Abstract

Measurements of the absorption coefficient of chromophoric dissolved organic matter (ay) are needed to validate existing ocean-color algorithms. In the surface open ocean, these measurements are challenging because of low ay values. Yet, existing global datasets demonstrate that ay could contribute between 30% to 50% of the total absorption budget in the 400–450 nm spectral range, thus making accurate measurement of ay essential to constrain these uncertainties. In this study, we present a simple way of determining ay using a commercially-available in-situ spectrophotometer operated in underway mode. The obtained ay values were validated using independent collocated measurements. The method is simple to implement, can provide measurements with very high spatio-temporal resolution, and has an accuracy of about 0.0004 m−1 and a precision of about 0.0025 m−1 when compared to independent data (at 440 nm). The only limitation for using this method at sea is that it relies on the availability of relatively large volumes of ultrapure water. Despite this limitation, the method can deliver the ay data needed for validating and assessing uncertainties in ocean-colour algorithms.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Particulate optical scattering coefficients along an Atlantic Meridional Transect

G. Dall’Olmo, E. Boss, M.J. Behrenfeld, and T.K. Westberry
Opt. Express 20(19) 21532-21551 (2012)

Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity

W. Scott Pegau, Deric Gray, and J. Ronald V. Zaneveld
Appl. Opt. 36(24) 6035-6046 (1997)

Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range

James M. Sullivan, Michael S. Twardowski, J. Ronald V. Zaneveld, Casey M. Moore, Andrew H. Barnard, Percy L. Donaghay, and Bruce Rhoades
Appl. Opt. 45(21) 5294-5309 (2006)

References

  • View by:
  • |
  • |
  • |

  1. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).
  2. A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tieche, “Light absorption properties and absorption budget of southeast Pacific waters,” J. Geophys. Res. 115, C08009 (2010).
    [Crossref]
  3. N. B. Nelson and D. A. Siegel, “The global distribution and dynamics of chromophoric dissolved organic matter,” Annual Review of Marine Science 5, 447–476 (2013).
    [Crossref]
  4. E. Organelli, A. Bricaud, D. Antoine, and A. Matsuoka, “Seasonal dynamics of light absorption by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site),” Deep Sea Res. Part 1 91, 72–85 (2014).
    [Crossref]
  5. A. Morel and B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote. Sens. Environ. 113, 998–1011 (2009).
    [Crossref]
  6. D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res. 110, C07011 (2005).
    [Crossref]
  7. N. B. Nelson, D. A. Siegel, C. A. Carlson, C. Swan, W. M. Smethie, and S. Khatiwala, “Hydrography of chromophoric dissolved organic matter in the North Atlantic,” Deep Sea Res. 54, 710–731 (2007).
    [Crossref]
  8. R. J. W. Brewin, G. Dall’Olmo, S. Pardo, V. van Dongen-Vogels, and E. S. Boss, “Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals,” Remote. Sens. Environ. 183, 82–97 (2016).
    [Crossref]
  9. G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6, 947–967 (2009).
    [Crossref]
  10. W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Tech. 27, 1733–1746 (2010).
    [Crossref]
  11. T. K. Westberry, G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express 18, 15419–15425 (2010).
    [Crossref] [PubMed]
  12. R. J. W. Brewin, G. Dall’Olmo, S. Sathyendranath, and N. J. Hardman-Mountford, “Particle backscattering as a function of chlorophyll and phytoplankton size structure in the open ocean,” Opt. Express 20, 17632–17652 (2012).
    [Crossref] [PubMed]
  13. G. Dall’Olmo, E. Boss, M. Behrenfeld, and T. Westberry, “Particulate optical scattering coefficients along an Atlantic Meridional Transect,” Opt. Express 20, 21532–21551 (2012).
    [Crossref]
  14. G. Dall’Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin, “Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient,” Biogeosciences 8, 3423–3439 (2011).
    [Crossref]
  15. P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods in Oceanography 7, 40–51 (2013).
    [Crossref]
  16. H. Claustre, F. Fell, K. Oubelkheir, L. Prieur, A. Sciandra, B. Gentili, and M. Babin, “Continuous monitoring of surface optical properties across a geostrophic front: Biogeochemical inferences,” Limnol. Oceanogr. 45, 309–321 (2000).
    [Crossref]
  17. G. Kirkpatrick, C. Orrico, M. A. Moline, M. Oliver, and O. M. Schofield, “Continuous hyperspectral absorption measurements of colored dissolved organic material in aquatic systems,” Appl. Opt. 42, 6564–6568 (2003).
    [Crossref] [PubMed]
  18. A. Matsuoka, E. Boss, M. Babin, L. Karp-Boss, M. Hafez, A. Chekalyuk, C.W. Proctor, P.J. Werdell, and A. Bricaud, “Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data,” Remote. Sens. Environ. 200, 89–101 (2017).
    [Crossref]
  19. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 1, 43–53 (1981).
    [Crossref]
  20. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range,” Appl. Optics 45, 5294–5309 (2006).
    [Crossref]
  21. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Optics 36, 6035–6046 (1997).
    [Crossref]
  22. R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22, 25093–25108 (2014).
    [Crossref] [PubMed]
  23. E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17, 1535–1550 (2009).
    [Crossref] [PubMed]
  24. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: Effect of salinity,” Opt. Express 17, 5698–5710 (2009).
    [Crossref] [PubMed]
  25. M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69–88 (2004).
    [Crossref]
  26. R. F. Davis, C. C. Moore, J. R. V. Zaneveld, and J. M. Napp, “Reducing the effects of fouling on chlorophyll estimates derived from long-term deployments of optical instruments,” J. Geophys. Res. Oceans 102, 5851–5855 (1997).
    [Crossref]
  27. E. S. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574, 149–159 (2007).
    [Crossref]
  28. I. Lefering, R. Röttgers, C. Utschig, and D. McKee, “Uncertainty budgets for liquid waveguide CDOM absorption measurements,” Appl. Optics 56, 6357–6366 (2017).
    [Crossref]
  29. P. Kowalczuk, G. H. Tilstone, M. Zablocka, R. Röttgers, and R. Thomas, “Composition of dissolved organic matter along an Atlantic Meridional Transect from fluorescence spectroscopy and Parallel Factor Analysis,” Mar. Chem. 157, 170–184 (2013).
    [Crossref]
  30. P. G. Coble, “Marine optical biogeochemistry: The chemistry of ocean color,” Chem. Rev. 107, 402–418 (2007).
    [Crossref] [PubMed]
  31. A. Morel, “Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible?” J. Geophys. Res. Oceans 114, C01016 (2009).
    [Crossref]
  32. V. Kitidis, A. P. Stubbins, G. Uher, R. C. U. Goddard, C. S. Law, and E. M. S. Woodward, “Variability of chromophoric organic matter in surface waters of the Atlantic Ocean,” Deep Sea Res. Part 2 53, 1666–1684 (2006).
    [Crossref]
  33. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. 2. Integrating cavity measurements,” Appl. Optics 36, 8710–8723 (1997).
    [Crossref]
  34. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (Case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. Oceans 103, 31033–31044 (1998).
    [Crossref]
  35. A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. Oceans 109, C11010 (2004).
    [Crossref]
  36. A. Bricaud, A. M. Ciotti, and B. Gentili, “Spatial-temporal variations in phytoplankton size and colored detrital matter absorption at global and regional scales, as derived from twelve years of SeaWiFS data (1998–2009),” Global. Biogeochem. Cycles 26, GB1010 (2012).
    [Crossref]
  37. R. J. W. Brewin, D. E. Raitsos, G. Dall’Olmo, N. Zarokanellos, T. Jackson, M. F. Racault, E. S. Boss, S. Sathyendranath, B. H. Jones, and I. Hoteit, “Regional ocean-colour chlorophyll algorithms for the Red Sea,” Remote. Sens. Environ. 165, 64–85 (2015).
    [Crossref]

2017 (2)

A. Matsuoka, E. Boss, M. Babin, L. Karp-Boss, M. Hafez, A. Chekalyuk, C.W. Proctor, P.J. Werdell, and A. Bricaud, “Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data,” Remote. Sens. Environ. 200, 89–101 (2017).
[Crossref]

I. Lefering, R. Röttgers, C. Utschig, and D. McKee, “Uncertainty budgets for liquid waveguide CDOM absorption measurements,” Appl. Optics 56, 6357–6366 (2017).
[Crossref]

2016 (1)

R. J. W. Brewin, G. Dall’Olmo, S. Pardo, V. van Dongen-Vogels, and E. S. Boss, “Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals,” Remote. Sens. Environ. 183, 82–97 (2016).
[Crossref]

2015 (1)

R. J. W. Brewin, D. E. Raitsos, G. Dall’Olmo, N. Zarokanellos, T. Jackson, M. F. Racault, E. S. Boss, S. Sathyendranath, B. H. Jones, and I. Hoteit, “Regional ocean-colour chlorophyll algorithms for the Red Sea,” Remote. Sens. Environ. 165, 64–85 (2015).
[Crossref]

2014 (2)

R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22, 25093–25108 (2014).
[Crossref] [PubMed]

E. Organelli, A. Bricaud, D. Antoine, and A. Matsuoka, “Seasonal dynamics of light absorption by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site),” Deep Sea Res. Part 1 91, 72–85 (2014).
[Crossref]

2013 (3)

N. B. Nelson and D. A. Siegel, “The global distribution and dynamics of chromophoric dissolved organic matter,” Annual Review of Marine Science 5, 447–476 (2013).
[Crossref]

P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods in Oceanography 7, 40–51 (2013).
[Crossref]

P. Kowalczuk, G. H. Tilstone, M. Zablocka, R. Röttgers, and R. Thomas, “Composition of dissolved organic matter along an Atlantic Meridional Transect from fluorescence spectroscopy and Parallel Factor Analysis,” Mar. Chem. 157, 170–184 (2013).
[Crossref]

2012 (3)

2011 (1)

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin, “Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient,” Biogeosciences 8, 3423–3439 (2011).
[Crossref]

2010 (3)

A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tieche, “Light absorption properties and absorption budget of southeast Pacific waters,” J. Geophys. Res. 115, C08009 (2010).
[Crossref]

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Tech. 27, 1733–1746 (2010).
[Crossref]

T. K. Westberry, G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express 18, 15419–15425 (2010).
[Crossref] [PubMed]

2009 (5)

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6, 947–967 (2009).
[Crossref]

A. Morel and B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote. Sens. Environ. 113, 998–1011 (2009).
[Crossref]

A. Morel, “Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible?” J. Geophys. Res. Oceans 114, C01016 (2009).
[Crossref]

E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17, 1535–1550 (2009).
[Crossref] [PubMed]

X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: Effect of salinity,” Opt. Express 17, 5698–5710 (2009).
[Crossref] [PubMed]

2007 (3)

P. G. Coble, “Marine optical biogeochemistry: The chemistry of ocean color,” Chem. Rev. 107, 402–418 (2007).
[Crossref] [PubMed]

E. S. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574, 149–159 (2007).
[Crossref]

N. B. Nelson, D. A. Siegel, C. A. Carlson, C. Swan, W. M. Smethie, and S. Khatiwala, “Hydrography of chromophoric dissolved organic matter in the North Atlantic,” Deep Sea Res. 54, 710–731 (2007).
[Crossref]

2006 (2)

V. Kitidis, A. P. Stubbins, G. Uher, R. C. U. Goddard, C. S. Law, and E. M. S. Woodward, “Variability of chromophoric organic matter in surface waters of the Atlantic Ocean,” Deep Sea Res. Part 2 53, 1666–1684 (2006).
[Crossref]

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range,” Appl. Optics 45, 5294–5309 (2006).
[Crossref]

2005 (1)

D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res. 110, C07011 (2005).
[Crossref]

2004 (2)

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69–88 (2004).
[Crossref]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. Oceans 109, C11010 (2004).
[Crossref]

2003 (1)

2000 (1)

H. Claustre, F. Fell, K. Oubelkheir, L. Prieur, A. Sciandra, B. Gentili, and M. Babin, “Continuous monitoring of surface optical properties across a geostrophic front: Biogeochemical inferences,” Limnol. Oceanogr. 45, 309–321 (2000).
[Crossref]

1998 (1)

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (Case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. Oceans 103, 31033–31044 (1998).
[Crossref]

1997 (3)

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. 2. Integrating cavity measurements,” Appl. Optics 36, 8710–8723 (1997).
[Crossref]

R. F. Davis, C. C. Moore, J. R. V. Zaneveld, and J. M. Napp, “Reducing the effects of fouling on chlorophyll estimates derived from long-term deployments of optical instruments,” J. Geophys. Res. Oceans 102, 5851–5855 (1997).
[Crossref]

W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Optics 36, 6035–6046 (1997).
[Crossref]

1981 (1)

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 1, 43–53 (1981).
[Crossref]

Allali, K.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (Case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. Oceans 103, 31033–31044 (1998).
[Crossref]

Antoine, D.

E. Organelli, A. Bricaud, D. Antoine, and A. Matsuoka, “Seasonal dynamics of light absorption by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site),” Deep Sea Res. Part 1 91, 72–85 (2014).
[Crossref]

Babin, M.

A. Matsuoka, E. Boss, M. Babin, L. Karp-Boss, M. Hafez, A. Chekalyuk, C.W. Proctor, P.J. Werdell, and A. Bricaud, “Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data,” Remote. Sens. Environ. 200, 89–101 (2017).
[Crossref]

A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tieche, “Light absorption properties and absorption budget of southeast Pacific waters,” J. Geophys. Res. 115, C08009 (2010).
[Crossref]

H. Claustre, F. Fell, K. Oubelkheir, L. Prieur, A. Sciandra, B. Gentili, and M. Babin, “Continuous monitoring of surface optical properties across a geostrophic front: Biogeochemical inferences,” Limnol. Oceanogr. 45, 309–321 (2000).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (Case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. Oceans 103, 31033–31044 (1998).
[Crossref]

Barnard, A. H.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range,” Appl. Optics 45, 5294–5309 (2006).
[Crossref]

Behrenfeld, M.

Behrenfeld, M. J.

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin, “Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient,” Biogeosciences 8, 3423–3439 (2011).
[Crossref]

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Tech. 27, 1733–1746 (2010).
[Crossref]

T. K. Westberry, G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express 18, 15419–15425 (2010).
[Crossref] [PubMed]

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6, 947–967 (2009).
[Crossref]

D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res. 110, C07011 (2005).
[Crossref]

Boss, E.

A. Matsuoka, E. Boss, M. Babin, L. Karp-Boss, M. Hafez, A. Chekalyuk, C.W. Proctor, P.J. Werdell, and A. Bricaud, “Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data,” Remote. Sens. Environ. 200, 89–101 (2017).
[Crossref]

P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods in Oceanography 7, 40–51 (2013).
[Crossref]

G. Dall’Olmo, E. Boss, M. Behrenfeld, and T. Westberry, “Particulate optical scattering coefficients along an Atlantic Meridional Transect,” Opt. Express 20, 21532–21551 (2012).
[Crossref]

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin, “Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient,” Biogeosciences 8, 3423–3439 (2011).
[Crossref]

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Tech. 27, 1733–1746 (2010).
[Crossref]

T. K. Westberry, G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express 18, 15419–15425 (2010).
[Crossref] [PubMed]

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6, 947–967 (2009).
[Crossref]

E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17, 1535–1550 (2009).
[Crossref] [PubMed]

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69–88 (2004).
[Crossref]

Boss, E. S.

R. J. W. Brewin, G. Dall’Olmo, S. Pardo, V. van Dongen-Vogels, and E. S. Boss, “Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals,” Remote. Sens. Environ. 183, 82–97 (2016).
[Crossref]

R. J. W. Brewin, D. E. Raitsos, G. Dall’Olmo, N. Zarokanellos, T. Jackson, M. F. Racault, E. S. Boss, S. Sathyendranath, B. H. Jones, and I. Hoteit, “Regional ocean-colour chlorophyll algorithms for the Red Sea,” Remote. Sens. Environ. 165, 64–85 (2015).
[Crossref]

E. S. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574, 149–159 (2007).
[Crossref]

Brewin, R. J. W.

R. J. W. Brewin, G. Dall’Olmo, S. Pardo, V. van Dongen-Vogels, and E. S. Boss, “Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals,” Remote. Sens. Environ. 183, 82–97 (2016).
[Crossref]

R. J. W. Brewin, D. E. Raitsos, G. Dall’Olmo, N. Zarokanellos, T. Jackson, M. F. Racault, E. S. Boss, S. Sathyendranath, B. H. Jones, and I. Hoteit, “Regional ocean-colour chlorophyll algorithms for the Red Sea,” Remote. Sens. Environ. 165, 64–85 (2015).
[Crossref]

R. J. W. Brewin, G. Dall’Olmo, S. Sathyendranath, and N. J. Hardman-Mountford, “Particle backscattering as a function of chlorophyll and phytoplankton size structure in the open ocean,” Opt. Express 20, 17632–17652 (2012).
[Crossref] [PubMed]

Bricaud, A.

A. Matsuoka, E. Boss, M. Babin, L. Karp-Boss, M. Hafez, A. Chekalyuk, C.W. Proctor, P.J. Werdell, and A. Bricaud, “Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data,” Remote. Sens. Environ. 200, 89–101 (2017).
[Crossref]

E. Organelli, A. Bricaud, D. Antoine, and A. Matsuoka, “Seasonal dynamics of light absorption by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site),” Deep Sea Res. Part 1 91, 72–85 (2014).
[Crossref]

A. Bricaud, A. M. Ciotti, and B. Gentili, “Spatial-temporal variations in phytoplankton size and colored detrital matter absorption at global and regional scales, as derived from twelve years of SeaWiFS data (1998–2009),” Global. Biogeochem. Cycles 26, GB1010 (2012).
[Crossref]

A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tieche, “Light absorption properties and absorption budget of southeast Pacific waters,” J. Geophys. Res. 115, C08009 (2010).
[Crossref]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. Oceans 109, C11010 (2004).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (Case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. Oceans 103, 31033–31044 (1998).
[Crossref]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 1, 43–53 (1981).
[Crossref]

Carlson, C. A.

N. B. Nelson, D. A. Siegel, C. A. Carlson, C. Swan, W. M. Smethie, and S. Khatiwala, “Hydrography of chromophoric dissolved organic matter in the North Atlantic,” Deep Sea Res. 54, 710–731 (2007).
[Crossref]

Chekalyuk, A.

A. Matsuoka, E. Boss, M. Babin, L. Karp-Boss, M. Hafez, A. Chekalyuk, C.W. Proctor, P.J. Werdell, and A. Bricaud, “Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data,” Remote. Sens. Environ. 200, 89–101 (2017).
[Crossref]

Ciotti, A. M.

A. Bricaud, A. M. Ciotti, and B. Gentili, “Spatial-temporal variations in phytoplankton size and colored detrital matter absorption at global and regional scales, as derived from twelve years of SeaWiFS data (1998–2009),” Global. Biogeochem. Cycles 26, GB1010 (2012).
[Crossref]

Claustre, H.

A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tieche, “Light absorption properties and absorption budget of southeast Pacific waters,” J. Geophys. Res. 115, C08009 (2010).
[Crossref]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. Oceans 109, C11010 (2004).
[Crossref]

H. Claustre, F. Fell, K. Oubelkheir, L. Prieur, A. Sciandra, B. Gentili, and M. Babin, “Continuous monitoring of surface optical properties across a geostrophic front: Biogeochemical inferences,” Limnol. Oceanogr. 45, 309–321 (2000).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (Case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. Oceans 103, 31033–31044 (1998).
[Crossref]

Coble, P. G.

P. G. Coble, “Marine optical biogeochemistry: The chemistry of ocean color,” Chem. Rev. 107, 402–418 (2007).
[Crossref] [PubMed]

Collier, R.

E. S. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574, 149–159 (2007).
[Crossref]

Courties, C.

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin, “Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient,” Biogeosciences 8, 3423–3439 (2011).
[Crossref]

Dall’Olmo, G.

R. J. W. Brewin, G. Dall’Olmo, S. Pardo, V. van Dongen-Vogels, and E. S. Boss, “Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals,” Remote. Sens. Environ. 183, 82–97 (2016).
[Crossref]

R. J. W. Brewin, D. E. Raitsos, G. Dall’Olmo, N. Zarokanellos, T. Jackson, M. F. Racault, E. S. Boss, S. Sathyendranath, B. H. Jones, and I. Hoteit, “Regional ocean-colour chlorophyll algorithms for the Red Sea,” Remote. Sens. Environ. 165, 64–85 (2015).
[Crossref]

R. J. W. Brewin, G. Dall’Olmo, S. Sathyendranath, and N. J. Hardman-Mountford, “Particle backscattering as a function of chlorophyll and phytoplankton size structure in the open ocean,” Opt. Express 20, 17632–17652 (2012).
[Crossref] [PubMed]

G. Dall’Olmo, E. Boss, M. Behrenfeld, and T. Westberry, “Particulate optical scattering coefficients along an Atlantic Meridional Transect,” Opt. Express 20, 21532–21551 (2012).
[Crossref]

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin, “Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient,” Biogeosciences 8, 3423–3439 (2011).
[Crossref]

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Tech. 27, 1733–1746 (2010).
[Crossref]

T. K. Westberry, G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express 18, 15419–15425 (2010).
[Crossref] [PubMed]

E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17, 1535–1550 (2009).
[Crossref] [PubMed]

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6, 947–967 (2009).
[Crossref]

Davis, R. F.

R. F. Davis, C. C. Moore, J. R. V. Zaneveld, and J. M. Napp, “Reducing the effects of fouling on chlorophyll estimates derived from long-term deployments of optical instruments,” J. Geophys. Res. Oceans 102, 5851–5855 (1997).
[Crossref]

Donaghay, P. L.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range,” Appl. Optics 45, 5294–5309 (2006).
[Crossref]

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69–88 (2004).
[Crossref]

Fell, F.

H. Claustre, F. Fell, K. Oubelkheir, L. Prieur, A. Sciandra, B. Gentili, and M. Babin, “Continuous monitoring of surface optical properties across a geostrophic front: Biogeochemical inferences,” Limnol. Oceanogr. 45, 309–321 (2000).
[Crossref]

Fennel, K.

E. S. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574, 149–159 (2007).
[Crossref]

Fry, E. S.

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. 2. Integrating cavity measurements,” Appl. Optics 36, 8710–8723 (1997).
[Crossref]

Gentili, B.

A. Bricaud, A. M. Ciotti, and B. Gentili, “Spatial-temporal variations in phytoplankton size and colored detrital matter absorption at global and regional scales, as derived from twelve years of SeaWiFS data (1998–2009),” Global. Biogeochem. Cycles 26, GB1010 (2012).
[Crossref]

A. Morel and B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote. Sens. Environ. 113, 998–1011 (2009).
[Crossref]

H. Claustre, F. Fell, K. Oubelkheir, L. Prieur, A. Sciandra, B. Gentili, and M. Babin, “Continuous monitoring of surface optical properties across a geostrophic front: Biogeochemical inferences,” Limnol. Oceanogr. 45, 309–321 (2000).
[Crossref]

Goddard, R. C. U.

V. Kitidis, A. P. Stubbins, G. Uher, R. C. U. Goddard, C. S. Law, and E. M. S. Woodward, “Variability of chromophoric organic matter in surface waters of the Atlantic Ocean,” Deep Sea Res. Part 2 53, 1666–1684 (2006).
[Crossref]

Gray, D.

W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Optics 36, 6035–6046 (1997).
[Crossref]

Hafez, M.

A. Matsuoka, E. Boss, M. Babin, L. Karp-Boss, M. Hafez, A. Chekalyuk, C.W. Proctor, P.J. Werdell, and A. Bricaud, “Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data,” Remote. Sens. Environ. 200, 89–101 (2017).
[Crossref]

Hardman-Mountford, N.

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin, “Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient,” Biogeosciences 8, 3423–3439 (2011).
[Crossref]

Hardman-Mountford, N. J.

He, M.-X.

Hoteit, I.

R. J. W. Brewin, D. E. Raitsos, G. Dall’Olmo, N. Zarokanellos, T. Jackson, M. F. Racault, E. S. Boss, S. Sathyendranath, B. H. Jones, and I. Hoteit, “Regional ocean-colour chlorophyll algorithms for the Red Sea,” Remote. Sens. Environ. 165, 64–85 (2015).
[Crossref]

Hu, L.

Jackson, T.

R. J. W. Brewin, D. E. Raitsos, G. Dall’Olmo, N. Zarokanellos, T. Jackson, M. F. Racault, E. S. Boss, S. Sathyendranath, B. H. Jones, and I. Hoteit, “Regional ocean-colour chlorophyll algorithms for the Red Sea,” Remote. Sens. Environ. 165, 64–85 (2015).
[Crossref]

Jones, B. H.

R. J. W. Brewin, D. E. Raitsos, G. Dall’Olmo, N. Zarokanellos, T. Jackson, M. F. Racault, E. S. Boss, S. Sathyendranath, B. H. Jones, and I. Hoteit, “Regional ocean-colour chlorophyll algorithms for the Red Sea,” Remote. Sens. Environ. 165, 64–85 (2015).
[Crossref]

Karp-Boss, L.

A. Matsuoka, E. Boss, M. Babin, L. Karp-Boss, M. Hafez, A. Chekalyuk, C.W. Proctor, P.J. Werdell, and A. Bricaud, “Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data,” Remote. Sens. Environ. 200, 89–101 (2017).
[Crossref]

Khatiwala, S.

N. B. Nelson, D. A. Siegel, C. A. Carlson, C. Swan, W. M. Smethie, and S. Khatiwala, “Hydrography of chromophoric dissolved organic matter in the North Atlantic,” Deep Sea Res. 54, 710–731 (2007).
[Crossref]

Kirkpatrick, G.

Kitidis, V.

V. Kitidis, A. P. Stubbins, G. Uher, R. C. U. Goddard, C. S. Law, and E. M. S. Woodward, “Variability of chromophoric organic matter in surface waters of the Atlantic Ocean,” Deep Sea Res. Part 2 53, 1666–1684 (2006).
[Crossref]

Kowalczuk, P.

P. Kowalczuk, G. H. Tilstone, M. Zablocka, R. Röttgers, and R. Thomas, “Composition of dissolved organic matter along an Atlantic Meridional Transect from fluorescence spectroscopy and Parallel Factor Analysis,” Mar. Chem. 157, 170–184 (2013).
[Crossref]

Langner, M. R.

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Tech. 27, 1733–1746 (2010).
[Crossref]

Larson, G.

E. S. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574, 149–159 (2007).
[Crossref]

Law, C. S.

V. Kitidis, A. P. Stubbins, G. Uher, R. C. U. Goddard, C. S. Law, and E. M. S. Woodward, “Variability of chromophoric organic matter in surface waters of the Atlantic Ocean,” Deep Sea Res. Part 2 53, 1666–1684 (2006).
[Crossref]

Leeuw, T.

P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods in Oceanography 7, 40–51 (2013).
[Crossref]

Lefering, I.

I. Lefering, R. Röttgers, C. Utschig, and D. McKee, “Uncertainty budgets for liquid waveguide CDOM absorption measurements,” Appl. Optics 56, 6357–6366 (2017).
[Crossref]

Loftin, J.

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Tech. 27, 1733–1746 (2010).
[Crossref]

Maritorena, S.

D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res. 110, C07011 (2005).
[Crossref]

Matsuoka, A.

A. Matsuoka, E. Boss, M. Babin, L. Karp-Boss, M. Hafez, A. Chekalyuk, C.W. Proctor, P.J. Werdell, and A. Bricaud, “Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data,” Remote. Sens. Environ. 200, 89–101 (2017).
[Crossref]

E. Organelli, A. Bricaud, D. Antoine, and A. Matsuoka, “Seasonal dynamics of light absorption by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site),” Deep Sea Res. Part 1 91, 72–85 (2014).
[Crossref]

McKee, D.

I. Lefering, R. Röttgers, C. Utschig, and D. McKee, “Uncertainty budgets for liquid waveguide CDOM absorption measurements,” Appl. Optics 56, 6357–6366 (2017).
[Crossref]

R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22, 25093–25108 (2014).
[Crossref] [PubMed]

Mobley, C. D.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

Moline, M. A.

Moore, C. C.

R. F. Davis, C. C. Moore, J. R. V. Zaneveld, and J. M. Napp, “Reducing the effects of fouling on chlorophyll estimates derived from long-term deployments of optical instruments,” J. Geophys. Res. Oceans 102, 5851–5855 (1997).
[Crossref]

Moore, C. M.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range,” Appl. Optics 45, 5294–5309 (2006).
[Crossref]

Morel, A.

A. Morel, “Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible?” J. Geophys. Res. Oceans 114, C01016 (2009).
[Crossref]

A. Morel and B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote. Sens. Environ. 113, 998–1011 (2009).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (Case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. Oceans 103, 31033–31044 (1998).
[Crossref]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 1, 43–53 (1981).
[Crossref]

Moutin, T.

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin, “Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient,” Biogeosciences 8, 3423–3439 (2011).
[Crossref]

T. K. Westberry, G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express 18, 15419–15425 (2010).
[Crossref] [PubMed]

Napp, J. M.

R. F. Davis, C. C. Moore, J. R. V. Zaneveld, and J. M. Napp, “Reducing the effects of fouling on chlorophyll estimates derived from long-term deployments of optical instruments,” J. Geophys. Res. Oceans 102, 5851–5855 (1997).
[Crossref]

Nelson, N. B.

N. B. Nelson and D. A. Siegel, “The global distribution and dynamics of chromophoric dissolved organic matter,” Annual Review of Marine Science 5, 447–476 (2013).
[Crossref]

N. B. Nelson, D. A. Siegel, C. A. Carlson, C. Swan, W. M. Smethie, and S. Khatiwala, “Hydrography of chromophoric dissolved organic matter in the North Atlantic,” Deep Sea Res. 54, 710–731 (2007).
[Crossref]

D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res. 110, C07011 (2005).
[Crossref]

Oliver, M.

Organelli, E.

E. Organelli, A. Bricaud, D. Antoine, and A. Matsuoka, “Seasonal dynamics of light absorption by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site),” Deep Sea Res. Part 1 91, 72–85 (2014).
[Crossref]

Orrico, C.

Oubelkheir, K.

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. Oceans 109, C11010 (2004).
[Crossref]

H. Claustre, F. Fell, K. Oubelkheir, L. Prieur, A. Sciandra, B. Gentili, and M. Babin, “Continuous monitoring of surface optical properties across a geostrophic front: Biogeochemical inferences,” Limnol. Oceanogr. 45, 309–321 (2000).
[Crossref]

Ouhssain, M.

P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods in Oceanography 7, 40–51 (2013).
[Crossref]

Pardo, S.

R. J. W. Brewin, G. Dall’Olmo, S. Pardo, V. van Dongen-Vogels, and E. S. Boss, “Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals,” Remote. Sens. Environ. 183, 82–97 (2016).
[Crossref]

Pegau, W. S.

E. S. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574, 149–159 (2007).
[Crossref]

W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Optics 36, 6035–6046 (1997).
[Crossref]

Pope, R. M.

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. 2. Integrating cavity measurements,” Appl. Optics 36, 8710–8723 (1997).
[Crossref]

Prieur, L.

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin, “Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient,” Biogeosciences 8, 3423–3439 (2011).
[Crossref]

H. Claustre, F. Fell, K. Oubelkheir, L. Prieur, A. Sciandra, B. Gentili, and M. Babin, “Continuous monitoring of surface optical properties across a geostrophic front: Biogeochemical inferences,” Limnol. Oceanogr. 45, 309–321 (2000).
[Crossref]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 1, 43–53 (1981).
[Crossref]

Proctor, C. W.

P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods in Oceanography 7, 40–51 (2013).
[Crossref]

Proctor, C.W.

A. Matsuoka, E. Boss, M. Babin, L. Karp-Boss, M. Hafez, A. Chekalyuk, C.W. Proctor, P.J. Werdell, and A. Bricaud, “Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data,” Remote. Sens. Environ. 200, 89–101 (2017).
[Crossref]

Pujo-Pay, M.

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin, “Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient,” Biogeosciences 8, 3423–3439 (2011).
[Crossref]

Racault, M. F.

R. J. W. Brewin, D. E. Raitsos, G. Dall’Olmo, N. Zarokanellos, T. Jackson, M. F. Racault, E. S. Boss, S. Sathyendranath, B. H. Jones, and I. Hoteit, “Regional ocean-colour chlorophyll algorithms for the Red Sea,” Remote. Sens. Environ. 165, 64–85 (2015).
[Crossref]

Raitsos, D. E.

R. J. W. Brewin, D. E. Raitsos, G. Dall’Olmo, N. Zarokanellos, T. Jackson, M. F. Racault, E. S. Boss, S. Sathyendranath, B. H. Jones, and I. Hoteit, “Regional ocean-colour chlorophyll algorithms for the Red Sea,” Remote. Sens. Environ. 165, 64–85 (2015).
[Crossref]

Ras, J.

A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tieche, “Light absorption properties and absorption budget of southeast Pacific waters,” J. Geophys. Res. 115, C08009 (2010).
[Crossref]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. Oceans 109, C11010 (2004).
[Crossref]

Rhoades, B.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range,” Appl. Optics 45, 5294–5309 (2006).
[Crossref]

Roesler, C.

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Tech. 27, 1733–1746 (2010).
[Crossref]

Röttgers, R.

I. Lefering, R. Röttgers, C. Utschig, and D. McKee, “Uncertainty budgets for liquid waveguide CDOM absorption measurements,” Appl. Optics 56, 6357–6366 (2017).
[Crossref]

R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22, 25093–25108 (2014).
[Crossref] [PubMed]

P. Kowalczuk, G. H. Tilstone, M. Zablocka, R. Röttgers, and R. Thomas, “Composition of dissolved organic matter along an Atlantic Meridional Transect from fluorescence spectroscopy and Parallel Factor Analysis,” Mar. Chem. 157, 170–184 (2013).
[Crossref]

Sathyendranath, S.

R. J. W. Brewin, D. E. Raitsos, G. Dall’Olmo, N. Zarokanellos, T. Jackson, M. F. Racault, E. S. Boss, S. Sathyendranath, B. H. Jones, and I. Hoteit, “Regional ocean-colour chlorophyll algorithms for the Red Sea,” Remote. Sens. Environ. 165, 64–85 (2015).
[Crossref]

R. J. W. Brewin, G. Dall’Olmo, S. Sathyendranath, and N. J. Hardman-Mountford, “Particle backscattering as a function of chlorophyll and phytoplankton size structure in the open ocean,” Opt. Express 20, 17632–17652 (2012).
[Crossref] [PubMed]

Schofield, O. M.

Sciandra, A.

H. Claustre, F. Fell, K. Oubelkheir, L. Prieur, A. Sciandra, B. Gentili, and M. Babin, “Continuous monitoring of surface optical properties across a geostrophic front: Biogeochemical inferences,” Limnol. Oceanogr. 45, 309–321 (2000).
[Crossref]

Siegel, D. A.

N. B. Nelson and D. A. Siegel, “The global distribution and dynamics of chromophoric dissolved organic matter,” Annual Review of Marine Science 5, 447–476 (2013).
[Crossref]

N. B. Nelson, D. A. Siegel, C. A. Carlson, C. Swan, W. M. Smethie, and S. Khatiwala, “Hydrography of chromophoric dissolved organic matter in the North Atlantic,” Deep Sea Res. 54, 710–731 (2007).
[Crossref]

D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res. 110, C07011 (2005).
[Crossref]

Slade, W. H.

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Tech. 27, 1733–1746 (2010).
[Crossref]

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6, 947–967 (2009).
[Crossref]

E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17, 1535–1550 (2009).
[Crossref] [PubMed]

Smethie, W. M.

N. B. Nelson, D. A. Siegel, C. A. Carlson, C. Swan, W. M. Smethie, and S. Khatiwala, “Hydrography of chromophoric dissolved organic matter in the North Atlantic,” Deep Sea Res. 54, 710–731 (2007).
[Crossref]

Stubbins, A. P.

V. Kitidis, A. P. Stubbins, G. Uher, R. C. U. Goddard, C. S. Law, and E. M. S. Woodward, “Variability of chromophoric organic matter in surface waters of the Atlantic Ocean,” Deep Sea Res. Part 2 53, 1666–1684 (2006).
[Crossref]

Sullivan, J. M.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range,” Appl. Optics 45, 5294–5309 (2006).
[Crossref]

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69–88 (2004).
[Crossref]

Swan, C.

N. B. Nelson, D. A. Siegel, C. A. Carlson, C. Swan, W. M. Smethie, and S. Khatiwala, “Hydrography of chromophoric dissolved organic matter in the North Atlantic,” Deep Sea Res. 54, 710–731 (2007).
[Crossref]

Thomas, R.

P. Kowalczuk, G. H. Tilstone, M. Zablocka, R. Röttgers, and R. Thomas, “Composition of dissolved organic matter along an Atlantic Meridional Transect from fluorescence spectroscopy and Parallel Factor Analysis,” Mar. Chem. 157, 170–184 (2013).
[Crossref]

Tieche, F.

A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tieche, “Light absorption properties and absorption budget of southeast Pacific waters,” J. Geophys. Res. 115, C08009 (2010).
[Crossref]

Tilstone, G. H.

P. Kowalczuk, G. H. Tilstone, M. Zablocka, R. Röttgers, and R. Thomas, “Composition of dissolved organic matter along an Atlantic Meridional Transect from fluorescence spectroscopy and Parallel Factor Analysis,” Mar. Chem. 157, 170–184 (2013).
[Crossref]

Twardowski, M. S.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range,” Appl. Optics 45, 5294–5309 (2006).
[Crossref]

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69–88 (2004).
[Crossref]

Uher, G.

V. Kitidis, A. P. Stubbins, G. Uher, R. C. U. Goddard, C. S. Law, and E. M. S. Woodward, “Variability of chromophoric organic matter in surface waters of the Atlantic Ocean,” Deep Sea Res. Part 2 53, 1666–1684 (2006).
[Crossref]

Utschig, C.

I. Lefering, R. Röttgers, C. Utschig, and D. McKee, “Uncertainty budgets for liquid waveguide CDOM absorption measurements,” Appl. Optics 56, 6357–6366 (2017).
[Crossref]

R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22, 25093–25108 (2014).
[Crossref] [PubMed]

van Dongen-Vogels, V.

R. J. W. Brewin, G. Dall’Olmo, S. Pardo, V. van Dongen-Vogels, and E. S. Boss, “Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals,” Remote. Sens. Environ. 183, 82–97 (2016).
[Crossref]

Werdell, P. J.

P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods in Oceanography 7, 40–51 (2013).
[Crossref]

Werdell, P.J.

A. Matsuoka, E. Boss, M. Babin, L. Karp-Boss, M. Hafez, A. Chekalyuk, C.W. Proctor, P.J. Werdell, and A. Bricaud, “Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data,” Remote. Sens. Environ. 200, 89–101 (2017).
[Crossref]

Westberry, T.

Westberry, T. K.

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin, “Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient,” Biogeosciences 8, 3423–3439 (2011).
[Crossref]

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Tech. 27, 1733–1746 (2010).
[Crossref]

T. K. Westberry, G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express 18, 15419–15425 (2010).
[Crossref] [PubMed]

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6, 947–967 (2009).
[Crossref]

Woodward, E. M. S.

V. Kitidis, A. P. Stubbins, G. Uher, R. C. U. Goddard, C. S. Law, and E. M. S. Woodward, “Variability of chromophoric organic matter in surface waters of the Atlantic Ocean,” Deep Sea Res. Part 2 53, 1666–1684 (2006).
[Crossref]

Zablocka, M.

P. Kowalczuk, G. H. Tilstone, M. Zablocka, R. Röttgers, and R. Thomas, “Composition of dissolved organic matter along an Atlantic Meridional Transect from fluorescence spectroscopy and Parallel Factor Analysis,” Mar. Chem. 157, 170–184 (2013).
[Crossref]

Zaneveld, J. R. V.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range,” Appl. Optics 45, 5294–5309 (2006).
[Crossref]

W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Optics 36, 6035–6046 (1997).
[Crossref]

R. F. Davis, C. C. Moore, J. R. V. Zaneveld, and J. M. Napp, “Reducing the effects of fouling on chlorophyll estimates derived from long-term deployments of optical instruments,” J. Geophys. Res. Oceans 102, 5851–5855 (1997).
[Crossref]

Zarokanellos, N.

R. J. W. Brewin, D. E. Raitsos, G. Dall’Olmo, N. Zarokanellos, T. Jackson, M. F. Racault, E. S. Boss, S. Sathyendranath, B. H. Jones, and I. Hoteit, “Regional ocean-colour chlorophyll algorithms for the Red Sea,” Remote. Sens. Environ. 165, 64–85 (2015).
[Crossref]

Zhang, X.

Annual Review of Marine Science (1)

N. B. Nelson and D. A. Siegel, “The global distribution and dynamics of chromophoric dissolved organic matter,” Annual Review of Marine Science 5, 447–476 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Optics (4)

I. Lefering, R. Röttgers, C. Utschig, and D. McKee, “Uncertainty budgets for liquid waveguide CDOM absorption measurements,” Appl. Optics 56, 6357–6366 (2017).
[Crossref]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. 2. Integrating cavity measurements,” Appl. Optics 36, 8710–8723 (1997).
[Crossref]

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range,” Appl. Optics 45, 5294–5309 (2006).
[Crossref]

W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Optics 36, 6035–6046 (1997).
[Crossref]

Biogeosciences (2)

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin, “Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient,” Biogeosciences 8, 3423–3439 (2011).
[Crossref]

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6, 947–967 (2009).
[Crossref]

Chem. Rev. (1)

P. G. Coble, “Marine optical biogeochemistry: The chemistry of ocean color,” Chem. Rev. 107, 402–418 (2007).
[Crossref] [PubMed]

Deep Sea Res. (1)

N. B. Nelson, D. A. Siegel, C. A. Carlson, C. Swan, W. M. Smethie, and S. Khatiwala, “Hydrography of chromophoric dissolved organic matter in the North Atlantic,” Deep Sea Res. 54, 710–731 (2007).
[Crossref]

Deep Sea Res. Part 1 (1)

E. Organelli, A. Bricaud, D. Antoine, and A. Matsuoka, “Seasonal dynamics of light absorption by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site),” Deep Sea Res. Part 1 91, 72–85 (2014).
[Crossref]

Deep Sea Res. Part 2 (1)

V. Kitidis, A. P. Stubbins, G. Uher, R. C. U. Goddard, C. S. Law, and E. M. S. Woodward, “Variability of chromophoric organic matter in surface waters of the Atlantic Ocean,” Deep Sea Res. Part 2 53, 1666–1684 (2006).
[Crossref]

Global. Biogeochem. Cycles (1)

A. Bricaud, A. M. Ciotti, and B. Gentili, “Spatial-temporal variations in phytoplankton size and colored detrital matter absorption at global and regional scales, as derived from twelve years of SeaWiFS data (1998–2009),” Global. Biogeochem. Cycles 26, GB1010 (2012).
[Crossref]

Hydrobiologia (1)

E. S. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574, 149–159 (2007).
[Crossref]

J. Atmos. Ocean. Tech. (1)

W. H. Slade, E. Boss, G. Dall’Olmo, M. R. Langner, J. Loftin, M. J. Behrenfeld, C. Roesler, and T. K. Westberry, “Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation,” J. Atmos. Ocean. Tech. 27, 1733–1746 (2010).
[Crossref]

J. Geophys. Res. (2)

A. Bricaud, M. Babin, H. Claustre, J. Ras, and F. Tieche, “Light absorption properties and absorption budget of southeast Pacific waters,” J. Geophys. Res. 115, C08009 (2010).
[Crossref]

D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res. 110, C07011 (2005).
[Crossref]

J. Geophys. Res. Oceans (4)

R. F. Davis, C. C. Moore, J. R. V. Zaneveld, and J. M. Napp, “Reducing the effects of fouling on chlorophyll estimates derived from long-term deployments of optical instruments,” J. Geophys. Res. Oceans 102, 5851–5855 (1997).
[Crossref]

A. Morel, “Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible?” J. Geophys. Res. Oceans 114, C01016 (2009).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (Case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. Oceans 103, 31033–31044 (1998).
[Crossref]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. Oceans 109, C11010 (2004).
[Crossref]

Limnol. Oceanogr. (2)

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 1, 43–53 (1981).
[Crossref]

H. Claustre, F. Fell, K. Oubelkheir, L. Prieur, A. Sciandra, B. Gentili, and M. Babin, “Continuous monitoring of surface optical properties across a geostrophic front: Biogeochemical inferences,” Limnol. Oceanogr. 45, 309–321 (2000).
[Crossref]

Mar. Chem. (2)

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69–88 (2004).
[Crossref]

P. Kowalczuk, G. H. Tilstone, M. Zablocka, R. Röttgers, and R. Thomas, “Composition of dissolved organic matter along an Atlantic Meridional Transect from fluorescence spectroscopy and Parallel Factor Analysis,” Mar. Chem. 157, 170–184 (2013).
[Crossref]

Methods in Oceanography (1)

P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods in Oceanography 7, 40–51 (2013).
[Crossref]

Opt. Express (6)

Remote. Sens. Environ. (4)

R. J. W. Brewin, D. E. Raitsos, G. Dall’Olmo, N. Zarokanellos, T. Jackson, M. F. Racault, E. S. Boss, S. Sathyendranath, B. H. Jones, and I. Hoteit, “Regional ocean-colour chlorophyll algorithms for the Red Sea,” Remote. Sens. Environ. 165, 64–85 (2015).
[Crossref]

A. Matsuoka, E. Boss, M. Babin, L. Karp-Boss, M. Hafez, A. Chekalyuk, C.W. Proctor, P.J. Werdell, and A. Bricaud, “Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data,” Remote. Sens. Environ. 200, 89–101 (2017).
[Crossref]

A. Morel and B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote. Sens. Environ. 113, 998–1011 (2009).
[Crossref]

R. J. W. Brewin, G. Dall’Olmo, S. Pardo, V. van Dongen-Vogels, and E. S. Boss, “Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals,” Remote. Sens. Environ. 183, 82–97 (2016).
[Crossref]

Other (1)

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 AMT26 track (line) and locations of discrete validation samples (circles) superimposed onto the October 2016 Ocean Colour-ESA Climate Change Initiative (v3.1) monthly chl composite.
Fig. 2
Fig. 2 Example of fitting eq. 8 to the difference between the absorption coefficients of 0.2-μm filtered and ultrapure water in the 430–490 nm spectral range. The local minima and maximum in the a0.2aMQ spectrum at wavelengths longer than 550 nm are due to temperature and salinity differences between the two water samples.
Fig. 3
Fig. 3 Absorption (blue circles) and attenuation (red empty squares) coefficients of ultrapure water as measured during the course of the cruise. Black and white triangles indicate times when the ACS instruments was cleaned and when it was switched off for about 2 hrs, respectively.
Fig. 4
Fig. 4 Estimated typical uncertainties in [a, c]MQ(440) as a function of the temporal resolution at which ultrapure water measurements are collected. Each point in the figure represents the average of all the standard deviations computed on subsets of the [a, c]MQ(440) time series. These subsets were obtained by subdividing the time series in intervals of varying length as reported on the x-axis.
Fig. 5
Fig. 5 Top: [a, c]y,raw spectra measured during AMT26 (black); red dots indicates the spectral range used to fit eq. 8. Bottom: residuals from the fit of eq. 8 to the [a, c]y,raw spectra. Red lines highlight the zero values.
Fig. 6
Fig. 6 Comparison between [a, c] y (440) measured by the ACS and by the LWCC. Two different sets of LWCC data are shown: (left) data processed by applying the salinity correction determined during the cruise and (right) in the laboratory. Blue circles and text refer to ay estimates, red crosess and text to cy estimates. Filled circles are comparisons for which the LWCC samples were collected from the Niskin bottles, rather than from the ship’s seawater supply. δ values are the median absolute residuals (LWCC - ACS) and are used as an indicator of the bias. σ values are the robust standard deviations of the debiased residuals (i.e., residuals from which the corresponding δ was subtracted) computed as the half differences between the 84 th and 16 th percentiles and are used as a robust indicator of the spread of these residuals (σ corresponds to the standard deviation, if the distribution is normal). Both metrics were computed using the entire dataset. δ and σ are used as indicators of accuracy and precision. Dashed lines represent the 1:1 relationship.
Fig. 7
Fig. 7 Time series of the differences between ay and cy at 440 nm during the cruise. Large and small circles represent discrete and hourly estimates, respectively. Median (δ) and robust standard deviations (σ) of the differences are also presented.
Fig. 8
Fig. 8 Spatial variability of sea surface temperature (SST), salinity (SSS), ay(440) and chlorophyll concentration (chl). Large and small orange circles in bottom plots indicate ay(440) estimates for which ultrapure water measurements were available (“discrete”) and for which the absorption by ultrapure water was interpolated (“hourly”), respectively.
Fig. 9
Fig. 9 Scatterplot of hourly ay(440) vs. chl with colors representing sea surface temperature. The black line represents the bio-optical model derived from the AMT26 dataset. Blue dashed line and dotted line represent bio-optical models relating chl to ay (“M09” for [31], “B10” for [2]).
Fig. 10
Fig. 10 Relative contribution of ay to the total absorption coefficient (atot) at 440 nm as a function of chl. Large filled and small empty circles were derived by using discrete and hourly estimates of ay, respectively, and coincident measurements of ap(440). The black, blue, and red lines were derived from previously published relationships for ay [2], pure water absorption [33] and for three different models of ap [2,34,35], respectively.
Fig. 11
Fig. 11 Scatterplots of [a, c] y (440) vs. the spectral slope of CDOM absorption fitted between 440 and 550 nm. Color represents sea surface temperatures. Black and red lines are published bio-optical models [36,37].

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

a 0.2 = a Δ + a w + a b w + a b salt + Ψ T T 0.2 + Ψ S S + a y ,
a MQ = a Δ + a w + a b w + Ψ T T MQ ,
c 0.2 = c Δ + a w + b w + b salt + Ψ T T 0.2 + Ψ S S + c y ,
c MQ = c Δ + a w + b w + Ψ T T MQ ,
a 0.2 a MQ = a y + a b salt + Ψ T ( T 0.2 + T MQ ) + Ψ S S ,
c 0.2 c MQ = c y + b salt + Ψ T ( T 0.2 T MQ ) + Ψ S S .
[ a , c ] y , raw = [ a , c ] 0.2 [ a , c ] MQ .
[ a , c ] y ( λ ) = ( [ a , c ] y , raw ( 440 ) ) e S y ( 440 λ ) + O ,
A = log 10 ( I R I S )
a = 2.303 A d
a y = ( a sample a MQ ) ( a NaCl a MQ * ) ,
a y ( 440 ) = 0.0179 chl 0.438 , ( N = 822 , R 2 = 0.49 ) .

Metrics