Abstract

A novel photonic thermal diode concept operating in the near field and capitalizing on the temperature-dependence of coupled surface polariton modes in nanostructures is proposed. The diode concept utilizes terminals made of the same material supporting surface polariton modes in the infrared, but with dissimilar structures. The specific diode design analyzed in this work involves a thin film and a bulk, both made of 3C silicon carbide, separated by a subwavelength vacuum gap. High rectification efficiency is obtained by tuning the antisymmetric resonant modes of the thin film, resulting from surface phonon-polariton coupling, on- and off-resonance with the resonant mode of the bulk as a function of the temperature bias direction. Rectification efficiency is investigated by varying structural parameters, namely the vacuum gap size, the dielectric function of the substrate onto which the film is coated, and the film thickness to gap size ratio. Calculations based on fluctuational electrodynamics reveal that high rectification efficiencies in the 80% to 87% range can be maintained in a wide temperature band (~700 K to 1000 K). The rectification efficiency of the proposed diode concept can potentially be further enhanced by investigating more complex nanostructures such as gratings and multilayered media.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simple far-field radiative thermal rectifier using Fabry–Perot cavities based infrared selective emitters

E. Nefzaoui, J. Drevillon, Y. Ezzahri, and K. Joulain
Appl. Opt. 53(16) 3479-3485 (2014)

Radiative thermal rectification between SiC and SiO2

Karl Joulain, Younès Ezzahri, Jérémie Drevillon, Benoît Rousseau, and Domingos De Sousa Meneses
Opt. Express 23(24) A1388-A1397 (2015)

Spectral and total temperature-dependent emissivities of few-layer structures on a metallic substrate

Etienne Blandre, Pierre-Olivier Chapuis, and Rodolphe Vaillon
Opt. Express 24(2) A374-A387 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Commun. 5, 5446 (2014).
    [PubMed]
  2. K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105, 253503 (2014).
  3. P. Ben-Abdallah and S.-A. Biehs, “Contactless heat flux control with photonic devices,” AIP Adv. 5, 053502 (2015).
  4. P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112(4), 044301 (2014).
    [PubMed]
  5. W. Gu, G.-H. Tang, and W.-Q. Tao, “Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs,” Int. J. Heat Mass Transfer 82, 429–434 (2015).
  6. Y. Yang, S. Basu, and L. Wang, “Vacuum thermal switch made of phase transition materials considering thin film and substrate effects,” J. Quant. Spectrosc. Radiat. Transf. 158, 69–77 (2015).
  7. V. Kubytskyi, S.-A. Biehs, and P. Ben-Abdallah, “Radiative bistability and thermal memory,” Phys. Rev. Lett. 113(7), 074301 (2014).
    [PubMed]
  8. P. Ben-Abdallah and S.-A. Biehs, “Phase-change radiative thermal diode,” Appl. Phys. Lett. 103, 191907 (2013).
  9. E. Nefzaoui, K. Joulain, J. Drevillon, and Y. Ezzahri, “Radiative thermal rectification using superconducting materials,” Appl. Phys. Lett. 104, 103905 (2014).
  10. E. Nefzaoui, J. Drevillon, Y. Ezzahri, and K. Joulain, “Simple far-field radiative thermal rectifier using Fabry-Perot cavities based infrared selective emitters,” Appl. Opt. 53(16), 3479–3485 (2014).
    [PubMed]
  11. C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104(15), 154301 (2010).
    [PubMed]
  12. L. P. Wang and Z. M. Zhang, “Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material,” Nanoscale Microscale Thermophys. Eng. 17, 337–348 (2013).
  13. K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, and D. De Sousa Meneses, “Radiative thermal rectification between SiC and SiO2.,” Opt. Express 23(24), A1388–A1397 (2015).
    [PubMed]
  14. S. Basu and M. Francoeur, “Near-field radiative transfer based thermal rectification using doped silicon,” Appl. Phys. Lett. 98, 113106 (2011).
  15. H. Iizuka and S. Fan, “Rectification of evanescent heat transfer between dielectric-coated and uncoated silicon carbide plates,” J. Appl. Phys. 112, 024304 (2012).
  16. H. Iizuka and S. Fan, “Consideration of enhancement of thermal rectification using metamaterial models,” J. Quant. Spectrosc. Radiat. Transf. 148, 156–164 (2014).
  17. Y. Yang, S. Basu, and L. Wang, “Radiation-based near-field thermal rectification with phase transition materials,” Appl. Phys. Lett. 103, 163101 (2013).
  18. J. Huang, Q. Li, Z. Zheng, and Y. Xuan, “Thermal rectification based on thermochromic materials,” Int. J. Heat Mass Transfer 67, 575–580 (2013).
  19. A. Ghanekar, J. Ji, and Y. Zheng, “High-rectification near-field thermal diode using phase change periodic nanostructure,” Appl. Phys. Lett. 109, 123106 (2016).
  20. Z. Zheng, X. Liu, A. Wang, and Y. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transfer 109, 63–72 (2017).
  21. L. Zhu, C. R. Otey, and S. Fan, “Ultrahigh-contrast and large-bandwidth thermal rectification in near-field electromagnetic thermal transfer between nanoparticles,” Phys. Rev. B 88, 184301 (2013).
  22. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).
  23. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons,” J. Appl. Phys. 107, 034313 (2010).
  24. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43, 075501 (2010).
  25. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Control of near-field radiative heat transfer via surface phonon-polariton coupling in thin films,” Appl. Phys. Adv. Mater. 103, 547–550 (2011).
  26. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics (Springer, 1989).
  27. P. Yeh, Optical waves in layered media (John Wiley & Sons, 1988).
  28. D. Olego and M. Cardona, “Temperature dependence of the optical phonons and transverse effective charge in 3C-SiC,” Phys. Rev. B 25, 3889–3896 (1982).
  29. X. Zhao, F. Yang, H. Zhang, and P. Xiao, “Nondestructive evaluation of high-temperature elastic modulus of 3C-SiC using Raman scattering,” J. Raman Spectrosc. 43, 945–948 (2012).
  30. A. Hervé, J. Drevillon, Y. Ezzahri, K. Joulain, D. De Sousa Meneses, and J.-P. Hugonin, “Temperature dependence of a microstructured SiC coherent thermal source,” J. Quant. Spectrosc. Radiat. Transf. 180, 29–38 (2016).
  31. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).
  32. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B 84, 075436 (2011).
  33. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  34. Y. Ezzahri and K. Joulain, “Vacuum-induced phonon transfer between two solid dielectric materials: Illustrating the case of Casimir force coupling,” Phys. Rev. B 90, 115433 (2014).
  35. V. Chiloyan, J. Garg, K. Esfarjani, and G. Chen, “Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps,” Nat. Commun. 6, 6755 (2015).
    [PubMed]
  36. J. P. Li, A. J. Steckl, I. Golecki, F. Reidinger, L. Wang, X. J. Ning, and P. Pirouz, “Structural characterization of nanometer SiC films grown on Si,” Appl. Phys. Lett. 62, 3135–3137 (1993).
  37. Y. Ikoma, T. Endo, F. Watanabe, and T. Motooka, “Growth of ultrathin epitaxial 3C-SiC films on Si(100) by pulsed supersonic free jets of CH3SiH3,” Jpn. J. Appl. Phys. 38, L301–L303 (1999).
  38. M. P. Bernardi, D. Milovich, and M. Francoeur, “Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap,” Nat. Commun. 7, 12900 (2016).
    [PubMed]
  39. J. I. Watjen, B. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm,” Appl. Phys. Lett. 109, 203112 (2016).
  40. K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
    [PubMed]

2017 (2)

Z. Zheng, X. Liu, A. Wang, and Y. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transfer 109, 63–72 (2017).

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[PubMed]

2016 (4)

M. P. Bernardi, D. Milovich, and M. Francoeur, “Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap,” Nat. Commun. 7, 12900 (2016).
[PubMed]

J. I. Watjen, B. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm,” Appl. Phys. Lett. 109, 203112 (2016).

A. Ghanekar, J. Ji, and Y. Zheng, “High-rectification near-field thermal diode using phase change periodic nanostructure,” Appl. Phys. Lett. 109, 123106 (2016).

A. Hervé, J. Drevillon, Y. Ezzahri, K. Joulain, D. De Sousa Meneses, and J.-P. Hugonin, “Temperature dependence of a microstructured SiC coherent thermal source,” J. Quant. Spectrosc. Radiat. Transf. 180, 29–38 (2016).

2015 (5)

V. Chiloyan, J. Garg, K. Esfarjani, and G. Chen, “Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps,” Nat. Commun. 6, 6755 (2015).
[PubMed]

P. Ben-Abdallah and S.-A. Biehs, “Contactless heat flux control with photonic devices,” AIP Adv. 5, 053502 (2015).

W. Gu, G.-H. Tang, and W.-Q. Tao, “Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs,” Int. J. Heat Mass Transfer 82, 429–434 (2015).

Y. Yang, S. Basu, and L. Wang, “Vacuum thermal switch made of phase transition materials considering thin film and substrate effects,” J. Quant. Spectrosc. Radiat. Transf. 158, 69–77 (2015).

K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, and D. De Sousa Meneses, “Radiative thermal rectification between SiC and SiO2.,” Opt. Express 23(24), A1388–A1397 (2015).
[PubMed]

2014 (8)

E. Nefzaoui, J. Drevillon, Y. Ezzahri, and K. Joulain, “Simple far-field radiative thermal rectifier using Fabry-Perot cavities based infrared selective emitters,” Appl. Opt. 53(16), 3479–3485 (2014).
[PubMed]

V. Kubytskyi, S.-A. Biehs, and P. Ben-Abdallah, “Radiative bistability and thermal memory,” Phys. Rev. Lett. 113(7), 074301 (2014).
[PubMed]

E. Nefzaoui, K. Joulain, J. Drevillon, and Y. Ezzahri, “Radiative thermal rectification using superconducting materials,” Appl. Phys. Lett. 104, 103905 (2014).

P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112(4), 044301 (2014).
[PubMed]

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Commun. 5, 5446 (2014).
[PubMed]

K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105, 253503 (2014).

Y. Ezzahri and K. Joulain, “Vacuum-induced phonon transfer between two solid dielectric materials: Illustrating the case of Casimir force coupling,” Phys. Rev. B 90, 115433 (2014).

H. Iizuka and S. Fan, “Consideration of enhancement of thermal rectification using metamaterial models,” J. Quant. Spectrosc. Radiat. Transf. 148, 156–164 (2014).

2013 (5)

Y. Yang, S. Basu, and L. Wang, “Radiation-based near-field thermal rectification with phase transition materials,” Appl. Phys. Lett. 103, 163101 (2013).

J. Huang, Q. Li, Z. Zheng, and Y. Xuan, “Thermal rectification based on thermochromic materials,” Int. J. Heat Mass Transfer 67, 575–580 (2013).

L. Zhu, C. R. Otey, and S. Fan, “Ultrahigh-contrast and large-bandwidth thermal rectification in near-field electromagnetic thermal transfer between nanoparticles,” Phys. Rev. B 88, 184301 (2013).

L. P. Wang and Z. M. Zhang, “Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material,” Nanoscale Microscale Thermophys. Eng. 17, 337–348 (2013).

P. Ben-Abdallah and S.-A. Biehs, “Phase-change radiative thermal diode,” Appl. Phys. Lett. 103, 191907 (2013).

2012 (2)

H. Iizuka and S. Fan, “Rectification of evanescent heat transfer between dielectric-coated and uncoated silicon carbide plates,” J. Appl. Phys. 112, 024304 (2012).

X. Zhao, F. Yang, H. Zhang, and P. Xiao, “Nondestructive evaluation of high-temperature elastic modulus of 3C-SiC using Raman scattering,” J. Raman Spectrosc. 43, 945–948 (2012).

2011 (3)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Control of near-field radiative heat transfer via surface phonon-polariton coupling in thin films,” Appl. Phys. Adv. Mater. 103, 547–550 (2011).

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B 84, 075436 (2011).

S. Basu and M. Francoeur, “Near-field radiative transfer based thermal rectification using doped silicon,” Appl. Phys. Lett. 98, 113106 (2011).

2010 (3)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons,” J. Appl. Phys. 107, 034313 (2010).

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43, 075501 (2010).

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104(15), 154301 (2010).
[PubMed]

2002 (1)

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).

1999 (1)

Y. Ikoma, T. Endo, F. Watanabe, and T. Motooka, “Growth of ultrathin epitaxial 3C-SiC films on Si(100) by pulsed supersonic free jets of CH3SiH3,” Jpn. J. Appl. Phys. 38, L301–L303 (1999).

1993 (1)

J. P. Li, A. J. Steckl, I. Golecki, F. Reidinger, L. Wang, X. J. Ning, and P. Pirouz, “Structural characterization of nanometer SiC films grown on Si,” Appl. Phys. Lett. 62, 3135–3137 (1993).

1982 (1)

D. Olego and M. Cardona, “Temperature dependence of the optical phonons and transverse effective charge in 3C-SiC,” Phys. Rev. B 25, 3889–3896 (1982).

Basu, S.

Y. Yang, S. Basu, and L. Wang, “Vacuum thermal switch made of phase transition materials considering thin film and substrate effects,” J. Quant. Spectrosc. Radiat. Transf. 158, 69–77 (2015).

Y. Yang, S. Basu, and L. Wang, “Radiation-based near-field thermal rectification with phase transition materials,” Appl. Phys. Lett. 103, 163101 (2013).

S. Basu and M. Francoeur, “Near-field radiative transfer based thermal rectification using doped silicon,” Appl. Phys. Lett. 98, 113106 (2011).

Ben-Abdallah, P.

P. Ben-Abdallah and S.-A. Biehs, “Contactless heat flux control with photonic devices,” AIP Adv. 5, 053502 (2015).

V. Kubytskyi, S.-A. Biehs, and P. Ben-Abdallah, “Radiative bistability and thermal memory,” Phys. Rev. Lett. 113(7), 074301 (2014).
[PubMed]

P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112(4), 044301 (2014).
[PubMed]

P. Ben-Abdallah and S.-A. Biehs, “Phase-change radiative thermal diode,” Appl. Phys. Lett. 103, 191907 (2013).

Bernardi, M. P.

M. P. Bernardi, D. Milovich, and M. Francoeur, “Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap,” Nat. Commun. 7, 12900 (2016).
[PubMed]

Biehs, S.-A.

P. Ben-Abdallah and S.-A. Biehs, “Contactless heat flux control with photonic devices,” AIP Adv. 5, 053502 (2015).

V. Kubytskyi, S.-A. Biehs, and P. Ben-Abdallah, “Radiative bistability and thermal memory,” Phys. Rev. Lett. 113(7), 074301 (2014).
[PubMed]

P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112(4), 044301 (2014).
[PubMed]

P. Ben-Abdallah and S.-A. Biehs, “Phase-change radiative thermal diode,” Appl. Phys. Lett. 103, 191907 (2013).

Cardona, M.

D. Olego and M. Cardona, “Temperature dependence of the optical phonons and transverse effective charge in 3C-SiC,” Phys. Rev. B 25, 3889–3896 (1982).

Carminati, R.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).

Chen, G.

V. Chiloyan, J. Garg, K. Esfarjani, and G. Chen, “Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps,” Nat. Commun. 6, 6755 (2015).
[PubMed]

Chen, Z.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Commun. 5, 5446 (2014).
[PubMed]

Chiloyan, V.

V. Chiloyan, J. Garg, K. Esfarjani, and G. Chen, “Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps,” Nat. Commun. 6, 6755 (2015).
[PubMed]

Dames, C.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Commun. 5, 5446 (2014).
[PubMed]

De Sousa Meneses, D.

A. Hervé, J. Drevillon, Y. Ezzahri, K. Joulain, D. De Sousa Meneses, and J.-P. Hugonin, “Temperature dependence of a microstructured SiC coherent thermal source,” J. Quant. Spectrosc. Radiat. Transf. 180, 29–38 (2016).

K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, and D. De Sousa Meneses, “Radiative thermal rectification between SiC and SiO2.,” Opt. Express 23(24), A1388–A1397 (2015).
[PubMed]

Drevillon, J.

A. Hervé, J. Drevillon, Y. Ezzahri, K. Joulain, D. De Sousa Meneses, and J.-P. Hugonin, “Temperature dependence of a microstructured SiC coherent thermal source,” J. Quant. Spectrosc. Radiat. Transf. 180, 29–38 (2016).

K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, and D. De Sousa Meneses, “Radiative thermal rectification between SiC and SiO2.,” Opt. Express 23(24), A1388–A1397 (2015).
[PubMed]

E. Nefzaoui, J. Drevillon, Y. Ezzahri, and K. Joulain, “Simple far-field radiative thermal rectifier using Fabry-Perot cavities based infrared selective emitters,” Appl. Opt. 53(16), 3479–3485 (2014).
[PubMed]

E. Nefzaoui, K. Joulain, J. Drevillon, and Y. Ezzahri, “Radiative thermal rectification using superconducting materials,” Appl. Phys. Lett. 104, 103905 (2014).

Endo, T.

Y. Ikoma, T. Endo, F. Watanabe, and T. Motooka, “Growth of ultrathin epitaxial 3C-SiC films on Si(100) by pulsed supersonic free jets of CH3SiH3,” Jpn. J. Appl. Phys. 38, L301–L303 (1999).

Esfarjani, K.

V. Chiloyan, J. Garg, K. Esfarjani, and G. Chen, “Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps,” Nat. Commun. 6, 6755 (2015).
[PubMed]

Ezzahri, Y.

A. Hervé, J. Drevillon, Y. Ezzahri, K. Joulain, D. De Sousa Meneses, and J.-P. Hugonin, “Temperature dependence of a microstructured SiC coherent thermal source,” J. Quant. Spectrosc. Radiat. Transf. 180, 29–38 (2016).

K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, and D. De Sousa Meneses, “Radiative thermal rectification between SiC and SiO2.,” Opt. Express 23(24), A1388–A1397 (2015).
[PubMed]

E. Nefzaoui, J. Drevillon, Y. Ezzahri, and K. Joulain, “Simple far-field radiative thermal rectifier using Fabry-Perot cavities based infrared selective emitters,” Appl. Opt. 53(16), 3479–3485 (2014).
[PubMed]

Y. Ezzahri and K. Joulain, “Vacuum-induced phonon transfer between two solid dielectric materials: Illustrating the case of Casimir force coupling,” Phys. Rev. B 90, 115433 (2014).

E. Nefzaoui, K. Joulain, J. Drevillon, and Y. Ezzahri, “Radiative thermal rectification using superconducting materials,” Appl. Phys. Lett. 104, 103905 (2014).

Fan, S.

H. Iizuka and S. Fan, “Consideration of enhancement of thermal rectification using metamaterial models,” J. Quant. Spectrosc. Radiat. Transf. 148, 156–164 (2014).

L. Zhu, C. R. Otey, and S. Fan, “Ultrahigh-contrast and large-bandwidth thermal rectification in near-field electromagnetic thermal transfer between nanoparticles,” Phys. Rev. B 88, 184301 (2013).

H. Iizuka and S. Fan, “Rectification of evanescent heat transfer between dielectric-coated and uncoated silicon carbide plates,” J. Appl. Phys. 112, 024304 (2012).

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104(15), 154301 (2010).
[PubMed]

Fong, A.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Commun. 5, 5446 (2014).
[PubMed]

Francoeur, M.

M. P. Bernardi, D. Milovich, and M. Francoeur, “Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap,” Nat. Commun. 7, 12900 (2016).
[PubMed]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Control of near-field radiative heat transfer via surface phonon-polariton coupling in thin films,” Appl. Phys. Adv. Mater. 103, 547–550 (2011).

S. Basu and M. Francoeur, “Near-field radiative transfer based thermal rectification using doped silicon,” Appl. Phys. Lett. 98, 113106 (2011).

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B 84, 075436 (2011).

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43, 075501 (2010).

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons,” J. Appl. Phys. 107, 034313 (2010).

Garay, J. E.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Commun. 5, 5446 (2014).
[PubMed]

Garg, J.

V. Chiloyan, J. Garg, K. Esfarjani, and G. Chen, “Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps,” Nat. Commun. 6, 6755 (2015).
[PubMed]

Ghanekar, A.

A. Ghanekar, J. Ji, and Y. Zheng, “High-rectification near-field thermal diode using phase change periodic nanostructure,” Appl. Phys. Lett. 109, 123106 (2016).

Golecki, I.

J. P. Li, A. J. Steckl, I. Golecki, F. Reidinger, L. Wang, X. J. Ning, and P. Pirouz, “Structural characterization of nanometer SiC films grown on Si,” Appl. Phys. Lett. 62, 3135–3137 (1993).

Greffet, J.-J.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).

Gu, W.

W. Gu, G.-H. Tang, and W.-Q. Tao, “Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs,” Int. J. Heat Mass Transfer 82, 429–434 (2015).

Hardin, C.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Commun. 5, 5446 (2014).
[PubMed]

Hervé, A.

A. Hervé, J. Drevillon, Y. Ezzahri, K. Joulain, D. De Sousa Meneses, and J.-P. Hugonin, “Temperature dependence of a microstructured SiC coherent thermal source,” J. Quant. Spectrosc. Radiat. Transf. 180, 29–38 (2016).

Huang, J.

J. Huang, Q. Li, Z. Zheng, and Y. Xuan, “Thermal rectification based on thermochromic materials,” Int. J. Heat Mass Transfer 67, 575–580 (2013).

Hugonin, J.-P.

A. Hervé, J. Drevillon, Y. Ezzahri, K. Joulain, D. De Sousa Meneses, and J.-P. Hugonin, “Temperature dependence of a microstructured SiC coherent thermal source,” J. Quant. Spectrosc. Radiat. Transf. 180, 29–38 (2016).

Iizuka, H.

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[PubMed]

K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105, 253503 (2014).

H. Iizuka and S. Fan, “Consideration of enhancement of thermal rectification using metamaterial models,” J. Quant. Spectrosc. Radiat. Transf. 148, 156–164 (2014).

H. Iizuka and S. Fan, “Rectification of evanescent heat transfer between dielectric-coated and uncoated silicon carbide plates,” J. Appl. Phys. 112, 024304 (2012).

Ikoma, Y.

Y. Ikoma, T. Endo, F. Watanabe, and T. Motooka, “Growth of ultrathin epitaxial 3C-SiC films on Si(100) by pulsed supersonic free jets of CH3SiH3,” Jpn. J. Appl. Phys. 38, L301–L303 (1999).

Ito, K.

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[PubMed]

K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105, 253503 (2014).

Jang, W.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Commun. 5, 5446 (2014).
[PubMed]

Ji, J.

A. Ghanekar, J. Ji, and Y. Zheng, “High-rectification near-field thermal diode using phase change periodic nanostructure,” Appl. Phys. Lett. 109, 123106 (2016).

Joulain, K.

A. Hervé, J. Drevillon, Y. Ezzahri, K. Joulain, D. De Sousa Meneses, and J.-P. Hugonin, “Temperature dependence of a microstructured SiC coherent thermal source,” J. Quant. Spectrosc. Radiat. Transf. 180, 29–38 (2016).

K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, and D. De Sousa Meneses, “Radiative thermal rectification between SiC and SiO2.,” Opt. Express 23(24), A1388–A1397 (2015).
[PubMed]

E. Nefzaoui, J. Drevillon, Y. Ezzahri, and K. Joulain, “Simple far-field radiative thermal rectifier using Fabry-Perot cavities based infrared selective emitters,” Appl. Opt. 53(16), 3479–3485 (2014).
[PubMed]

Y. Ezzahri and K. Joulain, “Vacuum-induced phonon transfer between two solid dielectric materials: Illustrating the case of Casimir force coupling,” Phys. Rev. B 90, 115433 (2014).

E. Nefzaoui, K. Joulain, J. Drevillon, and Y. Ezzahri, “Radiative thermal rectification using superconducting materials,” Appl. Phys. Lett. 104, 103905 (2014).

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).

Kubytskyi, V.

V. Kubytskyi, S.-A. Biehs, and P. Ben-Abdallah, “Radiative bistability and thermal memory,” Phys. Rev. Lett. 113(7), 074301 (2014).
[PubMed]

Lau, W. T.

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104(15), 154301 (2010).
[PubMed]

Li, J. P.

J. P. Li, A. J. Steckl, I. Golecki, F. Reidinger, L. Wang, X. J. Ning, and P. Pirouz, “Structural characterization of nanometer SiC films grown on Si,” Appl. Phys. Lett. 62, 3135–3137 (1993).

Li, Q.

J. Huang, Q. Li, Z. Zheng, and Y. Xuan, “Thermal rectification based on thermochromic materials,” Int. J. Heat Mass Transfer 67, 575–580 (2013).

Liu, X.

Z. Zheng, X. Liu, A. Wang, and Y. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transfer 109, 63–72 (2017).

Lubner, S.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Commun. 5, 5446 (2014).
[PubMed]

Mengüç, M. P.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Control of near-field radiative heat transfer via surface phonon-polariton coupling in thin films,” Appl. Phys. Adv. Mater. 103, 547–550 (2011).

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B 84, 075436 (2011).

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43, 075501 (2010).

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons,” J. Appl. Phys. 107, 034313 (2010).

Miller, J.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Commun. 5, 5446 (2014).
[PubMed]

Milovich, D.

M. P. Bernardi, D. Milovich, and M. Francoeur, “Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap,” Nat. Commun. 7, 12900 (2016).
[PubMed]

Miura, A.

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[PubMed]

Motooka, T.

Y. Ikoma, T. Endo, F. Watanabe, and T. Motooka, “Growth of ultrathin epitaxial 3C-SiC films on Si(100) by pulsed supersonic free jets of CH3SiH3,” Jpn. J. Appl. Phys. 38, L301–L303 (1999).

Mulet, J.-P.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).

Nefzaoui, E.

E. Nefzaoui, J. Drevillon, Y. Ezzahri, and K. Joulain, “Simple far-field radiative thermal rectifier using Fabry-Perot cavities based infrared selective emitters,” Appl. Opt. 53(16), 3479–3485 (2014).
[PubMed]

E. Nefzaoui, K. Joulain, J. Drevillon, and Y. Ezzahri, “Radiative thermal rectification using superconducting materials,” Appl. Phys. Lett. 104, 103905 (2014).

Ning, X. J.

J. P. Li, A. J. Steckl, I. Golecki, F. Reidinger, L. Wang, X. J. Ning, and P. Pirouz, “Structural characterization of nanometer SiC films grown on Si,” Appl. Phys. Lett. 62, 3135–3137 (1993).

Nishikawa, K.

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[PubMed]

K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105, 253503 (2014).

Olego, D.

D. Olego and M. Cardona, “Temperature dependence of the optical phonons and transverse effective charge in 3C-SiC,” Phys. Rev. B 25, 3889–3896 (1982).

Otey, C. R.

L. Zhu, C. R. Otey, and S. Fan, “Ultrahigh-contrast and large-bandwidth thermal rectification in near-field electromagnetic thermal transfer between nanoparticles,” Phys. Rev. B 88, 184301 (2013).

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104(15), 154301 (2010).
[PubMed]

Pirouz, P.

J. P. Li, A. J. Steckl, I. Golecki, F. Reidinger, L. Wang, X. J. Ning, and P. Pirouz, “Structural characterization of nanometer SiC films grown on Si,” Appl. Phys. Lett. 62, 3135–3137 (1993).

Reidinger, F.

J. P. Li, A. J. Steckl, I. Golecki, F. Reidinger, L. Wang, X. J. Ning, and P. Pirouz, “Structural characterization of nanometer SiC films grown on Si,” Appl. Phys. Lett. 62, 3135–3137 (1993).

Rousseau, B.

Steckl, A. J.

J. P. Li, A. J. Steckl, I. Golecki, F. Reidinger, L. Wang, X. J. Ning, and P. Pirouz, “Structural characterization of nanometer SiC films grown on Si,” Appl. Phys. Lett. 62, 3135–3137 (1993).

Tang, G.-H.

W. Gu, G.-H. Tang, and W.-Q. Tao, “Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs,” Int. J. Heat Mass Transfer 82, 429–434 (2015).

Tao, W.-Q.

W. Gu, G.-H. Tang, and W.-Q. Tao, “Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs,” Int. J. Heat Mass Transfer 82, 429–434 (2015).

Toshiyoshi, H.

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[PubMed]

K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105, 253503 (2014).

Vaillon, R.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Control of near-field radiative heat transfer via surface phonon-polariton coupling in thin films,” Appl. Phys. Adv. Mater. 103, 547–550 (2011).

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B 84, 075436 (2011).

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43, 075501 (2010).

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons,” J. Appl. Phys. 107, 034313 (2010).

Wang, A.

Z. Zheng, X. Liu, A. Wang, and Y. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transfer 109, 63–72 (2017).

Wang, L.

Y. Yang, S. Basu, and L. Wang, “Vacuum thermal switch made of phase transition materials considering thin film and substrate effects,” J. Quant. Spectrosc. Radiat. Transf. 158, 69–77 (2015).

Y. Yang, S. Basu, and L. Wang, “Radiation-based near-field thermal rectification with phase transition materials,” Appl. Phys. Lett. 103, 163101 (2013).

J. P. Li, A. J. Steckl, I. Golecki, F. Reidinger, L. Wang, X. J. Ning, and P. Pirouz, “Structural characterization of nanometer SiC films grown on Si,” Appl. Phys. Lett. 62, 3135–3137 (1993).

Wang, L. P.

L. P. Wang and Z. M. Zhang, “Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material,” Nanoscale Microscale Thermophys. Eng. 17, 337–348 (2013).

Watanabe, F.

Y. Ikoma, T. Endo, F. Watanabe, and T. Motooka, “Growth of ultrathin epitaxial 3C-SiC films on Si(100) by pulsed supersonic free jets of CH3SiH3,” Jpn. J. Appl. Phys. 38, L301–L303 (1999).

Watjen, J. I.

J. I. Watjen, B. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm,” Appl. Phys. Lett. 109, 203112 (2016).

Wong, C.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Commun. 5, 5446 (2014).
[PubMed]

Xiao, P.

X. Zhao, F. Yang, H. Zhang, and P. Xiao, “Nondestructive evaluation of high-temperature elastic modulus of 3C-SiC using Raman scattering,” J. Raman Spectrosc. 43, 945–948 (2012).

Xuan, Y.

Z. Zheng, X. Liu, A. Wang, and Y. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transfer 109, 63–72 (2017).

J. Huang, Q. Li, Z. Zheng, and Y. Xuan, “Thermal rectification based on thermochromic materials,” Int. J. Heat Mass Transfer 67, 575–580 (2013).

Yang, F.

X. Zhao, F. Yang, H. Zhang, and P. Xiao, “Nondestructive evaluation of high-temperature elastic modulus of 3C-SiC using Raman scattering,” J. Raman Spectrosc. 43, 945–948 (2012).

Yang, Y.

Y. Yang, S. Basu, and L. Wang, “Vacuum thermal switch made of phase transition materials considering thin film and substrate effects,” J. Quant. Spectrosc. Radiat. Transf. 158, 69–77 (2015).

Y. Yang, S. Basu, and L. Wang, “Radiation-based near-field thermal rectification with phase transition materials,” Appl. Phys. Lett. 103, 163101 (2013).

Yee, S.

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Commun. 5, 5446 (2014).
[PubMed]

Zhang, B.

J. I. Watjen, B. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm,” Appl. Phys. Lett. 109, 203112 (2016).

Zhang, H.

X. Zhao, F. Yang, H. Zhang, and P. Xiao, “Nondestructive evaluation of high-temperature elastic modulus of 3C-SiC using Raman scattering,” J. Raman Spectrosc. 43, 945–948 (2012).

Zhang, Z. M.

J. I. Watjen, B. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm,” Appl. Phys. Lett. 109, 203112 (2016).

L. P. Wang and Z. M. Zhang, “Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material,” Nanoscale Microscale Thermophys. Eng. 17, 337–348 (2013).

Zhao, X.

X. Zhao, F. Yang, H. Zhang, and P. Xiao, “Nondestructive evaluation of high-temperature elastic modulus of 3C-SiC using Raman scattering,” J. Raman Spectrosc. 43, 945–948 (2012).

Zheng, Y.

A. Ghanekar, J. Ji, and Y. Zheng, “High-rectification near-field thermal diode using phase change periodic nanostructure,” Appl. Phys. Lett. 109, 123106 (2016).

Zheng, Z.

Z. Zheng, X. Liu, A. Wang, and Y. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transfer 109, 63–72 (2017).

J. Huang, Q. Li, Z. Zheng, and Y. Xuan, “Thermal rectification based on thermochromic materials,” Int. J. Heat Mass Transfer 67, 575–580 (2013).

Zhu, L.

L. Zhu, C. R. Otey, and S. Fan, “Ultrahigh-contrast and large-bandwidth thermal rectification in near-field electromagnetic thermal transfer between nanoparticles,” Phys. Rev. B 88, 184301 (2013).

AIP Adv. (1)

P. Ben-Abdallah and S.-A. Biehs, “Contactless heat flux control with photonic devices,” AIP Adv. 5, 053502 (2015).

Appl. Opt. (1)

Appl. Phys. Adv. Mater. (1)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Control of near-field radiative heat transfer via surface phonon-polariton coupling in thin films,” Appl. Phys. Adv. Mater. 103, 547–550 (2011).

Appl. Phys. Lett. (8)

S. Basu and M. Francoeur, “Near-field radiative transfer based thermal rectification using doped silicon,” Appl. Phys. Lett. 98, 113106 (2011).

Y. Yang, S. Basu, and L. Wang, “Radiation-based near-field thermal rectification with phase transition materials,” Appl. Phys. Lett. 103, 163101 (2013).

A. Ghanekar, J. Ji, and Y. Zheng, “High-rectification near-field thermal diode using phase change periodic nanostructure,” Appl. Phys. Lett. 109, 123106 (2016).

P. Ben-Abdallah and S.-A. Biehs, “Phase-change radiative thermal diode,” Appl. Phys. Lett. 103, 191907 (2013).

E. Nefzaoui, K. Joulain, J. Drevillon, and Y. Ezzahri, “Radiative thermal rectification using superconducting materials,” Appl. Phys. Lett. 104, 103905 (2014).

K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105, 253503 (2014).

J. P. Li, A. J. Steckl, I. Golecki, F. Reidinger, L. Wang, X. J. Ning, and P. Pirouz, “Structural characterization of nanometer SiC films grown on Si,” Appl. Phys. Lett. 62, 3135–3137 (1993).

J. I. Watjen, B. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm,” Appl. Phys. Lett. 109, 203112 (2016).

Int. J. Heat Mass Transfer (3)

W. Gu, G.-H. Tang, and W.-Q. Tao, “Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs,” Int. J. Heat Mass Transfer 82, 429–434 (2015).

Z. Zheng, X. Liu, A. Wang, and Y. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transfer 109, 63–72 (2017).

J. Huang, Q. Li, Z. Zheng, and Y. Xuan, “Thermal rectification based on thermochromic materials,” Int. J. Heat Mass Transfer 67, 575–580 (2013).

J. Appl. Phys. (2)

H. Iizuka and S. Fan, “Rectification of evanescent heat transfer between dielectric-coated and uncoated silicon carbide plates,” J. Appl. Phys. 112, 024304 (2012).

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons,” J. Appl. Phys. 107, 034313 (2010).

J. Phys. D Appl. Phys. (1)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43, 075501 (2010).

J. Quant. Spectrosc. Radiat. Transf. (3)

A. Hervé, J. Drevillon, Y. Ezzahri, K. Joulain, D. De Sousa Meneses, and J.-P. Hugonin, “Temperature dependence of a microstructured SiC coherent thermal source,” J. Quant. Spectrosc. Radiat. Transf. 180, 29–38 (2016).

H. Iizuka and S. Fan, “Consideration of enhancement of thermal rectification using metamaterial models,” J. Quant. Spectrosc. Radiat. Transf. 148, 156–164 (2014).

Y. Yang, S. Basu, and L. Wang, “Vacuum thermal switch made of phase transition materials considering thin film and substrate effects,” J. Quant. Spectrosc. Radiat. Transf. 158, 69–77 (2015).

J. Raman Spectrosc. (1)

X. Zhao, F. Yang, H. Zhang, and P. Xiao, “Nondestructive evaluation of high-temperature elastic modulus of 3C-SiC using Raman scattering,” J. Raman Spectrosc. 43, 945–948 (2012).

Jpn. J. Appl. Phys. (1)

Y. Ikoma, T. Endo, F. Watanabe, and T. Motooka, “Growth of ultrathin epitaxial 3C-SiC films on Si(100) by pulsed supersonic free jets of CH3SiH3,” Jpn. J. Appl. Phys. 38, L301–L303 (1999).

Microscale Thermophys. Eng. (1)

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6, 209–222 (2002).

Nano Lett. (1)

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[PubMed]

Nanoscale Microscale Thermophys. Eng. (1)

L. P. Wang and Z. M. Zhang, “Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material,” Nanoscale Microscale Thermophys. Eng. 17, 337–348 (2013).

Nat. Commun. (3)

Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, “A photon thermal diode,” Nat. Commun. 5, 5446 (2014).
[PubMed]

M. P. Bernardi, D. Milovich, and M. Francoeur, “Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap,” Nat. Commun. 7, 12900 (2016).
[PubMed]

V. Chiloyan, J. Garg, K. Esfarjani, and G. Chen, “Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps,” Nat. Commun. 6, 6755 (2015).
[PubMed]

Opt. Express (1)

Phys. Rev. B (4)

Y. Ezzahri and K. Joulain, “Vacuum-induced phonon transfer between two solid dielectric materials: Illustrating the case of Casimir force coupling,” Phys. Rev. B 90, 115433 (2014).

D. Olego and M. Cardona, “Temperature dependence of the optical phonons and transverse effective charge in 3C-SiC,” Phys. Rev. B 25, 3889–3896 (1982).

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B 84, 075436 (2011).

L. Zhu, C. R. Otey, and S. Fan, “Ultrahigh-contrast and large-bandwidth thermal rectification in near-field electromagnetic thermal transfer between nanoparticles,” Phys. Rev. B 88, 184301 (2013).

Phys. Rev. Lett. (3)

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104(15), 154301 (2010).
[PubMed]

V. Kubytskyi, S.-A. Biehs, and P. Ben-Abdallah, “Radiative bistability and thermal memory,” Phys. Rev. Lett. 113(7), 074301 (2014).
[PubMed]

P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112(4), 044301 (2014).
[PubMed]

Other (4)

S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics (Springer, 1989).

P. Yeh, Optical waves in layered media (John Wiley & Sons, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the photonic thermal diode under consideration, where the terminals are separated by a vacuum gap of size d. Terminal A is made of a film of 3C-SiC with thickness t coated on a substrate. Terminal B consists of a bulk of 3C-SiC.

Fig. 2
Fig. 2

(a) Rectification efficiency η as a function of the temperature Th and the gap size d for ε A 2 = 1 and D = 0.1. (b) SPhP dispersion relation for forward- and reverse-biased scenarios as a function of the temperature Th for ε A 2 = 1, d = 10 nm and D = 0.1.

Fig. 3
Fig. 3

(a) Rectification efficiency η as a function of the temperature Th and the dielectric function of the substrate ε A 2 for d = 10 nm and D = 0.1. (b) SPhP dispersion relation for forward- and reverse-biased scenarios as a function of dielectric function of the substrate ε A 2 for Th = 900 K, d = 10 nm and D = 0.1.

Fig. 4
Fig. 4

Spectral distributions of radiative heat flux for forward- and reverse-biased scenarios (Th = 900 K, d = 10 nm, D = 0.1): (a) ε A 2 = 1. (b) ε A 2 = 12.

Fig. 5
Fig. 5

Rectification efficiency η as a function of the temperature Th and the imaginary part of the dielectric function of the substrate ε A 2 for ε A 2 = 12, d = 10 nm and D = 0.1.

Fig. 6
Fig. 6

(a) Rectification efficiency η as a function of the temperature Th and the film thickness to gap size ratio D for ε A 2 = 12 and d = 10 nm. (b) SPhP dispersion relation for forward- and reverse-biased scenarios as a function of the film thickness to gap size ratio D for ε A 2 = 12, Th = 900 K and d = 10 nm.

Fig. 7
Fig. 7

Spectral distributions of radiative heat flux for forward- and reverse-biased scenarios ( ε A 2 = 12, Th = 900 K, d = 10 nm): (a) D = 0.2. (b) D = 1.

Fig. 8
Fig. 8

Total heat flux q and rectification efficiency η as a function of the temperature bias ΔT ( = ThTl) for D = 0.1, ε A 2 = 12 and d = 10 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

q f , r = 0 Δ Θ ( ω , T h , T l ) d ω γ [ 0 k 0 k ρ d k ρ 4 π 2 ( 1 | R A γ | 2 ) ( 1 | R B γ | 2 ) | 1 R A γ R B γ e 2 i k z 0 d | 2 + k 0 k ρ d k ρ π 2 Im ( R A γ ) Im ( R B γ ) e 2 k z 0 d | 1 R A γ R B γ e 2 k z 0 d | 2 ]
ε ( ω , T ) = ε ( ω 2 ω L O 2 + i Γ ω ω 2 ω T O 2 + i Γ ω )
ε = 6.7 exp [ 5 × 10 5 ( T 300 ) ]
ω L O = 182.7 × 10 12 5.463 × 10 9 ( T 300 )
ω T O = 149.5 × 10 12 4.106 × 10 9 ( T 300 )
Γ = 6.6 × 10 11 { 1 + 2 [ exp ( ω T O 2 k B T ) 1 ] 1 }

Metrics