Abstract

We present a demonstration of a diode-laser-based high spectral resolution lidar. It is capable of performing calibrated retrievals of aerosol and cloud optical properties at a 150 m range resolution with less than 1 minute integration time over an approximate range of 12 km during day and night. This instrument operates at 780 nm, a wavelength that is well established for reliable semiconductor lasers and detectors, and was chosen because it corresponds to the D2 rubidium absorption line. A heated vapor reference cell of isotopic rubidium 87 is used as an effective and reliable aerosol signal blocking filter in the instrument. In principle, the diode-laser-based high spectral resolution lidar can be made cost competitive with elastic backscatter lidar systems, yet delivers a significant improvement in data quality through direct retrieval of quantitative optical properties of clouds and aerosols.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients

Michael Esselborn, Martin Wirth, Andreas Fix, Matthias Tesche, and Gerhard Ehret
Appl. Opt. 47(3) 346-358 (2008)

High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman
Appl. Opt. 22(23) 3716-3724 (1983)

Airborne High Spectral Resolution Lidar for profiling aerosol optical properties

Johnathan W. Hair, Chris A. Hostetler, Anthony L. Cook, David B. Harper, Richard A. Ferrare, Terry L. Mack, Wayne Welch, Luis Ramos Izquierdo, and Floyd E. Hovis
Appl. Opt. 47(36) 6734-6752 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M.R. Vuolo, M. Schulz, Y. Balkanski, and T. Takemura, “A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models,” Atmos. Chem. Phys. 14, 877–897 (2014).
    [Crossref]
  2. B. de Foy, S.P. Burton, R.A. Ferrare, C. A. Hostetler, J.W. Hair, C. Wiedinmyer, and L.T. Molina, “Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign,” Atmos. Chem. Phys. 11, 3543–3563 (2011).
    [Crossref]
  3. A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
    [Crossref]
  4. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20(2), 211–220 (1981).
    [Crossref] [PubMed]
  5. F. G. Fernald, “Analysis of atmospheric lidar observation: some comments,” Appl. Opt. 23(5), 652–653 (1984).
    [Crossref] [PubMed]
  6. S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schafler, A. Ansmann, and B. Weinzierl, “Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements,” Atmos. Chem. Phys. 15, 11067–11080 (2015).
    [Crossref]
  7. A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
    [Crossref]
  8. D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. evaluating the temperature-dependent lidar equation,” Appl. Opt.,  42(15), 2571–2592 (2003).
    [Crossref] [PubMed]
  9. E. W. Eloranta, “Chapter 5: High Spectral Resolution Lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005).
    [Crossref]
  10. G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nat. Phys. Sci. 229, 78–79 (1971).
    [Crossref]
  11. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22(23), 3716–3724 (1983).
    [Crossref] [PubMed]
  12. C. Y. She, R. J. Alvarez, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17(7), 541–543 (1992).
    [Crossref] [PubMed]
  13. P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).
    [Crossref] [PubMed]
  14. G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
    [Crossref]
  15. E. W. Eloranta, “Extinction measurements with low-power HSRL systems–Error limits,” in Proceedings of 28th International Laser Radar Conference (2017), paper 205.
  16. M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas, “What is the benefit of ceilometers for aerosol remote sensing?” Atmos. Meas. Tech. 7, 1979–1997 (2014).
    [Crossref]
  17. F. Madonna, F. Amato, J. Vande Hey, and G. Pappalardo, “Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS,” Atmos. Meas. Tech. 8, 2207–2223 (2015).
    [Crossref]
  18. American National Standard Institute, American National Standard for Safe Use of Lasers Outdoors Z136.6–2015 (Laser Institute of America, 2015), p. 33.
  19. H. Shimizu, S. A. Lee, and C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22(9), 1373–1381 (1983).
    [Crossref] [PubMed]
  20. A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
    [Crossref]
  21. S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8, 1073–1087 (2015).
    [Crossref]
  22. T. M. Weckwerth, K. J. Weber, D. D. Turner, and S. M. Spuler, “Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL),” J. Atmos. Ocean. Technol. 33, 2353–2372 (2016).
    [Crossref]
  23. S. Spuler, K. Repasky, M. Hayman, and A. Nehrir, “Micro-Pulse, Differential Absorption Lidar (DIAL) Network for Measuring the Spatial and Temporal Distribution of Water Vapor in the Lower Atmosphere,” in Proceedings of 28th International Laser Radar Conference (2017), paper 262.
  24. K. Takase, J. K. Stockton, and M. A. Kasevich, “High-power pulsed-current-mode operation of an overdriven tapered amplifier,” Opt. Lett. 32(17), 2617–2619 (2007).
    [Crossref] [PubMed]
  25. A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere,” J. Atmos. Ocean. Technol. 28(2), 131–147 (2011).
    [Crossref]
  26. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47(3), 346–358 (2008).
    [Crossref] [PubMed]
  27. I. Binietoglou, P. Giampouras, and L. Belegante, “Linear approximation of Rayleigh-Brillouin scattering spectra,” Appl. Opt. 55(27), 7707–7711 (2016).
    [Crossref] [PubMed]
  28. R. M. Measures, Laser Remote Sensing (Wiley-Interscience, 1984).
  29. W. J. Marais, R. E. Holz, Y. H. Hu, R. E. Kuehn, Edwin E. Eloranta, and R. M. Willett, “Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations,” Appl. Opt. 55(29), 8316–8334 (2016).
    [Crossref] [PubMed]
  30. C. McNicholas and D. D. Turner, “Characterizing the convective boundary layer turbulence with a High Spectral Resolution Lidar,” J. Geophys. Res. Atmos. 119(22), 12910–12927 (2014).
    [Crossref]
  31. UCAR/NCAR - Earth Observing Laboratory and University of Wisconsin, High Spectral Resolution Lidar for the Gulfstream-V; G5-HSRL, doi: (2010).
    [Crossref]
  32. I. A. Razenkov, E. W. Eloranta, J. P. Hedrick, and J. P. Garcia, “The design of a new airborne of a high spectral resolution lidar,” in Proceedings of 24th International Laser Radar Conference (2010), pp. 56–59.
  33. M. L. Wright, E. K. Proctor, L. S. Gasiorek, and E. M. Liston, “A preliminary Study of Air-Pollution Measurement by Active Remote Sensing Techniques,” NASA CR-132724, 178 (1975).
  34. V. Srivastava, J. Rothermel, A. D. Clarke, J. D. Spinhirne, R. T. Menzies, D. R. Cutten, M. A. Jarzembski, D. A. Bowdle, and E. W. McCaul, “Wavelength dependence of backscatter by use of aerosol microphysics and lidar data sets: application to 2.1-μm wavelength for space-based and airborne lidars,” Appl. Opt. 40(27), 4759–4769 (2001).
    [Crossref]

2016 (3)

2015 (4)

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8, 1073–1087 (2015).
[Crossref]

S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schafler, A. Ansmann, and B. Weinzierl, “Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements,” Atmos. Chem. Phys. 15, 11067–11080 (2015).
[Crossref]

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

F. Madonna, F. Amato, J. Vande Hey, and G. Pappalardo, “Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS,” Atmos. Meas. Tech. 8, 2207–2223 (2015).
[Crossref]

2014 (4)

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas, “What is the benefit of ceilometers for aerosol remote sensing?” Atmos. Meas. Tech. 7, 1979–1997 (2014).
[Crossref]

M.R. Vuolo, M. Schulz, Y. Balkanski, and T. Takemura, “A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models,” Atmos. Chem. Phys. 14, 877–897 (2014).
[Crossref]

C. McNicholas and D. D. Turner, “Characterizing the convective boundary layer turbulence with a High Spectral Resolution Lidar,” J. Geophys. Res. Atmos. 119(22), 12910–12927 (2014).
[Crossref]

2011 (2)

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere,” J. Atmos. Ocean. Technol. 28(2), 131–147 (2011).
[Crossref]

B. de Foy, S.P. Burton, R.A. Ferrare, C. A. Hostetler, J.W. Hair, C. Wiedinmyer, and L.T. Molina, “Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign,” Atmos. Chem. Phys. 11, 3543–3563 (2011).
[Crossref]

2009 (1)

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
[Crossref]

2008 (1)

2007 (1)

2004 (1)

A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
[Crossref]

2003 (1)

2001 (1)

1994 (1)

1992 (1)

1984 (1)

1983 (2)

1981 (1)

1971 (1)

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nat. Phys. Sci. 229, 78–79 (1971).
[Crossref]

Alados-Arboledas, L.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

Alvarez, R. J.

Amato, F.

F. Madonna, F. Amato, J. Vande Hey, and G. Pappalardo, “Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS,” Atmos. Meas. Tech. 8, 2207–2223 (2015).
[Crossref]

Amiridis, V.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

Amodeo, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

Ansmann, A.

S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schafler, A. Ansmann, and B. Weinzierl, “Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements,” Atmos. Chem. Phys. 15, 11067–11080 (2015).
[Crossref]

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

Apituley, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

Balkanski, Y.

M.R. Vuolo, M. Schulz, Y. Balkanski, and T. Takemura, “A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models,” Atmos. Chem. Phys. 14, 877–897 (2014).
[Crossref]

Barker, H.W.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Beekmann, M.

A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
[Crossref]

Belegante, L.

Beljaars, A.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Benedetti-Michelangeli, G.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nat. Phys. Sci. 229, 78–79 (1971).
[Crossref]

Bessagnet, B.

A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
[Crossref]

Binietoglou, I.

I. Binietoglou, P. Giampouras, and L. Belegante, “Linear approximation of Rayleigh-Brillouin scattering spectra,” Appl. Opt. 55(27), 7707–7711 (2016).
[Crossref] [PubMed]

M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas, “What is the benefit of ceilometers for aerosol remote sensing?” Atmos. Meas. Tech. 7, 1979–1997 (2014).
[Crossref]

Bösenberg, J.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

Bowdle, D. A.

Burton, S.P.

B. de Foy, S.P. Burton, R.A. Ferrare, C. A. Hostetler, J.W. Hair, C. Wiedinmyer, and L.T. Molina, “Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign,” Atmos. Chem. Phys. 11, 3543–3563 (2011).
[Crossref]

Caldwell, L. M.

Carlsten, J. L.

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere,” J. Atmos. Ocean. Technol. 28(2), 131–147 (2011).
[Crossref]

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
[Crossref]

Ceccaldi, M.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Chatenet, B.

A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
[Crossref]

Chazette, P.

A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
[Crossref]

Chepfer, H.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
[Crossref]

Clarke, A. D.

Clerbaux, N.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Cole, J.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Comeron, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

Cuesta, J.

A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
[Crossref]

Cutten, D. R.

D’Amico, G.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

de Foy, B.

B. de Foy, S.P. Burton, R.A. Ferrare, C. A. Hostetler, J.W. Hair, C. Wiedinmyer, and L.T. Molina, “Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign,” Atmos. Chem. Phys. 11, 3543–3563 (2011).
[Crossref]

Delanoë, J.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Domenech, C.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Donovan, D.P.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Drobinski, P.

A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
[Crossref]

Ehret, G.

Eloranta, E. W.

P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).
[Crossref] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22(23), 3716–3724 (1983).
[Crossref] [PubMed]

E. W. Eloranta, “Extinction measurements with low-power HSRL systems–Error limits,” in Proceedings of 28th International Laser Radar Conference (2017), paper 205.

I. A. Razenkov, E. W. Eloranta, J. P. Hedrick, and J. P. Garcia, “The design of a new airborne of a high spectral resolution lidar,” in Proceedings of 24th International Laser Radar Conference (2010), pp. 56–59.

E. W. Eloranta, “Chapter 5: High Spectral Resolution Lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005).
[Crossref]

Eloranta, Edwin E.

Esselborn, M.

Fernald, F. G.

Ferrare, R.A.

B. de Foy, S.P. Burton, R.A. Ferrare, C. A. Hostetler, J.W. Hair, C. Wiedinmyer, and L.T. Molina, “Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign,” Atmos. Chem. Phys. 11, 3543–3563 (2011).
[Crossref]

Fiocco, G.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nat. Phys. Sci. 229, 78–79 (1971).
[Crossref]

Fix, A.

Forkel, R.

M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas, “What is the benefit of ceilometers for aerosol remote sensing?” Atmos. Meas. Tech. 7, 1979–1997 (2014).
[Crossref]

Freudenthaler, V.

S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schafler, A. Ansmann, and B. Weinzierl, “Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements,” Atmos. Chem. Phys. 15, 11067–11080 (2015).
[Crossref]

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

Fukuda, S.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Garcia, J. P.

I. A. Razenkov, E. W. Eloranta, J. P. Hedrick, and J. P. Garcia, “The design of a new airborne of a high spectral resolution lidar,” in Proceedings of 24th International Laser Radar Conference (2010), pp. 56–59.

Gasiorek, L. S.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, and E. M. Liston, “A preliminary Study of Air-Pollution Measurement by Active Remote Sensing Techniques,” NASA CR-132724, 178 (1975).

Gasteiger, J.

M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas, “What is the benefit of ceilometers for aerosol remote sensing?” Atmos. Meas. Tech. 7, 1979–1997 (2014).
[Crossref]

Geiß, A.

M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas, “What is the benefit of ceilometers for aerosol remote sensing?” Atmos. Meas. Tech. 7, 1979–1997 (2014).
[Crossref]

Giampouras, P.

Goloub, P.

A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
[Crossref]

Groß, S.

S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schafler, A. Ansmann, and B. Weinzierl, “Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements,” Atmos. Chem. Phys. 15, 11067–11080 (2015).
[Crossref]

Haeffelin, M.

A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
[Crossref]

Hair, J.W.

B. de Foy, S.P. Burton, R.A. Ferrare, C. A. Hostetler, J.W. Hair, C. Wiedinmyer, and L.T. Molina, “Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign,” Atmos. Chem. Phys. 11, 3543–3563 (2011).
[Crossref]

Hayman, M.

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8, 1073–1087 (2015).
[Crossref]

S. Spuler, K. Repasky, M. Hayman, and A. Nehrir, “Micro-Pulse, Differential Absorption Lidar (DIAL) Network for Measuring the Spatial and Temporal Distribution of Water Vapor in the Lower Atmosphere,” in Proceedings of 28th International Laser Radar Conference (2017), paper 262.

Hedrick, J. P.

I. A. Razenkov, E. W. Eloranta, J. P. Hedrick, and J. P. Garcia, “The design of a new airborne of a high spectral resolution lidar,” in Proceedings of 24th International Laser Radar Conference (2010), pp. 56–59.

Hirakata, M.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Hodzic, A.

A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
[Crossref]

Hogan, R.J.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Holz, R. E.

Hostetler, C. A.

B. de Foy, S.P. Burton, R.A. Ferrare, C. A. Hostetler, J.W. Hair, C. Wiedinmyer, and L.T. Molina, “Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign,” Atmos. Chem. Phys. 11, 3543–3563 (2011).
[Crossref]

Hu, Y. H.

Huenerbein, A.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Illingworth, A. J.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Jarzembski, M. A.

Kasevich, M. A.

Klett, J. D.

Kollias, P.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Krueger, D. A.

Kubota, T.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Kuehn, R. E.

Lee, S. A.

Linné, H.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

Liston, E. M.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, and E. M. Liston, “A preliminary Study of Air-Pollution Measurement by Active Remote Sensing Techniques,” NASA CR-132724, 178 (1975).

Madonna, E.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nat. Phys. Sci. 229, 78–79 (1971).
[Crossref]

Madonna, F.

F. Madonna, F. Amato, J. Vande Hey, and G. Pappalardo, “Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS,” Atmos. Meas. Tech. 8, 2207–2223 (2015).
[Crossref]

M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas, “What is the benefit of ceilometers for aerosol remote sensing?” Atmos. Meas. Tech. 7, 1979–1997 (2014).
[Crossref]

Maischberger, K.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nat. Phys. Sci. 229, 78–79 (1971).
[Crossref]

Marais, W. J.

Mattis, I.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

McCaul, E. W.

McNicholas, C.

C. McNicholas and D. D. Turner, “Characterizing the convective boundary layer turbulence with a High Spectral Resolution Lidar,” J. Geophys. Res. Atmos. 119(22), 12910–12927 (2014).
[Crossref]

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, 1984).

Menzies, R. T.

Moen, D.

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8, 1073–1087 (2015).
[Crossref]

Molina, L.T.

B. de Foy, S.P. Burton, R.A. Ferrare, C. A. Hostetler, J.W. Hair, C. Wiedinmyer, and L.T. Molina, “Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign,” Atmos. Chem. Phys. 11, 3543–3563 (2011).
[Crossref]

Mona, L.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

Morille, Y.

A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
[Crossref]

Morley, B.

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8, 1073–1087 (2015).
[Crossref]

Nakajima, T.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Nakajima, T.Y.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Nehrir, A.

S. Spuler, K. Repasky, M. Hayman, and A. Nehrir, “Micro-Pulse, Differential Absorption Lidar (DIAL) Network for Measuring the Spatial and Temporal Distribution of Water Vapor in the Lower Atmosphere,” in Proceedings of 28th International Laser Radar Conference (2017), paper 262.

Nehrir, A. R.

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8, 1073–1087 (2015).
[Crossref]

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere,” J. Atmos. Ocean. Technol. 28(2), 131–147 (2011).
[Crossref]

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
[Crossref]

Nicolae, D.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

Nishizawa, T.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Obland, M. D.

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
[Crossref]

Ohno, Y.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Okamoto, H.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Oki, R.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Pappalardo, G.

F. Madonna, F. Amato, J. Vande Hey, and G. Pappalardo, “Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS,” Atmos. Meas. Tech. 8, 2207–2223 (2015).
[Crossref]

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas, “What is the benefit of ceilometers for aerosol remote sensing?” Atmos. Meas. Tech. 7, 1979–1997 (2014).
[Crossref]

Piironen, P.

Proctor, E. K.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, and E. M. Liston, “A preliminary Study of Air-Pollution Measurement by Active Remote Sensing Techniques,” NASA CR-132724, 178 (1975).

Razenkov, I. A.

I. A. Razenkov, E. W. Eloranta, J. P. Hedrick, and J. P. Garcia, “The design of a new airborne of a high spectral resolution lidar,” in Proceedings of 24th International Laser Radar Conference (2010), pp. 56–59.

Repasky, K.

S. Spuler, K. Repasky, M. Hayman, and A. Nehrir, “Micro-Pulse, Differential Absorption Lidar (DIAL) Network for Measuring the Spatial and Temporal Distribution of Water Vapor in the Lower Atmosphere,” in Proceedings of 28th International Laser Radar Conference (2017), paper 262.

Repasky, K. S.

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8, 1073–1087 (2015).
[Crossref]

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere,” J. Atmos. Ocean. Technol. 28(2), 131–147 (2011).
[Crossref]

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
[Crossref]

Roesler, F. L.

Rothermel, J.

Sato, K.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Satoh, M.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Schäfer, K.

M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas, “What is the benefit of ceilometers for aerosol remote sensing?” Atmos. Meas. Tech. 7, 1979–1997 (2014).
[Crossref]

Schafler, A.

S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schafler, A. Ansmann, and B. Weinzierl, “Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements,” Atmos. Chem. Phys. 15, 11067–11080 (2015).
[Crossref]

Schepanski, K.

S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schafler, A. Ansmann, and B. Weinzierl, “Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements,” Atmos. Chem. Phys. 15, 11067–11080 (2015).
[Crossref]

Schulz, M.

M.R. Vuolo, M. Schulz, Y. Balkanski, and T. Takemura, “A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models,” Atmos. Chem. Phys. 14, 877–897 (2014).
[Crossref]

Shaw, J. A.

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
[Crossref]

She, C. Y.

Shephard, M.W.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Shimizu, H.

Shipley, S. T.

Spinhirne, J. D.

Spuler, S.

S. Spuler, K. Repasky, M. Hayman, and A. Nehrir, “Micro-Pulse, Differential Absorption Lidar (DIAL) Network for Measuring the Spatial and Temporal Distribution of Water Vapor in the Lower Atmosphere,” in Proceedings of 28th International Laser Radar Conference (2017), paper 262.

Spuler, S. M.

T. M. Weckwerth, K. J. Weber, D. D. Turner, and S. M. Spuler, “Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL),” J. Atmos. Ocean. Technol. 33, 2353–2372 (2016).
[Crossref]

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8, 1073–1087 (2015).
[Crossref]

Srivastava, V.

Sroga, J. T.

Stockton, J. K.

Takase, K.

Takemura, T.

M.R. Vuolo, M. Schulz, Y. Balkanski, and T. Takemura, “A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models,” Atmos. Chem. Phys. 14, 877–897 (2014).
[Crossref]

Tesche, M.

Thomas, W.

M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas, “What is the benefit of ceilometers for aerosol remote sensing?” Atmos. Meas. Tech. 7, 1979–1997 (2014).
[Crossref]

Toledano, C.

S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schafler, A. Ansmann, and B. Weinzierl, “Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements,” Atmos. Chem. Phys. 15, 11067–11080 (2015).
[Crossref]

Tracy, D. H.

Trauger, J. T.

Turner, D. D.

T. M. Weckwerth, K. J. Weber, D. D. Turner, and S. M. Spuler, “Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL),” J. Atmos. Ocean. Technol. 33, 2353–2372 (2016).
[Crossref]

C. McNicholas and D. D. Turner, “Characterizing the convective boundary layer turbulence with a High Spectral Resolution Lidar,” J. Geophys. Res. Atmos. 119(22), 12910–12927 (2014).
[Crossref]

van Zadelhoff, G.-J.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Vande Hey, J.

F. Madonna, F. Amato, J. Vande Hey, and G. Pappalardo, “Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS,” Atmos. Meas. Tech. 8, 2207–2223 (2015).
[Crossref]

Vautard, R.

A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
[Crossref]

Velázquez-Blázquez, A.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Vuolo, M.R.

M.R. Vuolo, M. Schulz, Y. Balkanski, and T. Takemura, “A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models,” Atmos. Chem. Phys. 14, 877–897 (2014).
[Crossref]

Wandinger, U.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

Weber, K. J.

T. M. Weckwerth, K. J. Weber, D. D. Turner, and S. M. Spuler, “Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL),” J. Atmos. Ocean. Technol. 33, 2353–2372 (2016).
[Crossref]

Weckwerth, T. M.

T. M. Weckwerth, K. J. Weber, D. D. Turner, and S. M. Spuler, “Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL),” J. Atmos. Ocean. Technol. 33, 2353–2372 (2016).
[Crossref]

Wehr, T.

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

Weinman, J. A.

Weinzierl, B.

S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schafler, A. Ansmann, and B. Weinzierl, “Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements,” Atmos. Chem. Phys. 15, 11067–11080 (2015).
[Crossref]

Whiteman, D. N.

Wiedinmyer, C.

B. de Foy, S.P. Burton, R.A. Ferrare, C. A. Hostetler, J.W. Hair, C. Wiedinmyer, and L.T. Molina, “Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign,” Atmos. Chem. Phys. 11, 3543–3563 (2011).
[Crossref]

Wiegner, M.

M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas, “What is the benefit of ceilometers for aerosol remote sensing?” Atmos. Meas. Tech. 7, 1979–1997 (2014).
[Crossref]

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

Willett, R. M.

Wirth, M.

Wright, M. L.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, and E. M. Liston, “A preliminary Study of Air-Pollution Measurement by Active Remote Sensing Techniques,” NASA CR-132724, 178 (1975).

Appl. Opt. (9)

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20(2), 211–220 (1981).
[Crossref] [PubMed]

H. Shimizu, S. A. Lee, and C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22(9), 1373–1381 (1983).
[Crossref] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22(23), 3716–3724 (1983).
[Crossref] [PubMed]

F. G. Fernald, “Analysis of atmospheric lidar observation: some comments,” Appl. Opt. 23(5), 652–653 (1984).
[Crossref] [PubMed]

V. Srivastava, J. Rothermel, A. D. Clarke, J. D. Spinhirne, R. T. Menzies, D. R. Cutten, M. A. Jarzembski, D. A. Bowdle, and E. W. McCaul, “Wavelength dependence of backscatter by use of aerosol microphysics and lidar data sets: application to 2.1-μm wavelength for space-based and airborne lidars,” Appl. Opt. 40(27), 4759–4769 (2001).
[Crossref]

D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. evaluating the temperature-dependent lidar equation,” Appl. Opt.,  42(15), 2571–2592 (2003).
[Crossref] [PubMed]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47(3), 346–358 (2008).
[Crossref] [PubMed]

I. Binietoglou, P. Giampouras, and L. Belegante, “Linear approximation of Rayleigh-Brillouin scattering spectra,” Appl. Opt. 55(27), 7707–7711 (2016).
[Crossref] [PubMed]

W. J. Marais, R. E. Holz, Y. H. Hu, R. E. Kuehn, Edwin E. Eloranta, and R. M. Willett, “Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations,” Appl. Opt. 55(29), 8316–8334 (2016).
[Crossref] [PubMed]

Atmos. Chem. Phys. (3)

M.R. Vuolo, M. Schulz, Y. Balkanski, and T. Takemura, “A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models,” Atmos. Chem. Phys. 14, 877–897 (2014).
[Crossref]

B. de Foy, S.P. Burton, R.A. Ferrare, C. A. Hostetler, J.W. Hair, C. Wiedinmyer, and L.T. Molina, “Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign,” Atmos. Chem. Phys. 11, 3543–3563 (2011).
[Crossref]

S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schafler, A. Ansmann, and B. Weinzierl, “Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements,” Atmos. Chem. Phys. 15, 11067–11080 (2015).
[Crossref]

Atmos. Meas. Tech. (4)

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).
[Crossref]

M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas, “What is the benefit of ceilometers for aerosol remote sensing?” Atmos. Meas. Tech. 7, 1979–1997 (2014).
[Crossref]

F. Madonna, F. Amato, J. Vande Hey, and G. Pappalardo, “Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS,” Atmos. Meas. Tech. 8, 2207–2223 (2015).
[Crossref]

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8, 1073–1087 (2015).
[Crossref]

Bull. Amer. Meteor. Soc. (1)

A. J. Illingworth, H.W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D.P. Donovan, S. Fukuda, M. Hirakata, R.J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T.Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M.W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, “The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation and radiation,” Bull. Amer. Meteor. Soc. 96, 1311–1332 (2015).
[Crossref]

J. Atmos. Ocean. Technol. (3)

T. M. Weckwerth, K. J. Weber, D. D. Turner, and S. M. Spuler, “Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL),” J. Atmos. Ocean. Technol. 33, 2353–2372 (2016).
[Crossref]

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
[Crossref]

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere,” J. Atmos. Ocean. Technol. 28(2), 131–147 (2011).
[Crossref]

J. Geophys. Res. (1)

A. Hodzic, H. Chepfer, R. Vautard, P. Chazette, M. Beekmann, B. Bessagnet, B. Chatenet, J. Cuesta, P. Drobinski, P. Goloub, M. Haeffelin, and Y. Morille, “Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris,” J. Geophys. Res. 109(D23), D23201 (2004).
[Crossref]

J. Geophys. Res. Atmos. (1)

C. McNicholas and D. D. Turner, “Characterizing the convective boundary layer turbulence with a High Spectral Resolution Lidar,” J. Geophys. Res. Atmos. 119(22), 12910–12927 (2014).
[Crossref]

Nat. Phys. Sci. (1)

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nat. Phys. Sci. 229, 78–79 (1971).
[Crossref]

Opt. Lett. (3)

Other (8)

S. Spuler, K. Repasky, M. Hayman, and A. Nehrir, “Micro-Pulse, Differential Absorption Lidar (DIAL) Network for Measuring the Spatial and Temporal Distribution of Water Vapor in the Lower Atmosphere,” in Proceedings of 28th International Laser Radar Conference (2017), paper 262.

UCAR/NCAR - Earth Observing Laboratory and University of Wisconsin, High Spectral Resolution Lidar for the Gulfstream-V; G5-HSRL, doi: (2010).
[Crossref]

I. A. Razenkov, E. W. Eloranta, J. P. Hedrick, and J. P. Garcia, “The design of a new airborne of a high spectral resolution lidar,” in Proceedings of 24th International Laser Radar Conference (2010), pp. 56–59.

M. L. Wright, E. K. Proctor, L. S. Gasiorek, and E. M. Liston, “A preliminary Study of Air-Pollution Measurement by Active Remote Sensing Techniques,” NASA CR-132724, 178 (1975).

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, 1984).

E. W. Eloranta, “Chapter 5: High Spectral Resolution Lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005).
[Crossref]

American National Standard Institute, American National Standard for Safe Use of Lasers Outdoors Z136.6–2015 (Laser Institute of America, 2015), p. 33.

E. W. Eloranta, “Extinction measurements with low-power HSRL systems–Error limits,” in Proceedings of 28th International Laser Radar Conference (2017), paper 205.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the DLB-HSRL. DBR stands for distributed Bragg reflector, TSOA is tapered semiconductor optical amplifier, NBF is narrow band filter, BS is beam splitter, Rb is the rubidium cell, MM Fiber is multimode fiber and SPCM is single photon counting module.

Fig. 2
Fig. 2

Scan of the DLB-HSRL molecular channel (black) with a simulated backscatter spectrum from approximately 3 km (blue) and the resultant spectrum after passing through the molecular channel (red).

Fig. 3
Fig. 3

Vertical profile of background subtracted molecular backscatter data integrated over one minute (blue) with the denoised molecular signal (green). This data is from June 7, 2017 during daytime conditions (1530 UTC).

Fig. 4
Fig. 4

Backscatter coefficient over 8 days in Boulder, CO, USA starting on June 1, 2017. The data is processed with 1 minute time bins and 37.5 m range bins.

Fig. 5
Fig. 5

Backscatter coefficient in Boulder, CO, USA starting on June 6, 2017. The data is processed with 10 second time bins and 37.5 m range bins.

Fig. 6
Fig. 6

Time height profiles of backscatter coefficient retrievals from the GV-HSRL (top) and DLB-HSRL (bottom) on April 11, 2017 in Boulder, CO, USA. The color bar of the GV-HSRL profile is scaled relative to the DLB-HSRL color bar to obtain similar color scales.

Fig. 7
Fig. 7

Two dimensional histogram for comparison of backscatter coefficient retrievals of the GV-HSRL (horizontal axis) and DLB-HSRL (vertical axis) on April 11, 2017 in Boulder, CO, USA. The red dashed line indicates the 1:1 line and the gold dashed line is the wavelength ratio between the two systems. Note the histogram color bar is logarithmic.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S c ( R ) = K η c ( R ) R 2 [ β m ( R ) + β a ( R ) ] exp [ 2 0 R α ( ζ ) d ζ ] + B c ,
S m ( R ) = K 1 G m η m ( R ) R 2 [ C m n ( R ) β m ( R ) + C a m β a ( R ) ] exp [ 2 0 R α ( ζ ) d ζ ] + B m ,
S ^ c ( R ) = S ˜ c ( R ) B ˜ c ,
S ^ m ( R ) = G ˜ m ( S ˜ m ( R ) B ˜ m ) C ˜ a m ( S ˜ c ( R ) B ˜ c ) C ˜ m m ( R ) C ˜ a m .
β ˜ a ( R ) = [ S ^ c ( R ) S ^ m ( R ) 1 ] β ˜ m ( R ) ,
β ˜ a ( R ) = 5.45 × 10 32 P ( R ) k B R ( R ) ( 550 n m λ ) 4 m 1 s r 1 ,
β ˜ a ( max ) ( R ) = lim β a ( R ) ( β a ( R ) + β m ( R ) C a m C m m ( R ) β a ( R ) + β m ( R ) 1 ) β ˜ m ( R ) = ( C m m ( R ) C a m 1 ) β ˜ m ( R )
S ˜ m ( R ) = η ˜ ( R ) C ˜ m n ( R ) β ˜ m ( R ) R 2 x ˜ ( R ) + B ˜ m .
α ˜ ( R ) = 1 2 R ln [ 1 β ˜ m ( R ) R 2 η ˜ ( R ) S ^ m ( R ) ] .
η ˜ ( R ) = R 2 S ^ m ( R ) K β ˜ m ( R ) exp [ 2 0 R ( s ˜ L R β ˜ a ( ζ ) + 8 π 3 β ˜ m ( ζ ) d ζ ) ]
α ˜ ( R ) = α ( R ) β a ( c a l ) ( R ) ( s L R ( c a l ) ( R ) s ˜ L R ) ,
s ˜ L R ( R ) = s L R ( R ) β a ( c a l ) ( R ) β a ( R ) ( s L R ( c a l ) ( R ) s ˜ L R ) .