen, J. Nissinen, P. Keränen, A. K. Länsman, J. Holma, and J. Kostamovaara, “A Multitime-Gated SPAD Line Detector for Pulsed Raman Spectroscopy,” IEEE Sens. J. 15, 1358–1365 (2015).

Levin, C. S.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[PubMed]

Levitt, J.

Liang, K.

Lieber, C. A.

Liu, Q.

D. Wei, S. Chen, and Q. Liu, “Review of Fluorescence Suppression Techniques in Raman Spectroscopy,” Appl. Spectrosc. Rev. 50, 387–406 (2015).

Ma, C.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).

Manoharan, R.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[PubMed]

Marple, E.

Mati, I. K.

Matousek, P.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).

McAughtrie, S.

Megia-Fernandez, A.

Mills, B.

Motz, J. T.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[PubMed]

Nethercott, H. E.

Nissinen, I.

J. Holma, I. Nissinen, J. Nissinen, and J. Kostamovaara, “Characterization of the Timing Homogeneity in a CMOS SPAD Array Designed for Time-Gated Raman Spectroscopy,” IEEE Trans. Instrum. Meas. 66, 1837–1844 (2017).

I. Nissinen, J. Nissinen, P. Keränen, A. K. Länsman, J. Holma, and J. Kostamovaara, “A Multitime-Gated SPAD Line Detector for Pulsed Raman Spectroscopy,” IEEE Sens. J. 15, 1358–1365 (2015).

J. Kostamovaara, J. Tenhunen, M. Kögler, I. Nissinen, J. Nissinen, and P. Keränen, “Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD,” Opt. Express 21(25), 31632–31645 (2013).
[PubMed]

Nissinen, J.

J. Holma, I. Nissinen, J. Nissinen, and J. Kostamovaara, “Characterization of the Timing Homogeneity in a CMOS SPAD Array Designed for Time-Gated Raman Spectroscopy,” IEEE Trans. Instrum. Meas. 66, 1837–1844 (2017).

I. Nissinen, J. Nissinen, P. Keränen, A. K. Länsman, J. Holma, and J. Kostamovaara, “A Multitime-Gated SPAD Line Detector for Pulsed Raman Spectroscopy,” IEEE Sens. J. 15, 1358–1365 (2015).

J. Kostamovaara, J. Tenhunen, M. Kögler, I. Nissinen, J. Nissinen, and P. Keränen, “Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD,” Opt. Express 21(25), 31632–31645 (2013).
[PubMed]

Parker, A. W.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).

Persad, R.

P. Crow, B. Barrass, C. Kendall, M. Hart-Prieto, M. Wright, R. Persad, and N. Stone, “The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines,” Br. J. Cancer 92(12), 2166–2170 (2005).
[PubMed]

Phillips, D.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).

Poland, S.

Richards-Kortum, R. R.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[PubMed]

Rojalin, T.

T. Rojalin, L. Kurki, T. Laaksonen, T. Viitala, J. Kostamovaara, K. C. Gordon, L. Galvis, S. Wachsmann-Hogiu, C. J. Strachan, and M. Yliperttula, “Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector,” Anal. Bioanal. Chem. 408(3), 761–774 (2016).
[PubMed]

Rozell, C. J.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[PubMed]

Scholefield, E.

Seth, S.

Shafer, K. E.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[PubMed]

Shim, M. G.

Smith, J.

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
[PubMed]

Stevens, O.

O. Stevens, I. E. Iping Petterson, J. C. C. Day, and N. Stone, “Developing fibre optic Raman probes for applications in clinical spectroscopy,” Chem. Soc. Rev. 45(7), 1919–1934 (2016).
[PubMed]

Stoddart, P. R.

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem. 394(7), 1761–1774 (2009).
[PubMed]

Stone, J. M.

Stone, N.

O. Stevens, I. E. Iping Petterson, J. C. C. Day, and N. Stone, “Developing fibre optic Raman probes for applications in clinical spectroscopy,” Chem. Soc. Rev. 45(7), 1919–1934 (2016).
[PubMed]

J. C. C. Day and N. Stone, “A Subcutaneous Raman Needle Probe,” Appl. Spectrosc. 67(3), 349–354 (2013).
[PubMed]

P. Crow, B. Barrass, C. Kendall, M. Hart-Prieto, M. Wright, R. Persad, and N. Stone, “The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines,” Br. J. Cancer 92(12), 2166–2170 (2005).
[PubMed]

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
[PubMed]

Strachan, C. J.

T. Rojalin, L. Kurki, T. Laaksonen, T. Viitala, J. Kostamovaara, K. C. Gordon, L. Galvis, S. Wachsmann-Hogiu, C. J. Strachan, and M. Yliperttula, “Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector,” Anal. Bioanal. Chem. 408(3), 761–774 (2016).
[PubMed]

Tanner, M.

Tanner, M. G.

Tenhunen, J.

Thomson, R. R.

Toner, W. T.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).

Towrie, M.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).

Utzinger, U.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[PubMed]

Viitala, T.

T. Rojalin, L. Kurki, T. Laaksonen, T. Viitala, J. Kostamovaara, K. C. Gordon, L. Galvis, S. Wachsmann-Hogiu, C. J. Strachan, and M. Yliperttula, “Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector,” Anal. Bioanal. Chem. 408(3), 761–774 (2016).
[PubMed]

Wach, M.

Wachsmann-Hogiu, S.

T. Rojalin, L. Kurki, T. Laaksonen, T. Viitala, J. Kostamovaara, K. C. Gordon, L. Galvis, S. Wachsmann-Hogiu, C. J. Strachan, and M. Yliperttula, “Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector,” Anal. Bioanal. Chem. 408(3), 761–774 (2016).
[PubMed]

Walker, R.

A. Kufcsák, A. Erdogan, R. Walker, K. Ehrlich, M. Tanner, A. Megia-Fernandez, E. Scholefield, P. Emanuel, K. Dhaliwal, M. Bradley, R. K. Henderson, and N. Krstajić, “Time-resolved spectroscopy at 19,000 lines per second using a CMOS SPAD line array enables advanced biophotonics applications,” Opt. Express 25(10), 11103–11123 (2017).
[PubMed]

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, and R. K. Henderson, “A 16.5 giga events/s 1024 x 8 SPAD line sensor with per-pixel zoomable 50ps-6.4ns/bin histogramming TDC,” in 2017 Symposium on VLSI Circuits (2017), pp. C292–C293.

Webster, E. A. G.

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology,” IEEE Electron Device Lett. 33, 1589–1591 (2012).

Wei, D.

D. Wei, S. Chen, and Q. Liu, “Review of Fluorescence Suppression Techniques in Raman Spectroscopy,” Appl. Spectrosc. Rev. 50, 387–406 (2015).

White, D. J.

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem. 394(7), 1761–1774 (2009).
[PubMed]

Williams, C. K. I.

Williams, G. O. S.

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, and R. K. Henderson, “A 16.5 giga events/s 1024 x 8 SPAD line sensor with per-pixel zoomable 50ps-6.4ns/bin histogramming TDC,” in 2017 Symposium on VLSI Circuits (2017), pp. C292–C293.

Wilson, B. C.

Wright, M.

P. Crow, B. Barrass, C. Kendall, M. Hart-Prieto, M. Wright, R. Persad, and N. Stone, “The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines,” Br. J. Cancer 92(12), 2166–2170 (2005).
[PubMed]

Yang, R.

Yliperttula, M.

T. Rojalin, L. Kurki, T. Laaksonen, T. Viitala, J. Kostamovaara, K. C. Gordon, L. Galvis, S. Wachsmann-Hogiu, C. J. Strachan, and M. Yliperttula, “Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector,” Anal. Bioanal. Chem. 408(3), 761–774 (2016).
[PubMed]

Yu, F.

Zhang, C.

Zhang, L.

Anal. Bioanal. Chem. (2)

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem. 394(7), 1761–1774 (2009).
[PubMed]

T. Rojalin, L. Kurki, T. Laaksonen, T. Viitala, J. Kostamovaara, K. C. Gordon, L. Galvis, S. Wachsmann-Hogiu, C. J. Strachan, and M. Yliperttula, “Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector,” Anal. Bioanal. Chem. 408(3), 761–774 (2016).
[PubMed]

Appl. Spectrosc. (3)

Appl. Spectrosc. Rev. (1)

D. Wei, S. Chen, and Q. Liu, “Review of Fluorescence Suppression Techniques in Raman Spectroscopy,” Appl. Spectrosc. Rev. 50, 387–406 (2015).

Biomed. Opt. Express (2)

Br. J. Cancer (1)

P. Crow, B. Barrass, C. Kendall, M. Hart-Prieto, M. Wright, R. Persad, and N. Stone, “The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines,” Br. J. Cancer 92(12), 2166–2170 (2005).
[PubMed]

Chem. Soc. Rev. (2)

O. Stevens, I. E. Iping Petterson, J. C. C. Day, and N. Stone, “Developing fibre optic Raman probes for applications in clinical spectroscopy,” Chem. Soc. Rev. 45(7), 1919–1934 (2016).
[PubMed]

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241 (1998).

Faraday Discuss. (1)

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
[PubMed]

IEEE Electron Device Lett. (1)

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology,” IEEE Electron Device Lett. 33, 1589–1591 (2012).

IEEE Sens. J. (1)

I. Nissinen, J. Nissinen, P. Keränen, A. K. Länsman, J. Holma, and J. Kostamovaara, “A Multitime-Gated SPAD Line Detector for Pulsed Raman Spectroscopy,” IEEE Sens. J. 15, 1358–1365 (2015).

IEEE Trans. Biomed. Eng. (1)

S. A. Grant and R. S. Glass, “Sol-gel-based biosensor for use in stroke treatment,” IEEE Trans. Biomed. Eng. 46(10), 1207–1211 (1999).

IEEE Trans. Instrum. Meas. (1)

J. Holma, I. Nissinen, J. Nissinen, and J. Kostamovaara, “Characterization of the Timing Homogeneity in a CMOS SPAD Array Designed for Time-Gated Raman Spectroscopy,” IEEE Trans. Instrum. Meas. 66, 1837–1844 (2017).

J. Biomed. Opt. (1)

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[PubMed]

J. Raman Spectrosc. (1)

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).

Nano Lett. (1)

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[PubMed]

Opt. Express (4)

Phys. Med. Biol. (1)

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[PubMed]

Proc. SPIE (1)

K. Ehrlich, A. Kufcsák, N. Krstajić, R. K. Henderson, R. R. Thomson, and M. G. Tanner, “Fibre optic time-resolved spectroscopy using CMOS-SPAD arrays,” Proc. SPIE 10058, 100580H (2017).

Other (2)

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, and R. K. Henderson, “A 16.5 giga events/s 1024 x 8 SPAD line sensor with per-pixel zoomable 50ps-6.4ns/bin histogramming TDC,” in 2017 Symposium on VLSI Circuits (2017), pp. C292–C293.

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer Berlin Heidelberg, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A schematic of the time-resolved spectrometer and the principles of time-resolved measurements through an optical fibre with gold NS deposited on the fibre tip. The fibre tip of the multimode optical fibre (NA 0.22, 50 µm, Thorlabs) is covered with functionalised gold NS (150 nm, Bare Auroshell), as shown in the SEM image. The free-space spectrum of the functionalised MBA molecule taken with a Raman Probe and a QEPro spectrometer (OceanOptics). The integration time is 10 s and excitation power is 0.8 mW comparable to the experimental settings later. The schematic of the evolution of the signals in time is not to scale, the separation bars are guidance for the eye.
Fig. 2
Fig. 2 10 s measurement of a 2.7 m multimode optical fibre with functionalised gold NS at the fibre tip. (a) Non time-resolved measurement of the time-resolved spectrometer. (b) A 3-dimensional representation of the time-resolved measurement. Noisy pixels are removed and dark counts are subtracted. (c) Non time-resolved measurement with a commercial spectrometer (QEPro, Ocean Optics). (d) Time-gated spectra originating from the time windows indicated in (b). Time window width is 5 time bins or 2.1 ns. (e) A recovered spectrum from the MBA molecule.
Fig. 3
Fig. 3 (a)–(c) 10 s measurement of a 2.7 m multimode optical fibre with functionalised gold NS at the fibre tip and a high fluorescent background from a 3% phosphate Neodymium glass. (d)–(f) 60 s measurement of a 18 m multimode optical fibre with functionalised gold NS at the fibre tip. The excitation power is reduced to 0.12 mW. (a),(d) Reference measurement (QEPro, OceanOptics), (b),(e) time-gated measurement (5 time bins) (c),(f) recovered spectra of the MBA molecule.
Fig. 4
Fig. 4 Variation of area under the curve (AUC) ratio as a function of pH within the pH range of 4.5 to 9, the error bars represent the standard deviation of the mean over 3 replicate measurements. Each measurement was obtained using an average excitation power of 0.8 mW and 20 MHz pulse repetition rate, the integration was increased from a) 10 s to b) 60 s time-resolved measurement.
Fig. 5
Fig. 5 (a) S/B and (b) S/N plotted against the rising edge of the time window and the width of the time window for the area under the 857 nm SERS peak. The blue vertical dashed line is shown to label the time onset of the signal from the end of the fibre. The blue box shows the chosen timing of bins selected for the other plots in this paper.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S B = N R N F + N DC and S N = N R ( N R + N F + N DC ) 1/2

Metrics