Abstract

We present a simple and effective method to eliminate system aberrations in quantitative phase imaging. Using spiral phase integration, complete information about system aberration is calculated from three laterally shifted phase images. The present method is especially useful when measuring confluent samples in which acquisition of background area is challenging. To demonstrate validity and applicability, we present measurements of various types of samples including microspheres, HeLa cells, and mouse brain tissue. Working conditions and limitations are systematically analyzed and discussed.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
White-light quantitative phase imaging unit

YoonSeok Baek, KyeoReh Lee, Jonghee Yoon, Kyoohyun Kim, and YongKeun Park
Opt. Express 24(9) 9308-9315 (2016)

Phase calibration target for quantitative phase imaging with ptychography

T. M. Godden, A. Muñiz-Piniella, J. D. Claverley, A. Yacoot, and M. J. Humphry
Opt. Express 24(7) 7679-7692 (2016)

Single-exposure quantitative phase imaging in color-coded LED microscopy

Wonchan Lee, Daeseong Jung, Suho Ryu, and Chulmin Joo
Opt. Express 25(7) 8398-8411 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Popescu, Quantitative phase imaging of cells and tissues (McGraw Hill Professional, 2011).
  2. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
    [PubMed]
  3. D. Kim, S. Lee, M. Lee, J. Oh, S.-A. Yang, and Y. Park, “Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging,” https://www.biorxiv.org/content/early/2017/02/06/106328 (2017).
  4. J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
    [PubMed]
  5. N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
    [PubMed]
  6. J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
    [PubMed]
  7. S. A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
    [PubMed]
  8. P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
    [PubMed]
  9. M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
    [PubMed]
  10. K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
    [PubMed]
  11. B. Kemper, J. Wibbeling, L. Kastl, J. Schnekenburger, and S. Ketelhut, “Continuous morphology and growth monitoring of different cell types in a single culture using quantitative phase microscopy,” in SPIE Optical Metrology, (International Society for Optics and Photonics, 2015), 952902.
  12. Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3(8), e1700606 (2017).
    [PubMed]
  13. M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
    [PubMed]
  14. T. H. Nguyen, S. Sridharan, V. Macias, A. Kajdacsy-Balla, J. Melamed, M. N. Do, and G. Popescu, “Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning,” J. Biomed. Opt. 22(3), 036015 (2017).
    [PubMed]
  15. D. Kim, N. Oh, K. Kim, S. Lee, C.-G. Pack, J.-H. Park, and Y. Park, “Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography,” http://www.sciencedirect.com/science/article/pii/S1046202317301792 (2017).
  16. G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6(3), 2452–2458 (2012).
    [PubMed]
  17. N. A. Turko, D. Roitshtain, O. Blum, B. Kemper, and N. T. Shaked, “Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging,” J. Biomed. Opt. 22(6), 66012 (2017).
    [PubMed]
  18. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [PubMed]
  19. Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
    [PubMed]
  20. F. Dubois, M.-L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
    [PubMed]
  21. S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
    [PubMed]
  22. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
    [PubMed]
  23. Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells: erratum,” Opt. Express 23, 18996 (2015).
    [PubMed]
  24. A. S. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
    [PubMed]
  25. P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013).
    [PubMed]
  26. C. M. Vest, “Holographic interferometry,” New York, John Wiley and Sons, Inc., 1979. 476 p. (1979).
  27. A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25(22), 1630–1632 (2000).
    [PubMed]
  28. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
    [PubMed]
  29. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006).
    [PubMed]
  30. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
  31. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
    [PubMed]
  32. D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35(14), 2370–2372 (2010).
    [PubMed]
  33. T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
  34. Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
    [PubMed]
  35. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
    [PubMed]
  36. S. Chowdhury, W. J. Eldridge, A. Wax, and J. Izatt, “Refractive index tomography with structured illumination,” Optica 4, 537–545 (2017).
  37. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
  38. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [PubMed]
  39. K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
  40. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
    [PubMed]
  41. S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13, 024020 (2008).
  42. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
    [PubMed]
  43. P. Bon, S. Monneret, and B. Wattellier, “Noniterative boundary-artifact-free wavefront reconstruction from its derivatives,” Appl. Opt. 51(23), 5698–5704 (2012).
    [PubMed]

2017 (9)

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
[PubMed]

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

S. A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[PubMed]

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[PubMed]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3(8), e1700606 (2017).
[PubMed]

T. H. Nguyen, S. Sridharan, V. Macias, A. Kajdacsy-Balla, J. Melamed, M. N. Do, and G. Popescu, “Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning,” J. Biomed. Opt. 22(3), 036015 (2017).
[PubMed]

N. A. Turko, D. Roitshtain, O. Blum, B. Kemper, and N. T. Shaked, “Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging,” J. Biomed. Opt. 22(6), 66012 (2017).
[PubMed]

S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
[PubMed]

S. Chowdhury, W. J. Eldridge, A. Wax, and J. Izatt, “Refractive index tomography with structured illumination,” Optica 4, 537–545 (2017).

2016 (4)

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[PubMed]

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
[PubMed]

2015 (1)

2014 (2)

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

2013 (2)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013).
[PubMed]

2012 (4)

2011 (3)

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[PubMed]

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[PubMed]

2010 (2)

2009 (1)

2008 (1)

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13, 024020 (2008).

2007 (1)

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

2006 (3)

2005 (1)

2004 (2)

F. Dubois, M.-L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
[PubMed]

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
[PubMed]

2003 (1)

2000 (1)

Alfieri, D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

Anand, A.

Arnison, M. R.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
[PubMed]

Aspert, N.

Babacan, S. D.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).

Badizadegan, K.

Baek, Y.

Baffou, G.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6(3), 2452–2458 (2012).
[PubMed]

Bernet, S.

Best-Popescu, C.

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[PubMed]

Bhaduri, B.

Blum, O.

N. A. Turko, D. Roitshtain, O. Blum, B. Kemper, and N. T. Shaked, “Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging,” J. Biomed. Opt. 22(6), 66012 (2017).
[PubMed]

Bon, P.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6(3), 2452–2458 (2012).
[PubMed]

P. Bon, S. Monneret, and B. Wattellier, “Noniterative boundary-artifact-free wavefront reconstruction from its derivatives,” Appl. Opt. 51(23), 5698–5704 (2012).
[PubMed]

Boss, D.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[PubMed]

Bourquin, S.

Carney, P. S.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Charrière, F.

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Choi, C.

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells: erratum,” Opt. Express 23, 18996 (2015).
[PubMed]

Choi, M. C.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3(8), e1700606 (2017).
[PubMed]

Choi, W.

Chowdhury, S.

Cogswell, C. J.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13, 024020 (2008).

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
[PubMed]

Colomb, T.

Coppola, G.

Cuche, E.

Dao, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

Dasari, R.

Dasari, R. R.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35(14), 2370–2372 (2010).
[PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[PubMed]

De Nicola, S.

De Petrocellis, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

Depeursinge, C.

Diez-Silva, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

Ding, H.

Do, M. N.

T. H. Nguyen, S. Sridharan, V. Macias, A. Kajdacsy-Balla, J. Melamed, M. N. Do, and G. Popescu, “Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning,” J. Biomed. Opt. 22(3), 036015 (2017).
[PubMed]

Dorn, A.

Dubois, F.

Eldridge, W. J.

Emery, Y.

Feld, M. S.

Fernandes, D.

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[PubMed]

Ferraro, P.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[PubMed]

Finizio, A.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[PubMed]

Fu, D.

Fürhapter, S.

Gillette, M. U.

Girshovitz, P.

Goddard, L. L.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).

Grilli, S.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[PubMed]

Heo, J.

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Heo, J. H.

Hur, J.

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
[PubMed]

Istasse, E.

Izatt, J.

Jang, S.

Javidi, B.

Jeong, Y.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[PubMed]

Jesacher, A.

Jo, Y.

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3(8), e1700606 (2017).
[PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Joo, H.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3(8), e1700606 (2017).
[PubMed]

Jourdain, P.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[PubMed]

Jung, J.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3(8), e1700606 (2017).
[PubMed]

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Kajdacsy-Balla, A.

T. H. Nguyen, S. Sridharan, V. Macias, A. Kajdacsy-Balla, J. Melamed, M. N. Do, and G. Popescu, “Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning,” J. Biomed. Opt. 22(3), 036015 (2017).
[PubMed]

Kandel, M. E.

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[PubMed]

Kang, S. J.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3(8), e1700606 (2017).
[PubMed]

Kang, S.-J.

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

Kemper, B.

N. A. Turko, D. Roitshtain, O. Blum, B. Kemper, and N. T. Shaked, “Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging,” J. Biomed. Opt. 22(6), 66012 (2017).
[PubMed]

Kim, K.

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
[PubMed]

S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
[PubMed]

S. A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[PubMed]

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[PubMed]

Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
[PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells: erratum,” Opt. Express 23, 18996 (2015).
[PubMed]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Kim, M. H.

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3(8), e1700606 (2017).
[PubMed]

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

Kim, T.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).

Kim, Y.

King, S. V.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13, 024020 (2008).

Kühn, J.

Larkin, K. G.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
[PubMed]

Lee, E.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[PubMed]

Lee, K.

S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
[PubMed]

Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
[PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Lee, M.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[PubMed]

Lee, S.

S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
[PubMed]

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
[PubMed]

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[PubMed]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Lee, S. Y.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3(8), e1700606 (2017).
[PubMed]

Leitgeb, R. A.

Libertun, A.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13, 024020 (2008).

Macias, V.

T. H. Nguyen, S. Sridharan, V. Macias, A. Kajdacsy-Balla, J. Melamed, M. N. Do, and G. Popescu, “Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning,” J. Biomed. Opt. 22(3), 036015 (2017).
[PubMed]

Magistretti, P. J.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[PubMed]

Magro, C.

Marian, A.

Marquet, P.

Massig, J. H.

Maurer, C.

Melamed, J.

T. H. Nguyen, S. Sridharan, V. Macias, A. Kajdacsy-Balla, J. Melamed, M. N. Do, and G. Popescu, “Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning,” J. Biomed. Opt. 22(3), 036015 (2017).
[PubMed]

Merlin, M.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6(3), 2452–2458 (2012).
[PubMed]

Miccio, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

Millet, L.

Minetti, C.

Mir, M.

Monneret, S.

P. Bon, S. Monneret, and B. Wattellier, “Noniterative boundary-artifact-free wavefront reconstruction from its derivatives,” Appl. Opt. 51(23), 5698–5704 (2012).
[PubMed]

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6(3), 2452–2458 (2012).
[PubMed]

Monnom, O.

Montfort, F.

Moratal, C.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[PubMed]

Nguyen, T. H.

T. H. Nguyen, S. Sridharan, V. Macias, A. Kajdacsy-Balla, J. Melamed, M. N. Do, and G. Popescu, “Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning,” J. Biomed. Opt. 22(3), 036015 (2017).
[PubMed]

Nicola, S.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

Oh, S.

Park, H.

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
[PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells: erratum,” Opt. Express 23, 18996 (2015).
[PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Park, S.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3(8), e1700606 (2017).
[PubMed]

Park, Y.

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3(8), e1700606 (2017).
[PubMed]

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
[PubMed]

S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
[PubMed]

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

S. A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[PubMed]

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[PubMed]

Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
[PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells: erratum,” Opt. Express 23, 18996 (2015).
[PubMed]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
[PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[PubMed]

Pavillon, N.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[PubMed]

Pham, H.

Pierattini, G.

Piestun, R.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13, 024020 (2008).

Polleux, J.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6(3), 2452–2458 (2012).
[PubMed]

Popescu, G.

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[PubMed]

T. H. Nguyen, S. Sridharan, V. Macias, A. Kajdacsy-Balla, J. Melamed, M. N. Do, and G. Popescu, “Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning,” J. Biomed. Opt. 22(3), 036015 (2017).
[PubMed]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[PubMed]

Preza, C.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13, 024020 (2008).

Rappaz, B.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[PubMed]

Requena, M.-L. N.

Rigneault, H.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6(3), 2452–2458 (2012).
[PubMed]

Ritsch-Marte, M.

Rogers, J.

Roitshtain, D.

N. A. Turko, D. Roitshtain, O. Blum, B. Kemper, and N. T. Shaked, “Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging,” J. Biomed. Opt. 22(6), 66012 (2017).
[PubMed]

Satterwhite, L. L.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[PubMed]

Savatier, J.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6(3), 2452–2458 (2012).
[PubMed]

Shaked, N. T.

N. A. Turko, D. Roitshtain, O. Blum, B. Kemper, and N. T. Shaked, “Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging,” J. Biomed. Opt. 22(6), 66012 (2017).
[PubMed]

P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013).
[PubMed]

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[PubMed]

Shakir, H.

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[PubMed]

Sheppard, C. J. R.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
[PubMed]

Shim, H.

Shin, S.

S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
[PubMed]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).

Singh, A. S.

Smith, N. I.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
[PubMed]

Sridharan, S.

T. H. Nguyen, S. Sridharan, V. Macias, A. Kajdacsy-Balla, J. Melamed, M. N. Do, and G. Popescu, “Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning,” J. Biomed. Opt. 22(3), 036015 (2017).
[PubMed]

Stadelmaier, A.

Taylor, A. M.

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[PubMed]

Telen, M. J.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[PubMed]

Truskey, G. A.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[PubMed]

Turko, N. A.

N. A. Turko, D. Roitshtain, O. Blum, B. Kemper, and N. T. Shaked, “Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging,” J. Biomed. Opt. 22(6), 66012 (2017).
[PubMed]

Unarunotai, S.

Wang, Z.

Wattellier, B.

Wax, A.

S. Chowdhury, W. J. Eldridge, A. Wax, and J. Izatt, “Refractive index tomography with structured illumination,” Optica 4, 537–545 (2017).

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[PubMed]

Yamauchi, T.

Yang, S. A.

S. A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[PubMed]

Yang, S.-A.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).

Yaqoob, Z.

Yoon, H.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

Yoon, J.

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3(8), e1700606 (2017).
[PubMed]

S. A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[PubMed]

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[PubMed]

Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
[PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells: erratum,” Opt. Express 23, 18996 (2015).
[PubMed]

Yu, H.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[PubMed]

Zhou, R.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).

Zhu, M.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6(3), 2452–2458 (2012).
[PubMed]

ACS Nano (1)

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6(3), 2452–2458 (2012).
[PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

Cytometry A (2)

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[PubMed]

S. A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[PubMed]

J. Biomed. Opt. (5)

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[PubMed]

N. A. Turko, D. Roitshtain, O. Blum, B. Kemper, and N. T. Shaked, “Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging,” J. Biomed. Opt. 22(6), 66012 (2017).
[PubMed]

T. H. Nguyen, S. Sridharan, V. Macias, A. Kajdacsy-Balla, J. Melamed, M. N. Do, and G. Popescu, “Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning,” J. Biomed. Opt. 22(3), 036015 (2017).
[PubMed]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13, 024020 (2008).

J. Biomed. Photon. Eng. (1)

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).

J. Microsc. (1)

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
[PubMed]

J. Neurosci. (1)

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[PubMed]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).

Opt. Express (9)

Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
[PubMed]

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
[PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[PubMed]

A. S. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
[PubMed]

P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013).
[PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells: erratum,” Opt. Express 23, 18996 (2015).
[PubMed]

Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
[PubMed]

S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
[PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[PubMed]

Opt. Lett. (4)

Optica (1)

Sci. Adv. (1)

Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M. H. Kim, S. J. Kang, M. C. Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid optical screening of anthrax spores,” Sci. Adv. 3(8), e1700606 (2017).
[PubMed]

Sci. Rep. (4)

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6, 31034 (2016).
[PubMed]

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
[PubMed]

Sensors (Basel) (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

Other (5)

D. Kim, S. Lee, M. Lee, J. Oh, S.-A. Yang, and Y. Park, “Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging,” https://www.biorxiv.org/content/early/2017/02/06/106328 (2017).

G. Popescu, Quantitative phase imaging of cells and tissues (McGraw Hill Professional, 2011).

B. Kemper, J. Wibbeling, L. Kastl, J. Schnekenburger, and S. Ketelhut, “Continuous morphology and growth monitoring of different cell types in a single culture using quantitative phase microscopy,” in SPIE Optical Metrology, (International Society for Optics and Photonics, 2015), 952902.

D. Kim, N. Oh, K. Kim, S. Lee, C.-G. Pack, J.-H. Park, and Y. Park, “Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography,” http://www.sciencedirect.com/science/article/pii/S1046202317301792 (2017).

C. M. Vest, “Holographic interferometry,” New York, John Wiley and Sons, Inc., 1979. 476 p. (1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principles of shift differential method. (a) In conventional background subtraction method, a sample region (b) and a background region (c) are recorded. In shift differential method, sample region and its vertical and horizontal shifts are recorded. (b) Phase image of a sample region. (c) Aberration image obtained from background phase image. (d) Improved phase image, which is the subtraction of the aberration image from the phase image. (e) Horizontal shift differential phase image Δxϕ(x, y). (f) Vertical shift differential phase image Δyϕ(x, y). (g) Phase image retrieved from spiral phase integration of differential phase images.

Fig. 2
Fig. 2

Optical Setup. Sample is mounted on a motorized stage. Sample and reference beam interfere and generate a hologram, which is recorded by the camera.

Fig. 3
Fig. 3

Proof-of-principle demonstration with silica beads. (a) Raw phase images retrieved from a measured hologram (displayed in two color scales). (b) Differential phase images with vertical and horizontal shifts. (c) First row: Phase images improved by conventional background subtraction method and by the present method. Second row: aberration images retrieved from each method. (d) Phase map of regions I and II in the reconstructed images, their phase histograms and phase profile along the black stripes.

Fig. 4
Fig. 4

Phase images of HeLa cells. (a) Raw phase images of HeLa cells. Aberrations are present. (b) Phase images of HeLa cells improved by present method. Aberrations are clearly removed, and details of the sample can be seen in the phase images.

Fig. 5
Fig. 5

Phase images of large tissue slide. (a) Mouse brain tissue phase image; using the present method, 25 phase images were reconstructed and combined to yield full image. (b) Raw phase images of the mouse brain tissue, in subareas denoted 1, 2, and 3. (c) Corresponding aberration-corrected phase images obtained using the present method. (d) Aberration patterns retrieved from the present method.

Fig. 6
Fig. 6

Effects of shift size on the image reconstruction. Polystyrene beads with the diameter of 10 μm are imaged. (a) Raw phase image and its improvement using the background subtraction method. (b) Phase images are improved using the present method with shift sizes of 100, 500, 1000 nm. |H(u,v)| + |H’(u,v)| and Φ0(u,v) are presented in the second and the third rows, respectively. In the third rows, the area inside the NA circle is emphasized by addition of constant values.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G( u,v )=FT[ Δ x ϕ( x,y )+i Δ y ϕ( x,y ) ]=H( u,v ) Φ 0 ( u,v ),
H( u,v )= e 2πiΔxu +i e 2πiΔyv 1i.
( u c , v c )=( n Δx , m Δy ) or ( n+ 1 4 Δx , m+ 1 4 Δy ),
G ( u,v )=( e 2πiΔxu i e 2πiΔyv 1+i ) Φ 0 ( u,v ), H ( u,v )= e 2πiΔxu i e 2πiΔyv 1+i.
( u c , v c )=( n Δx , m Δy ) or ( n 1 4 Δx , m 1 4 Δy ).
Φ 0 (u,v)= 1 | H(u,v) |+| H (u,v) | ( | H(u,v) | H(u,v) G(u,v)+ | H (u,v) | H (u,v) G (u,v) ).

Metrics