Abstract

Designing color pixels using plasmonic nanostructures and metasurfaces has become a luring area of research in recent years. Here, we experimentally demonstrated the voltage tunability of a dynamic plasmonic color filter by using an aluminum grating integrated with the nematic liquid crystal (LC). Along with a typical substrate coated with rubbed polyimide film, the aluminum grating itself serves as a molecular alignment layer to form a twisted LC cell. This hybrid structure allows electrically controlled transmission color by applying the voltage. A significant spectral tunability of such a device has been demonstrated by applying the small voltage from 0 to 4 Vrms.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating

Chun-Ta Wang, Hao-Hsiang Hou, Ping-Chien Chang, Cheng-Chang Li, Hung-Chang Jau, Yung-Jr Hung, and Tsung-Hsien Lin
Opt. Express 24(20) 22892-22898 (2016)

Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating

Chang-Hyun Park, Yeo-Taek Yoon, Vivek Raj Shrestha, Chul-Soon Park, Sang-Shin Lee, and Eun-Soo Kim
Opt. Express 21(23) 28783-28793 (2013)

Electrically tunable infrared filter based on the liquid crystal Fabry–Perot structure for spectral imaging detection

Huaidong Zhang, Afzal Muhammmad, Jun Luo, Qing Tong, Yu Lei, Xinyu Zhang, Hongshi Sang, and Changsheng Xie
Appl. Opt. 53(25) 5632-5639 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
  2. N. Dean, “Colouring at the nanoscale,” Nat. Nanotechnol. 10(1), 15–16 (2015).
    [PubMed]
  3. X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
    [PubMed]
  4. V. Raj Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
    [PubMed]
  5. C.-W. Su and K.-P. Chen, “Broadband gold nanoantennas arrays with transverse dimension effects,” Opt. Express 24(16), 17760–17765 (2016).
    [PubMed]
  6. T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
    [PubMed]
  7. F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
    [PubMed]
  8. Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
    [PubMed]
  9. K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable Color Filters Based on Metal-Insulator-Metal Resonators,” Nano Lett. 9(7), 2579–2583 (2009).
    [PubMed]
  10. M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
    [PubMed]
  11. V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut,” ACS Photonics 4, 1076–1082 (2017).
  12. X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
    [PubMed]
  13. V. Vashistha, G. Vaidya, P. Gruszecki, A. E. Serebryannikov, and M. Krawczyk, “Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas,” Sci. Rep. 7(1), 8092 (2017).
    [PubMed]
  14. W. Yue, S. Gao, S. S. Lee, E. S. Kim, and D. Y. Choi, “Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors,” Laser Photonics Rev. 11, 1600285 (2017).
  15. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
    [PubMed]
  16. Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
    [PubMed]
  17. J.-H. Yang and K.-P. Chen, “Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas,” Sci. Rep. 6, 32194 (2016).
    [PubMed]
  18. X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8, 14606 (2017).
    [PubMed]
  19. M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response,” Nano Lett. 17(10), 6034–6039 (2017).
    [PubMed]
  20. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [PubMed]
  21. J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
    [PubMed]
  22. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
    [PubMed]
  23. V. K. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light‐driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008).
  24. G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-crystal-enabled active plasmonics: a review,” Materials (Basel) 7(2), 1296–1317 (2014).
    [PubMed]
  25. Y.-C. Hsiao, C.-W. Su, Z.-H. Yang, Y. I. Cheypesh, J.-H. Yang, V. Y. Reshetnyak, K.-P. Chen, and W. Lee, “Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal,” RSC Advances 6, 84500–84504 (2016).
  26. K.-P. Chen, S.-C. Ye, C.-Y. Yang, Z.-H. Yang, W. Lee, and M.-G. Sun, “Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals,” Opt. Express 24(15), 16815–16821 (2016).
    [PubMed]
  27. G. Gilardi, D. Donisi, A. Serpengüzel, and R. Beccherelli, “Liquid-crystal tunable filter based on sapphire microspheres,” Opt. Lett. 34(21), 3253–3255 (2009).
    [PubMed]
  28. A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, and I. Staude, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).
  29. Y. J. Liu, G. Y. Si, E. S. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
    [PubMed]
  30. D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
    [PubMed]
  31. W. Lee, J.-S. Gau, and H.-Y. Chen, “Electro-optical properties of planar nematic cells impregnated with carbon nanosolids,” Appl. Phys. B 81, 171–175 (2005).
  32. G. Bryan-Brown, C. Brown, I. Sage, and V. Hui, “Voltage-dependent anchoring of a nematic liquid crystal on a grating surface,” Nature 392, 365–367 (1998).
  33. S. P. Palto, M. I. Barnik, V. V. Artemov, I. V. Kasyanova, N. M. Shtykov, A. R. Geivandov, S. G. Yudin, and M. V. Gorkunov, “Voltage-tunable optical transmission of subwavelength metal gratings filled with liquid crystals,” in SPIE Photonics Europe (International Society for Optics and Photonics, 2016), 988307–988307–988308.
  34. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
    [PubMed]

2017 (7)

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[PubMed]

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut,” ACS Photonics 4, 1076–1082 (2017).

V. Vashistha, G. Vaidya, P. Gruszecki, A. E. Serebryannikov, and M. Krawczyk, “Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas,” Sci. Rep. 7(1), 8092 (2017).
[PubMed]

W. Yue, S. Gao, S. S. Lee, E. S. Kim, and D. Y. Choi, “Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors,” Laser Photonics Rev. 11, 1600285 (2017).

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8, 14606 (2017).
[PubMed]

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response,” Nano Lett. 17(10), 6034–6039 (2017).
[PubMed]

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, and I. Staude, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).

2016 (10)

Y.-C. Hsiao, C.-W. Su, Z.-H. Yang, Y. I. Cheypesh, J.-H. Yang, V. Y. Reshetnyak, K.-P. Chen, and W. Lee, “Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal,” RSC Advances 6, 84500–84504 (2016).

K.-P. Chen, S.-C. Ye, C.-Y. Yang, Z.-H. Yang, W. Lee, and M.-G. Sun, “Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals,” Opt. Express 24(15), 16815–16821 (2016).
[PubMed]

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[PubMed]

J.-H. Yang and K.-P. Chen, “Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas,” Sci. Rep. 6, 32194 (2016).
[PubMed]

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[PubMed]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[PubMed]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

C.-W. Su and K.-P. Chen, “Broadband gold nanoantennas arrays with transverse dimension effects,” Opt. Express 24(16), 17760–17765 (2016).
[PubMed]

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[PubMed]

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[PubMed]

2015 (5)

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[PubMed]

N. Dean, “Colouring at the nanoscale,” Nat. Nanotechnol. 10(1), 15–16 (2015).
[PubMed]

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[PubMed]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[PubMed]

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[PubMed]

2014 (2)

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-crystal-enabled active plasmonics: a review,” Materials (Basel) 7(2), 1296–1317 (2014).
[PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[PubMed]

2012 (2)

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[PubMed]

Y. J. Liu, G. Y. Si, E. S. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[PubMed]

2009 (2)

G. Gilardi, D. Donisi, A. Serpengüzel, and R. Beccherelli, “Liquid-crystal tunable filter based on sapphire microspheres,” Opt. Lett. 34(21), 3253–3255 (2009).
[PubMed]

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable Color Filters Based on Metal-Insulator-Metal Resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[PubMed]

2008 (2)

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[PubMed]

V. K. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light‐driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008).

2005 (1)

W. Lee, J.-S. Gau, and H.-Y. Chen, “Electro-optical properties of planar nematic cells impregnated with carbon nanosolids,” Appl. Phys. B 81, 171–175 (2005).

2002 (1)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[PubMed]

1998 (1)

G. Bryan-Brown, C. Brown, I. Sage, and V. Hui, “Voltage-dependent anchoring of a nematic liquid crystal on a grating surface,” Nature 392, 365–367 (1998).

Atwater, H. A.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable Color Filters Based on Metal-Insulator-Metal Resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[PubMed]

Basu, T.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[PubMed]

Beccherelli, R.

Bohn, J.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, and I. Staude, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).

Bonod, N.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut,” ACS Photonics 4, 1076–1082 (2017).

Boroumand, J.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[PubMed]

Bozhevolnyi, S. I.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

Brener, I.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, and I. Staude, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).

Brown, C.

G. Bryan-Brown, C. Brown, I. Sage, and V. Hui, “Voltage-dependent anchoring of a nematic liquid crystal on a grating surface,” Nature 392, 365–367 (1998).

Bryan-Brown, G.

G. Bryan-Brown, C. Brown, I. Sage, and V. Hui, “Voltage-dependent anchoring of a nematic liquid crystal on a grating surface,” Nature 392, 365–367 (1998).

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[PubMed]

Chanda, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[PubMed]

Chen, H.-Y.

W. Lee, J.-S. Gau, and H.-Y. Chen, “Electro-optical properties of planar nematic cells impregnated with carbon nanosolids,” Appl. Phys. B 81, 171–175 (2005).

Chen, K.-P.

C.-W. Su and K.-P. Chen, “Broadband gold nanoantennas arrays with transverse dimension effects,” Opt. Express 24(16), 17760–17765 (2016).
[PubMed]

K.-P. Chen, S.-C. Ye, C.-Y. Yang, Z.-H. Yang, W. Lee, and M.-G. Sun, “Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals,” Opt. Express 24(15), 16815–16821 (2016).
[PubMed]

J.-H. Yang and K.-P. Chen, “Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas,” Sci. Rep. 6, 32194 (2016).
[PubMed]

Y.-C. Hsiao, C.-W. Su, Z.-H. Yang, Y. I. Cheypesh, J.-H. Yang, V. Y. Reshetnyak, K.-P. Chen, and W. Lee, “Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal,” RSC Advances 6, 84500–84504 (2016).

Chen, W. T.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[PubMed]

Chen, Y.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[PubMed]

Cheng, F.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[PubMed]

Cheypesh, Y. I.

Y.-C. Hsiao, C.-W. Su, Z.-H. Yang, Y. I. Cheypesh, J.-H. Yang, V. Y. Reshetnyak, K.-P. Chen, and W. Lee, “Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal,” RSC Advances 6, 84500–84504 (2016).

Choi, D. Y.

W. Yue, S. Gao, S. S. Lee, E. S. Kim, and D. Y. Choi, “Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors,” Laser Photonics Rev. 11, 1600285 (2017).

Choi, D.-Y.

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[PubMed]

Clark, A. W.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[PubMed]

Cooper, J. M.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[PubMed]

Crozier, K. B.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[PubMed]

Danner, A. J.

Y. J. Liu, G. Y. Si, E. S. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[PubMed]

Dean, N.

N. Dean, “Colouring at the nanoscale,” Nat. Nanotechnol. 10(1), 15–16 (2015).
[PubMed]

Decker, M.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, and I. Staude, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[PubMed]

Diest, K.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable Color Filters Based on Metal-Insulator-Metal Resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[PubMed]

Dionne, J. A.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable Color Filters Based on Metal-Insulator-Metal Resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[PubMed]

Donisi, D.

Duan, X.

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8, 14606 (2017).
[PubMed]

Ellenbogen, T.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[PubMed]

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[PubMed]

Everitt, H. O.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[PubMed]

Fang, Z.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, and I. Staude, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).

Franklin, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[PubMed]

Gao, J.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[PubMed]

Gao, S.

W. Yue, S. Gao, S. S. Lee, E. S. Kim, and D. Y. Choi, “Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors,” Laser Photonics Rev. 11, 1600285 (2017).

Gau, J.-S.

W. Lee, J.-S. Gau, and H.-Y. Chen, “Electro-optical properties of planar nematic cells impregnated with carbon nanosolids,” Appl. Phys. B 81, 171–175 (2005).

Gilardi, G.

Gruszecki, P.

V. Vashistha, G. Vaidya, P. Gruszecki, A. E. Serebryannikov, and M. Krawczyk, “Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas,” Sci. Rep. 7(1), 8092 (2017).
[PubMed]

Halas, N. J.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response,” Nano Lett. 17(10), 6034–6039 (2017).
[PubMed]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[PubMed]

Hatada, H.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[PubMed]

Hegde, R. S.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut,” ACS Photonics 4, 1076–1082 (2017).

Højlund-Nielsen, E.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[PubMed]

Hsiao, V. K.

V. K. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light‐driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008).

Hsiao, Y.-C.

Y.-C. Hsiao, C.-W. Su, Z.-H. Yang, Y. I. Cheypesh, J.-H. Yang, V. Y. Reshetnyak, K.-P. Chen, and W. Lee, “Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal,” RSC Advances 6, 84500–84504 (2016).

Huang, D.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[PubMed]

Huang, T. J.

V. K. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light‐driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008).

Huang, Y.-W.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[PubMed]

Hui, V.

G. Bryan-Brown, C. Brown, I. Sage, and V. Hui, “Voltage-dependent anchoring of a nematic liquid crystal on a grating surface,” Nature 392, 365–367 (1998).

James, T. D.

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[PubMed]

Juluri, B. K.

V. K. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light‐driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008).

Kamin, S.

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8, 14606 (2017).
[PubMed]

Kim, E. S.

W. Yue, S. Gao, S. S. Lee, E. S. Kim, and D. Y. Choi, “Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors,” Laser Photonics Rev. 11, 1600285 (2017).

Kim, E.-S.

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[PubMed]

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[PubMed]

Kivshar, Y. S.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, and I. Staude, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[PubMed]

Komar, A.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, and I. Staude, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).

Krawczyk, M.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut,” ACS Photonics 4, 1076–1082 (2017).

V. Vashistha, G. Vaidya, P. Gruszecki, A. E. Serebryannikov, and M. Krawczyk, “Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas,” Sci. Rep. 7(1), 8092 (2017).
[PubMed]

Kristensen, A.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[PubMed]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[PubMed]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

Lalanne, P.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[PubMed]

Lee, S. S.

W. Yue, S. Gao, S. S. Lee, E. S. Kim, and D. Y. Choi, “Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors,” Laser Photonics Rev. 11, 1600285 (2017).

Lee, S.-S.

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[PubMed]

Lee, W.

K.-P. Chen, S.-C. Ye, C.-Y. Yang, Z.-H. Yang, W. Lee, and M.-G. Sun, “Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals,” Opt. Express 24(15), 16815–16821 (2016).
[PubMed]

Y.-C. Hsiao, C.-W. Su, Z.-H. Yang, Y. I. Cheypesh, J.-H. Yang, V. Y. Reshetnyak, K.-P. Chen, and W. Lee, “Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal,” RSC Advances 6, 84500–84504 (2016).

W. Lee, J.-S. Gau, and H.-Y. Chen, “Electro-optical properties of planar nematic cells impregnated with carbon nanosolids,” Appl. Phys. B 81, 171–175 (2005).

Leong, E. S.

Y. J. Liu, G. Y. Si, E. S. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[PubMed]

Leong, E. S. P.

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-crystal-enabled active plasmonics: a review,” Materials (Basel) 7(2), 1296–1317 (2014).
[PubMed]

Levy, U.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[PubMed]

Li, Z.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[PubMed]

Link, S.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[PubMed]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[PubMed]

Liu, N.

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8, 14606 (2017).
[PubMed]

Liu, Y. J.

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-crystal-enabled active plasmonics: a review,” Materials (Basel) 7(2), 1296–1317 (2014).
[PubMed]

Y. J. Liu, G. Y. Si, E. S. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[PubMed]

Luk, T. S.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[PubMed]

Manjavacas, A.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[PubMed]

Miroshnichenko, A.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, and I. Staude, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).

Miyata, M.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[PubMed]

Modak, S.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[PubMed]

Mortensen, N. A.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[PubMed]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[PubMed]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

Mulvaney, P.

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[PubMed]

Nordlander, P.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response,” Nano Lett. 17(10), 6034–6039 (2017).
[PubMed]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[PubMed]

Olson, J.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[PubMed]

Pertsch, T.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, and I. Staude, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[PubMed]

Raj Shrestha, V.

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[PubMed]

Reshetnyak, V. Y.

Y.-C. Hsiao, C.-W. Su, Z.-H. Yang, Y. I. Cheypesh, J.-H. Yang, V. Y. Reshetnyak, K.-P. Chen, and W. Lee, “Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal,” RSC Advances 6, 84500–84504 (2016).

Roberts, A.

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[PubMed]

Sage, I.

G. Bryan-Brown, C. Brown, I. Sage, and V. Hui, “Voltage-dependent anchoring of a nematic liquid crystal on a grating surface,” Nature 392, 365–367 (1998).

Sautter, J.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, and I. Staude, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).

Schlather, A. E.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[PubMed]

Semmlinger, M.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response,” Nano Lett. 17(10), 6034–6039 (2017).
[PubMed]

Seo, K.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[PubMed]

Serebryannikov, A. E.

V. Vashistha, G. Vaidya, P. Gruszecki, A. E. Serebryannikov, and M. Krawczyk, “Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas,” Sci. Rep. 7(1), 8092 (2017).
[PubMed]

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut,” ACS Photonics 4, 1076–1082 (2017).

Serpengüzel, A.

Si, G.

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-crystal-enabled active plasmonics: a review,” Materials (Basel) 7(2), 1296–1317 (2014).
[PubMed]

Si, G. Y.

Y. J. Liu, G. Y. Si, E. S. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[PubMed]

Spain, M.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable Color Filters Based on Metal-Insulator-Metal Resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[PubMed]

Staude, I.

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, and I. Staude, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).

Su, C.-W.

Y.-C. Hsiao, C.-W. Su, Z.-H. Yang, Y. I. Cheypesh, J.-H. Yang, V. Y. Reshetnyak, K.-P. Chen, and W. Lee, “Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal,” RSC Advances 6, 84500–84504 (2016).

C.-W. Su and K.-P. Chen, “Broadband gold nanoantennas arrays with transverse dimension effects,” Opt. Express 24(16), 17760–17765 (2016).
[PubMed]

Sun, G.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[PubMed]

Sun, M.-G.

Takahara, J.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[PubMed]

Teng, J. H.

Y. J. Liu, G. Y. Si, E. S. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[PubMed]

Tsai, D. P.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[PubMed]

Tsai, W.-Y.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[PubMed]

Tseng, M. L.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response,” Nano Lett. 17(10), 6034–6039 (2017).
[PubMed]

Vaidya, G.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut,” ACS Photonics 4, 1076–1082 (2017).

V. Vashistha, G. Vaidya, P. Gruszecki, A. E. Serebryannikov, and M. Krawczyk, “Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas,” Sci. Rep. 7(1), 8092 (2017).
[PubMed]

Vannahme, C.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[PubMed]

Vashistha, V.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut,” ACS Photonics 4, 1076–1082 (2017).

V. Vashistha, G. Vaidya, P. Gruszecki, A. E. Serebryannikov, and M. Krawczyk, “Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas,” Sci. Rep. 7(1), 8092 (2017).
[PubMed]

Vazquez-Guardado, A.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[PubMed]

Wang, C.-M.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[PubMed]

Wu, P. C.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[PubMed]

Wu, S.-T.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[PubMed]

Wurtz, G. A.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[PubMed]

Xiang, N.

Y. J. Liu, G. Y. Si, E. S. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[PubMed]

Xu, D.

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[PubMed]

Yan, W.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[PubMed]

Yang, C.-Y.

Yang, J.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response,” Nano Lett. 17(10), 6034–6039 (2017).
[PubMed]

Yang, J. K.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

Yang, J.-H.

Y.-C. Hsiao, C.-W. Su, Z.-H. Yang, Y. I. Cheypesh, J.-H. Yang, V. Y. Reshetnyak, K.-P. Chen, and W. Lee, “Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal,” RSC Advances 6, 84500–84504 (2016).

J.-H. Yang and K.-P. Chen, “Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas,” Sci. Rep. 6, 32194 (2016).
[PubMed]

Yang, X.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[PubMed]

Yang, Z.-H.

Y.-C. Hsiao, C.-W. Su, Z.-H. Yang, Y. I. Cheypesh, J.-H. Yang, V. Y. Reshetnyak, K.-P. Chen, and W. Lee, “Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal,” RSC Advances 6, 84500–84504 (2016).

K.-P. Chen, S.-C. Ye, C.-Y. Yang, Z.-H. Yang, W. Lee, and M.-G. Sun, “Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals,” Opt. Express 24(15), 16815–16821 (2016).
[PubMed]

Ye, S.-C.

Yue, W.

W. Yue, S. Gao, S. S. Lee, E. S. Kim, and D. Y. Choi, “Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors,” Laser Photonics Rev. 11, 1600285 (2017).

Zayats, A. V.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[PubMed]

Zhang, C.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response,” Nano Lett. 17(10), 6034–6039 (2017).
[PubMed]

Zhao, Y.

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-crystal-enabled active plasmonics: a review,” Materials (Basel) 7(2), 1296–1317 (2014).
[PubMed]

Zheng, B.

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[PubMed]

Zheng, Y. B.

V. K. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light‐driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008).

Zhu, X.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[PubMed]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[PubMed]

ACS Nano (3)

Z. Li, A. W. Clark, and J. M. Cooper, “Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette,” ACS Nano 10(1), 492–498 (2016).
[PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[PubMed]

J. Olson, A. Manjavacas, T. Basu, D. Huang, A. E. Schlather, B. Zheng, N. J. Halas, P. Nordlander, and S. Link, “High chromaticity aluminum plasmonic pixels for active liquid crystal displays,” ACS Nano 10(1), 1108–1117 (2016).
[PubMed]

ACS Photonics (1)

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut,” ACS Photonics 4, 1076–1082 (2017).

Adv. Mater. (2)

V. K. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light‐driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008).

Y. J. Liu, G. Y. Si, E. S. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[PubMed]

Appl. Phys. B (1)

W. Lee, J.-S. Gau, and H.-Y. Chen, “Electro-optical properties of planar nematic cells impregnated with carbon nanosolids,” Appl. Phys. B 81, 171–175 (2005).

Appl. Phys. Lett. (1)

A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, and I. Staude, “Electrically tunable all-dielectric optical metasurfaces based on liquid crystals,” Appl. Phys. Lett. 110, 071109 (2017).

Laser Photonics Rev. (1)

W. Yue, S. Gao, S. S. Lee, E. S. Kim, and D. Y. Choi, “Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors,” Laser Photonics Rev. 11, 1600285 (2017).

Materials (Basel) (1)

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-crystal-enabled active plasmonics: a review,” Materials (Basel) 7(2), 1296–1317 (2014).
[PubMed]

Nano Lett. (7)

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response,” Nano Lett. 17(10), 6034–6039 (2017).
[PubMed]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[PubMed]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[PubMed]

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable Color Filters Based on Metal-Insulator-Metal Resonators,” Nano Lett. 9(7), 2579–2583 (2009).
[PubMed]

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[PubMed]

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[PubMed]

Nat. Commun. (2)

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8, 14606 (2017).
[PubMed]

D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commun. 6, 7337 (2015).
[PubMed]

Nat. Nanotechnol. (2)

N. Dean, “Colouring at the nanoscale,” Nat. Nanotechnol. 10(1), 15–16 (2015).
[PubMed]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[PubMed]

Nat. Rev. Mater. (1)

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).

Nature (1)

G. Bryan-Brown, C. Brown, I. Sage, and V. Hui, “Voltage-dependent anchoring of a nematic liquid crystal on a grating surface,” Nature 392, 365–367 (1998).

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[PubMed]

RSC Advances (1)

Y.-C. Hsiao, C.-W. Su, Z.-H. Yang, Y. I. Cheypesh, J.-H. Yang, V. Y. Reshetnyak, K.-P. Chen, and W. Lee, “Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal,” RSC Advances 6, 84500–84504 (2016).

Sci. Adv. (1)

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[PubMed]

Sci. Rep. (4)

V. Raj Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[PubMed]

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[PubMed]

V. Vashistha, G. Vaidya, P. Gruszecki, A. E. Serebryannikov, and M. Krawczyk, “Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas,” Sci. Rep. 7(1), 8092 (2017).
[PubMed]

J.-H. Yang and K.-P. Chen, “Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas,” Sci. Rep. 6, 32194 (2016).
[PubMed]

Other (1)

S. P. Palto, M. I. Barnik, V. V. Artemov, I. V. Kasyanova, N. M. Shtykov, A. R. Geivandov, S. G. Yudin, and M. V. Gorkunov, “Voltage-tunable optical transmission of subwavelength metal gratings filled with liquid crystals,” in SPIE Photonics Europe (International Society for Optics and Photonics, 2016), 988307–988307–988308.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the cell composed of sandwiched nematic LC, an Al grating and a polyimide-coated substrate in the (a) voltage-off and (b) voltage-on states.
Fig. 2
Fig. 2 (a) Schematic of the Al grating on the ITO coated glass substrate. (b) SEM image of aluminum grating with grating width 150 nm. The simulated and experiment transmission spectra of the aluminum grating when the incident light is (c)-(e) TM polarization and (f)-(h) TE polarization. The insets show the images directly recorded by optical microscopy with a camera.
Fig. 3
Fig. 3 Simulated transmission spectra of an Al grating integrated with LC for P = 300 nm: (a) TE polarization; (b) TM polarization. (c) Change in color from TM to TE polarization as indicated by the color space coordinates on the CIE-1931 chromaticity diagram.
Fig. 4
Fig. 4 Experiment results of LC cells with Al gratings when the applied voltage increases from 0 V to 10 Vrms. The images on the top of spectral are optical images recorded by a CCD camera: (a) P = 300 nm (b) P = 400 nm. (c) Transmissive color appearance of the cells at various applied voltages.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ=P n i ,
λ =p ε m ε i ε m + ε i ,

Metrics