Abstract

A theoretical analysis is given for the optical forces induced by the Bloch mode propagating along a silicon subwavelength-grating (SWG) waveguide for the first time. As a periodical structure, an SWG waveguide supports periodical light field distribution along the waveguide. This makes it possible to trap many nano-particles stably periodically, which is very different from the case with a conventional optical waveguide. The separation of the trapped nano-particles can be designed easily by modifying the grating period of an SWG waveguide. Furthermore, an SWG waveguide has larger working distance in the lateral direction to trap nano-particles around the waveguide than a conventional optical waveguide.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Robust increase of the optical forces in waveguide-based optical tweezers using V-groove structure

Mahdi Sahafi and Amir Habibzadeh-Sharif
J. Opt. Soc. Am. B 35(8) 1905-1909 (2018)

Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide

Przemek J. Bock, Pavel Cheben, Jens H. Schmid, Jean Lapointe, André Delâge, Siegfried Janz, Geof C. Aers, Dan-Xia Xu, Adam Densmore, and Trevor J. Hall
Opt. Express 18(19) 20251-20262 (2010)

Silicon photonic contradirectional couplers using subwavelength grating waveguides

Behnam Naghdi and Lawrence R. Chen
Opt. Express 24(20) 23429-23438 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. O. Mejean, A. W. Schaefer, E. A Millman, P. Forscher, and E. R. Dufresne, “Multiplexed force measurements on live cells with holographic optical tweezers,” Opt. Express 8, 6209–6217 (2009).
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [PubMed]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [PubMed]
  4. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
  5. M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
    [PubMed]
  6. M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
    [PubMed]
  7. R. Eriksen, V. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002).
    [PubMed]
  8. S. Gaugiran, S. Gétin, J. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
    [PubMed]
  9. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996).
    [PubMed]
  10. A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
    [PubMed]
  11. B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
    [PubMed]
  12. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [PubMed]
  13. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 2, 891 (2011).
    [PubMed]
  14. S. Lin, J. Hu, L. Kimerling, and K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection,” Opt. Lett. 34(21), 3451–3453 (2009).
    [PubMed]
  15. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
    [PubMed]
  16. J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
    [PubMed]
  17. T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111, 061105 (2017).
  18. S. Zhang, Z. Yong, Y. Shi, and S. He, “Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity,” Sci. Rep. 6, 35977 (2016).
    [PubMed]
  19. S. Han and Y. Shi, “Systematic analysis of optical gradient force in photonic crystal nanobeam cavities,” Opt. Express 24(1), 452–458 (2016).
    [PubMed]
  20. P. Cheben, D. X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14(11), 4695–4702 (2006).
    [PubMed]
  21. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
    [PubMed]
  22. C. Li and D. Dai, “Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer,” Opt. Lett. 42(21), 4243–4246 (2017).
    [PubMed]
  23. J. D. Jackson, Classical electrodynamics (Wiley, 1975).
  24. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Forces on a Rayleigh particle in the cover region of a planar waveguide,” J. Lightwave Technol. 18, 388 (2000).
  25. D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
    [PubMed]
  26. V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23(4), 4791–4803 (2015).
    [PubMed]

2017 (2)

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111, 061105 (2017).

C. Li and D. Dai, “Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer,” Opt. Lett. 42(21), 4243–4246 (2017).
[PubMed]

2016 (2)

S. Zhang, Z. Yong, Y. Shi, and S. He, “Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity,” Sci. Rep. 6, 35977 (2016).
[PubMed]

S. Han and Y. Shi, “Systematic analysis of optical gradient force in photonic crystal nanobeam cavities,” Opt. Express 24(1), 452–458 (2016).
[PubMed]

2015 (1)

2014 (2)

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[PubMed]

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[PubMed]

2011 (2)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 2, 891 (2011).
[PubMed]

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[PubMed]

2010 (2)

2009 (2)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[PubMed]

S. Lin, J. Hu, L. Kimerling, and K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection,” Opt. Lett. 34(21), 3451–3453 (2009).
[PubMed]

2008 (1)

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[PubMed]

2007 (1)

2006 (2)

P. Cheben, D. X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14(11), 4695–4702 (2006).
[PubMed]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).

2005 (2)

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[PubMed]

S. Gaugiran, S. Gétin, J. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
[PubMed]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[PubMed]

2002 (1)

2000 (1)

1996 (1)

1986 (1)

Aers, G. C.

Alonso-Ramos, C.

Ashkin, A.

Bjorkholm, J. E.

Bock, P. J.

Butler, W. F.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[PubMed]

Cao, Y.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111, 061105 (2017).

Chatelain, F.

Cheben, P.

Chen, Y. F.

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[PubMed]

Chrostowski, L.

Chu, S.

Cižmár, T.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).

Colas, G.

Crozier, K.

Dai, D.

Daria, V.

Dees, B.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[PubMed]

Delâge, A.

Densmore, A.

Dérouard, J.

Dholakia, K.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).

Ding, W.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111, 061105 (2017).

Donzella, V.

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 2, 891 (2011).
[PubMed]

Dziedzic, J. M.

Erickson, D.

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[PubMed]

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[PubMed]

Eriksen, R.

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 2, 891 (2011).
[PubMed]

Fard, S. T.

Fedeli, J.

Flueckiger, J.

Forster, A. H.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[PubMed]

Forties, R. A.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[PubMed]

Fuchs, A.

Fulbright, R. M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[PubMed]

Garcés-Chávez, V.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).

Gaugiran, S.

Gétin, S.

Glückstad, J.

Gonzalo Wangüemert-Pérez, J.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[PubMed]

Grist, S. M.

Hagen, N.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[PubMed]

Halir, R.

Hall, T. J.

Han, S.

He, S.

S. Zhang, Z. Yong, Y. Shi, and S. He, “Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity,” Sci. Rep. 6, 35977 (2016).
[PubMed]

Hu, J.

Inman, J. T.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[PubMed]

Janz, S.

Jiang, Z.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111, 061105 (2017).

Kariv, I.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[PubMed]

Kawata, S.

Kimerling, L.

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[PubMed]

Lamontagne, B.

Lapointe, J.

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 2, 891 (2011).
[PubMed]

Li, C.

Lin, J.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[PubMed]

Lin, S.

Lipson, M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[PubMed]

Luff, B. J.

Mahdy, M. R. C.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111, 061105 (2017).

Mandal, S.

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[PubMed]

Marchand, P. J.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[PubMed]

Mercer, E. M.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[PubMed]

Min, C.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 2, 891 (2011).
[PubMed]

Molina-Fernández, I.

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[PubMed]

Ng, L. N.

Novitsky, A.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111, 061105 (2017).

Ortega-Moñux, A.

Pérez-Galacho, D.

Raymond, D. E.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[PubMed]

Saraf, S. N.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[PubMed]

Schmid, J. H.

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[PubMed]

Serey, X.

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[PubMed]

Šerý, M.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 2, 891 (2011).
[PubMed]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 2, 891 (2011).
[PubMed]

Sherwali, A.

Shi, Y.

S. Han and Y. Shi, “Systematic analysis of optical gradient force in photonic crystal nanobeam cavities,” Opt. Express 24(1), 452–458 (2016).
[PubMed]

S. Zhang, Z. Yong, Y. Shi, and S. He, “Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity,” Sci. Rep. 6, 35977 (2016).
[PubMed]

Šiler, M.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).

Soltani, M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[PubMed]

Sun, F.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111, 061105 (2017).

Tani, T.

Tu, E.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[PubMed]

Wang, L.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111, 061105 (2017).

Wang, M. D.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[PubMed]

Wang, M. M.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[PubMed]

Wilkinson, J. S.

Xu, D. X.

Yang, A. H.

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[PubMed]

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[PubMed]

Yang, J. M.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[PubMed]

Yong, Z.

S. Zhang, Z. Yong, Y. Shi, and S. He, “Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity,” Sci. Rep. 6, 35977 (2016).
[PubMed]

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 2, 891 (2011).
[PubMed]

Yuan, X.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 2, 891 (2011).
[PubMed]

Zemánek, P.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).

Zervas, M. N.

Zhang, H.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[PubMed]

Zhang, S.

S. Zhang, Z. Yong, Y. Shi, and S. He, “Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity,” Sci. Rep. 6, 35977 (2016).
[PubMed]

Zhang, Y.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 2, 891 (2011).
[PubMed]

Zhu, S.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 2, 891 (2011).
[PubMed]

Zhu, T.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111, 061105 (2017).

Appl. Phys. Lett. (1)

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111, 061105 (2017).

J. Lightwave Technol. (1)

Lab Chip (1)

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[PubMed]

Nanotechnology (1)

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[PubMed]

Nat. Biotechnol. (1)

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol. 23(1), 83–87 (2005).
[PubMed]

Nat. Commun. (1)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 2, 891 (2011).
[PubMed]

Nat. Nanotechnol. (1)

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[PubMed]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[PubMed]

Opt. Express (7)

Opt. Lett. (6)

Phys. Rev. B (1)

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).

Sci. Rep. (1)

S. Zhang, Z. Yong, Y. Shi, and S. He, “Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity,” Sci. Rep. 6, 35977 (2016).
[PubMed]

Other (2)

C. O. Mejean, A. W. Schaefer, E. A Millman, P. Forscher, and E. R. Dufresne, “Multiplexed force measurements on live cells with holographic optical tweezers,” Opt. Express 8, 6209–6217 (2009).

J. D. Jackson, Classical electrodynamics (Wiley, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic configuration of an SWG waveguide.
Fig. 2
Fig. 2 Electric field distributions of TE polarization when light propagates along the designed SWG. (a) E(x, y = 0, z); (b) E(x = 0, y = 0, z); (c) E(x, y, z = Λ/2). (d) E(x, y, z = 0). Here the parameters of the SWG waveguide are chosen as: the grating pitch Λ = 300 nm, the waveguide height h = 220 nm, the segment width w = 450 nm and the segment length a = 150 nm.
Fig. 3
Fig. 3 Calculated optical forces. (a) (F)x (x = 0, y, z = 0), (F)y(x = 0, y, z = 0), and (F)z(x = 0, y, z = 0); (b) (F)x (x, y = y0, z = 0), (F)y(x, y = y0, z = 0), and (F)z(x, y = y0, z = 0); (c) (F)x (x = w1/2, y = y0, z), (F)y(x = w1/2, y = y0, z), and (F)z(x = w1/2, y = y0, z). (d) Ft(x, y = 0.08µm, z), where (F)t fresents the total force of (F)x and (F)z, and the arrows denotes the direction of the optical force (F)t.
Fig. 4
Fig. 4 Calculated optical force (F)z (x = w1/2, y = y0, z) acting on different sized spheres along the SWG waveguides with different grating pitches. (a) Λ = 300nm(a); (b) Λ = 200nm; (c) Λ = 150nm.
Fig. 5
Fig. 5 Calculated optical force (F)x (x, y = y0, z = Λ/2) acting on a 50nm radius sphere for a nanowire waveguide and a SWG waveguide with a core with w = 450nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F EM = < T M >ndS
< T M >=D E * +H B * (D E * +H B * )/2

Metrics