Abstract

Commercial LEDs for solid-state lighting are often designed for operation at current densities in the droop regime (~35 A/cm2) to minimize costly chip area; however, many benefits can be realized by operating at low current density (J ≈1 - 5 A/cm2). Along with mitigation of droop losses and reduction of the operating voltage, low J operation of LEDs opens the design space for high light extraction efficiency (LEE). This work presents detailed ray tracing simulations of an LED design for low J operation with LEE ≈94%. The design is realized experimentally resulting in a peak wall-plug efficiency of 78.1% occurring at 3.45 A/cm2 and producing an output power of 7.2 mW for a 0.1 mm2 emitting area. At this operation point, the photon voltage Vp=hνq exceeds the forward voltage (V), corresponding to a Vp/V = 103%.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Prospects for 100% wall-plug efficient III-nitride LEDs

Leah Y. Kuritzky, Claude Weisbuch, and James S. Speck
Opt. Express 26(13) 16600-16608 (2018)

Effect of current spreading on the efficiency droop of InGaN light-emitting diodes

Han-Youl Ryu and Jong-In Shim
Opt. Express 19(4) 2886-2894 (2011)

Dependence of efficiencies in GaN-based vertical blue light-emitting diodes on the thickness and doping concentration of the n-GaN layer

Han-Youl Ryu, Ki-Seong Jeon, Min-Goo Kang, Yunho Choi, and Jeong-Soo Lee
Opt. Express 21(S1) A190-A200 (2013)

References

  • View by:
  • |
  • |
  • |

  1. U.S. Department of Energy, 2016 Solid-State Lighting R&D Plan (2016).
  2. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91, 141101 (2007).
  3. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).
  4. J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
    [PubMed]
  5. J. Iveland, M. Piccardo, L. Martinelli, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, “Origin of electrons emitted into vacuum from InGaN light emitting diodes,” Appl. Phys. Lett. 105, 052103 (2014).
  6. J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7, 963–993 (2013).
  7. J. Y. Tsao, J. J. Wierer, L. E. S. Rohwer, M. E. Coltrin, M. H. Crawford, J. A. Simmons, P. C. Hung, H. Saunders, D. S. Sizov, R. Bhat, and C. E. Zah, “Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches,” Top. Appl. Phys. 133, 11–28 (2017).
  8. K. Lehovec, C. A. Accardo, and E. Jamgochian, “Light emission produced by current injected into a green silicon-carbide crystal,” Phys. Rev. 89, 20–25 (1953).
  9. J. Tauc, “The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from a p-n junction,” Czech. J. Phys. 7, 275–276 (1957).
  10. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, 2006).
  11. E. Matioli and C. Weisbuch, “Active Region Part A. Internal Quantum Efficiency in LEDs,” in III-Nitride Based Light Emitting Diodes and Applications, T.-Y. Seong, J. Han, H. Amano, and H. Morkoc, eds. (Springer Netherlands, 2013), pp. 121–152.
  12. E. Matioli and C. Weisbuch, “Direct measurement of internal quantum efficiency in light emitting diodes under electrical injection,” J. Appl. Phys. 109, 073114 (2011).
  13. Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82, 2221–2223 (2003).
  14. T.-X. Lee, K.-F. Gao, W.-T. Chien, and C.-C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15(11), 6670–6676 (2007).
    [PubMed]
  15. C. L. Keraly, L. Y. Kuritzky, M. Cochet, and C. Weisbuch, “Ray Tracing for Light Extraction Efficiency (LEE) Modeling in Nitride LEDs,” in III-Nitride Based Light Emitting Diodes and Applications, T.-Y. Seong, J. Han, H. Amano, and H. Morkoc, eds., Topics in Applied Physics (Springer Netherlands, 2013), Vol. 126, pp. 213–269.
  16. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503 (1946).
  17. G. C. Dousmanis, C. W. Mueller, H. Nelson, and K. G. Petzinger, “Evidence of refrigerating action by means of photon emission in semiconductor diodes,” Phys. Rev. 133, A316 (1964).
  18. P. Santhanam, D. J. Gray, and R. J. Ram, “Thermoelectrically pumped light-emitting diodes operating above unity efficiency,” Phys. Rev. Lett. 108(9), 097403 (2012).
    [PubMed]
  19. P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103, 183513 (2013).
  20. L. Y. Kuritzky, R. Ram, C. Weisbuch, and J. S. Speck, “Prospects for III-Nitride LEDs with 100% Wall-Plug Efficiency,” (in preparation).
  21. C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. Delille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 31101 (2015).
  22. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43, 354002 (2010).
  23. A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109, 83501 (2016).
  24. S. P. DenBaars, S. Nakamura, and J. S. Speck, “Transparent mirrorless light emitting diode,” U.S. patent US 7,781,789 B2 (2010).
  25. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
    [PubMed]
  26. J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118, 145304 (2015).
  27. J. K. Kim, H. W. Jang, and J.-L. Lee, “Mechanism for Ohmic contact formation of Ti on n-type GaN investigated using synchrotron radiation photoemission spectroscopy,” J. Appl. Phys. 91, 9214 (2002).
  28. B. P. Yonkee, “Hybrid MOCVD/MBE III-Nitride Tunnel Junctions,” University of California, Santa Barbara, Doctoral Thesis, (2016).
  29. A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-type GaN,” J. Electron. Mater. 27, 261 (1998).
  30. M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

2017 (1)

J. Y. Tsao, J. J. Wierer, L. E. S. Rohwer, M. E. Coltrin, M. H. Crawford, J. A. Simmons, P. C. Hung, H. Saunders, D. S. Sizov, R. Bhat, and C. E. Zah, “Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches,” Top. Appl. Phys. 133, 11–28 (2017).

2016 (1)

A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109, 83501 (2016).

2015 (3)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[PubMed]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118, 145304 (2015).

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. Delille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 31101 (2015).

2014 (1)

J. Iveland, M. Piccardo, L. Martinelli, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, “Origin of electrons emitted into vacuum from InGaN light emitting diodes,” Appl. Phys. Lett. 105, 052103 (2014).

2013 (3)

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7, 963–993 (2013).

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[PubMed]

P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103, 183513 (2013).

2012 (1)

P. Santhanam, D. J. Gray, and R. J. Ram, “Thermoelectrically pumped light-emitting diodes operating above unity efficiency,” Phys. Rev. Lett. 108(9), 097403 (2012).
[PubMed]

2011 (2)

E. Matioli and C. Weisbuch, “Direct measurement of internal quantum efficiency in light emitting diodes under electrical injection,” J. Appl. Phys. 109, 073114 (2011).

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).

2010 (1)

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43, 354002 (2010).

2007 (2)

T.-X. Lee, K.-F. Gao, W.-T. Chien, and C.-C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15(11), 6670–6676 (2007).
[PubMed]

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91, 141101 (2007).

2003 (1)

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82, 2221–2223 (2003).

2002 (1)

J. K. Kim, H. W. Jang, and J.-L. Lee, “Mechanism for Ohmic contact formation of Ti on n-type GaN investigated using synchrotron radiation photoemission spectroscopy,” J. Appl. Phys. 91, 9214 (2002).

2000 (1)

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

1998 (1)

A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-type GaN,” J. Electron. Mater. 27, 261 (1998).

1964 (1)

G. C. Dousmanis, C. W. Mueller, H. Nelson, and K. G. Petzinger, “Evidence of refrigerating action by means of photon emission in semiconductor diodes,” Phys. Rev. 133, A316 (1964).

1957 (1)

J. Tauc, “The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from a p-n junction,” Czech. J. Phys. 7, 275–276 (1957).

1953 (1)

K. Lehovec, C. A. Accardo, and E. Jamgochian, “Light emission produced by current injected into a green silicon-carbide crystal,” Phys. Rev. 89, 20–25 (1953).

1946 (1)

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503 (1946).

Accardo, C. A.

K. Lehovec, C. A. Accardo, and E. Jamgochian, “Light emission produced by current injected into a green silicon-carbide crystal,” Phys. Rev. 89, 20–25 (1953).

Adesida, I.

A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-type GaN,” J. Electron. Mater. 27, 261 (1998).

Ahmed, F.

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82, 2221–2223 (2003).

Aldaz, R. I.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. Delille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 31101 (2015).

Bhat, J. C.

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82, 2221–2223 (2003).

Bhat, R.

J. Y. Tsao, J. J. Wierer, L. E. S. Rohwer, M. E. Coltrin, M. H. Crawford, J. A. Simmons, P. C. Hung, H. Saunders, D. S. Sizov, R. Bhat, and C. E. Zah, “Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches,” Top. Appl. Phys. 133, 11–28 (2017).

Carter-Coman, C.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Chen, E.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Chen, Q.

A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-type GaN,” J. Electron. Mater. 27, 261 (1998).

Chien, W.-T.

Choi, J. W.

J. Iveland, M. Piccardo, L. Martinelli, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, “Origin of electrons emitted into vacuum from InGaN light emitting diodes,” Appl. Phys. Lett. 105, 052103 (2014).

Cich, M. J.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. Delille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 31101 (2015).

Cohen, D. A.

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118, 145304 (2015).

Collins, D.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Coltrin, M. E.

J. Y. Tsao, J. J. Wierer, L. E. S. Rohwer, M. E. Coltrin, M. H. Crawford, J. A. Simmons, P. C. Hung, H. Saunders, D. S. Sizov, R. Bhat, and C. E. Zah, “Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches,” Top. Appl. Phys. 133, 11–28 (2017).

Craford, M. G.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Craven, M. D.

A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109, 83501 (2016).

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. Delille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 31101 (2015).

Crawford, M. H.

J. Y. Tsao, J. J. Wierer, L. E. S. Rohwer, M. E. Coltrin, M. H. Crawford, J. A. Simmons, P. C. Hung, H. Saunders, D. S. Sizov, R. Bhat, and C. E. Zah, “Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches,” Top. Appl. Phys. 133, 11–28 (2017).

David, A.

A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109, 83501 (2016).

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. Delille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 31101 (2015).

Delaney, K. T.

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).

Delille, R. A.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. Delille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 31101 (2015).

Denbaars, S. P.

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118, 145304 (2015).

Dousmanis, G. C.

G. C. Dousmanis, C. W. Mueller, H. Nelson, and K. G. Petzinger, “Evidence of refrigerating action by means of photon emission in semiconductor diodes,” Phys. Rev. 133, A316 (1964).

Ellis, B.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. Delille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 31101 (2015).

Farrell, R. M.

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118, 145304 (2015).

Gao, K.-F.

Gardner, N. F.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91, 141101 (2007).

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Gray, D. J.

P. Santhanam, D. J. Gray, and R. J. Ram, “Thermoelectrically pumped light-emitting diodes operating above unity efficiency,” Phys. Rev. Lett. 108(9), 097403 (2012).
[PubMed]

Grillot, P.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Hofler, G. E.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Huang, D.

P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103, 183513 (2013).

Huang, J.-W.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Huang, K.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. Delille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 31101 (2015).

Hueschen, M.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Hung, P. C.

J. Y. Tsao, J. J. Wierer, L. E. S. Rohwer, M. E. Coltrin, M. H. Crawford, J. A. Simmons, P. C. Hung, H. Saunders, D. S. Sizov, R. Bhat, and C. E. Zah, “Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches,” Top. Appl. Phys. 133, 11–28 (2017).

Hurni, C. A.

A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109, 83501 (2016).

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. Delille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 31101 (2015).

Ichikawa, M.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43, 354002 (2010).

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[PubMed]

Iveland, J.

J. Iveland, M. Piccardo, L. Martinelli, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, “Origin of electrons emitted into vacuum from InGaN light emitting diodes,” Appl. Phys. Lett. 105, 052103 (2014).

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[PubMed]

Jamgochian, E.

K. Lehovec, C. A. Accardo, and E. Jamgochian, “Light emission produced by current injected into a green silicon-carbide crystal,” Phys. Rev. 89, 20–25 (1953).

Jang, H. W.

J. K. Kim, H. W. Jang, and J.-L. Lee, “Mechanism for Ohmic contact formation of Ti on n-type GaN investigated using synchrotron radiation photoemission spectroscopy,” J. Appl. Phys. 91, 9214 (2002).

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[PubMed]

Khan, M. A.

A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-type GaN,” J. Electron. Mater. 27, 261 (1998).

Kim, A. Y.

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82, 2221–2223 (2003).

Kim, J. K.

J. K. Kim, H. W. Jang, and J.-L. Lee, “Mechanism for Ohmic contact formation of Ti on n-type GaN investigated using synchrotron radiation photoemission spectroscopy,” J. Appl. Phys. 91, 9214 (2002).

Kioupakis, E.

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).

Kish, F. A.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Kocot, C. P.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Krames, M. R.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. Delille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 31101 (2015).

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91, 141101 (2007).

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82, 2221–2223 (2003).

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[PubMed]

Kuritzky, L. Y.

L. Y. Kuritzky, R. Ram, C. Weisbuch, and J. S. Speck, “Prospects for III-Nitride LEDs with 100% Wall-Plug Efficiency,” (in preparation).

Landau, L.

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503 (1946).

Lee, J.-L.

J. K. Kim, H. W. Jang, and J.-L. Lee, “Mechanism for Ohmic contact formation of Ti on n-type GaN investigated using synchrotron radiation photoemission spectroscopy,” J. Appl. Phys. 91, 9214 (2002).

Lee, T.-X.

Lehovec, K.

K. Lehovec, C. A. Accardo, and E. Jamgochian, “Light emission produced by current injected into a green silicon-carbide crystal,” Phys. Rev. 89, 20–25 (1953).

Leonard, J. T.

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118, 145304 (2015).

Ludowise, M. J.

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82, 2221–2223 (2003).

Martin, P. S.

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82, 2221–2223 (2003).

Martinelli, L.

J. Iveland, M. Piccardo, L. Martinelli, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, “Origin of electrons emitted into vacuum from InGaN light emitting diodes,” Appl. Phys. Lett. 105, 052103 (2014).

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[PubMed]

Matioli, E.

E. Matioli and C. Weisbuch, “Direct measurement of internal quantum efficiency in light emitting diodes under electrical injection,” J. Appl. Phys. 109, 073114 (2011).

Matveev, B. A.

P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103, 183513 (2013).

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[PubMed]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[PubMed]

Misra, M. S.

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82, 2221–2223 (2003).

Mueller, C. W.

G. C. Dousmanis, C. W. Mueller, H. Nelson, and K. G. Petzinger, “Evidence of refrigerating action by means of photon emission in semiconductor diodes,” Phys. Rev. 133, A316 (1964).

Mueller, G. O.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91, 141101 (2007).

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82, 2221–2223 (2003).

Mukai, T.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43, 354002 (2010).

Munkholm, A.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91, 141101 (2007).

Nakamura, S.

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118, 145304 (2015).

J. Iveland, M. Piccardo, L. Martinelli, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, “Origin of electrons emitted into vacuum from InGaN light emitting diodes,” Appl. Phys. Lett. 105, 052103 (2014).

Narukawa, Y.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43, 354002 (2010).

Nelson, H.

G. C. Dousmanis, C. W. Mueller, H. Nelson, and K. G. Petzinger, “Evidence of refrigerating action by means of photon emission in semiconductor diodes,” Phys. Rev. 133, A316 (1964).

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[PubMed]

Ochiai-Holcomb, M.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Park, K.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Peretti, J.

J. Iveland, M. Piccardo, L. Martinelli, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, “Origin of electrons emitted into vacuum from InGaN light emitting diodes,” Appl. Phys. Lett. 105, 052103 (2014).

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[PubMed]

Petzinger, K. G.

G. C. Dousmanis, C. W. Mueller, H. Nelson, and K. G. Petzinger, “Evidence of refrigerating action by means of photon emission in semiconductor diodes,” Phys. Rev. 133, A316 (1964).

Piccardo, M.

J. Iveland, M. Piccardo, L. Martinelli, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, “Origin of electrons emitted into vacuum from InGaN light emitting diodes,” Appl. Phys. Lett. 105, 052103 (2014).

Ping, A. T.

A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-type GaN,” J. Electron. Mater. 27, 261 (1998).

Posselt, J.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Ram, R.

L. Y. Kuritzky, R. Ram, C. Weisbuch, and J. S. Speck, “Prospects for III-Nitride LEDs with 100% Wall-Plug Efficiency,” (in preparation).

Ram, R. J.

P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103, 183513 (2013).

P. Santhanam, D. J. Gray, and R. J. Ram, “Thermoelectrically pumped light-emitting diodes operating above unity efficiency,” Phys. Rev. Lett. 108(9), 097403 (2012).
[PubMed]

Remennyi, M. A.

P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103, 183513 (2013).

Rinke, P.

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).

Rohwer, L. E. S.

J. Y. Tsao, J. J. Wierer, L. E. S. Rohwer, M. E. Coltrin, M. H. Crawford, J. A. Simmons, P. C. Hung, H. Saunders, D. S. Sizov, R. Bhat, and C. E. Zah, “Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches,” Top. Appl. Phys. 133, 11–28 (2017).

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[PubMed]

Sanga, D.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43, 354002 (2010).

Sano, M.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43, 354002 (2010).

Santhanam, P.

P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103, 183513 (2013).

P. Santhanam, D. J. Gray, and R. J. Ram, “Thermoelectrically pumped light-emitting diodes operating above unity efficiency,” Phys. Rev. Lett. 108(9), 097403 (2012).
[PubMed]

Saunders, H.

J. Y. Tsao, J. J. Wierer, L. E. S. Rohwer, M. E. Coltrin, M. H. Crawford, J. A. Simmons, P. C. Hung, H. Saunders, D. S. Sizov, R. Bhat, and C. E. Zah, “Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches,” Top. Appl. Phys. 133, 11–28 (2017).

Shen, Y. C.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91, 141101 (2007).

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82, 2221–2223 (2003).

Simmons, J. A.

J. Y. Tsao, J. J. Wierer, L. E. S. Rohwer, M. E. Coltrin, M. H. Crawford, J. A. Simmons, P. C. Hung, H. Saunders, D. S. Sizov, R. Bhat, and C. E. Zah, “Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches,” Top. Appl. Phys. 133, 11–28 (2017).

Sizov, D. S.

J. Y. Tsao, J. J. Wierer, L. E. S. Rohwer, M. E. Coltrin, M. H. Crawford, J. A. Simmons, P. C. Hung, H. Saunders, D. S. Sizov, R. Bhat, and C. E. Zah, “Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches,” Top. Appl. Phys. 133, 11–28 (2017).

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7, 963–993 (2013).

Speck, J. S.

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118, 145304 (2015).

J. Iveland, M. Piccardo, L. Martinelli, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, “Origin of electrons emitted into vacuum from InGaN light emitting diodes,” Appl. Phys. Lett. 105, 052103 (2014).

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[PubMed]

L. Y. Kuritzky, R. Ram, C. Weisbuch, and J. S. Speck, “Prospects for III-Nitride LEDs with 100% Wall-Plug Efficiency,” (in preparation).

Steranka, F. M.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. Delille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 31101 (2015).

Stockman, S. A.

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82, 2221–2223 (2003).

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Sun, C.-C.

Tan, I.-H.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Tan, T. S.

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Tauc, J.

J. Tauc, “The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from a p-n junction,” Czech. J. Phys. 7, 275–276 (1957).

Tsao, J. Y.

J. Y. Tsao, J. J. Wierer, L. E. S. Rohwer, M. E. Coltrin, M. H. Crawford, J. A. Simmons, P. C. Hung, H. Saunders, D. S. Sizov, R. Bhat, and C. E. Zah, “Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches,” Top. Appl. Phys. 133, 11–28 (2017).

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7, 963–993 (2013).

Tyagi, A.

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. Delille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 31101 (2015).

Van de Walle, C. G.

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).

Watanabe, S.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91, 141101 (2007).

Weisbuch, C.

J. Iveland, M. Piccardo, L. Martinelli, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, “Origin of electrons emitted into vacuum from InGaN light emitting diodes,” Appl. Phys. Lett. 105, 052103 (2014).

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[PubMed]

E. Matioli and C. Weisbuch, “Direct measurement of internal quantum efficiency in light emitting diodes under electrical injection,” J. Appl. Phys. 109, 073114 (2011).

L. Y. Kuritzky, R. Ram, C. Weisbuch, and J. S. Speck, “Prospects for III-Nitride LEDs with 100% Wall-Plug Efficiency,” (in preparation).

Wierer, J. J.

J. Y. Tsao, J. J. Wierer, L. E. S. Rohwer, M. E. Coltrin, M. H. Crawford, J. A. Simmons, P. C. Hung, H. Saunders, D. S. Sizov, R. Bhat, and C. E. Zah, “Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches,” Top. Appl. Phys. 133, 11–28 (2017).

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7, 963–993 (2013).

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82, 2221–2223 (2003).

Yang, J. W.

A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-type GaN,” J. Electron. Mater. 27, 261 (1998).

Yonkee, B. P.

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118, 145304 (2015).

Young, N.

J. Iveland, M. Piccardo, L. Martinelli, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, “Origin of electrons emitted into vacuum from InGaN light emitting diodes,” Appl. Phys. Lett. 105, 052103 (2014).

Young, N. G.

A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109, 83501 (2016).

Zah, C. E.

J. Y. Tsao, J. J. Wierer, L. E. S. Rohwer, M. E. Coltrin, M. H. Crawford, J. A. Simmons, P. C. Hung, H. Saunders, D. S. Sizov, R. Bhat, and C. E. Zah, “Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches,” Top. Appl. Phys. 133, 11–28 (2017).

ACS Photonics (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[PubMed]

Appl. Phys. Lett. (7)

A. David, C. A. Hurni, N. G. Young, and M. D. Craven, “Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling,” Appl. Phys. Lett. 109, 83501 (2016).

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91, 141101 (2007).

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).

J. Iveland, M. Piccardo, L. Martinelli, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, “Origin of electrons emitted into vacuum from InGaN light emitting diodes,” Appl. Phys. Lett. 105, 052103 (2014).

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82, 2221–2223 (2003).

P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103, 183513 (2013).

C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. Delille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett. 106, 31101 (2015).

Czech. J. Phys. (1)

J. Tauc, “The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from a p-n junction,” Czech. J. Phys. 7, 275–276 (1957).

J. Appl. Phys. (3)

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. Denbaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118, 145304 (2015).

J. K. Kim, H. W. Jang, and J.-L. Lee, “Mechanism for Ohmic contact formation of Ti on n-type GaN investigated using synchrotron radiation photoemission spectroscopy,” J. Appl. Phys. 91, 9214 (2002).

E. Matioli and C. Weisbuch, “Direct measurement of internal quantum efficiency in light emitting diodes under electrical injection,” J. Appl. Phys. 109, 073114 (2011).

J. Electron. Mater. (1)

A. T. Ping, Q. Chen, J. W. Yang, M. A. Khan, and I. Adesida, “The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-type GaN,” J. Electron. Mater. 27, 261 (1998).

J. Phys. (Moscow) (1)

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503 (1946).

J. Phys. D Appl. Phys. (1)

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D Appl. Phys. 43, 354002 (2010).

Laser Photonics Rev. (1)

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7, 963–993 (2013).

Opt. Express (1)

Phys. Rev. (2)

G. C. Dousmanis, C. W. Mueller, H. Nelson, and K. G. Petzinger, “Evidence of refrigerating action by means of photon emission in semiconductor diodes,” Phys. Rev. 133, A316 (1964).

K. Lehovec, C. A. Accardo, and E. Jamgochian, “Light emission produced by current injected into a green silicon-carbide crystal,” Phys. Rev. 89, 20–25 (1953).

Phys. Rev. Lett. (2)

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[PubMed]

P. Santhanam, D. J. Gray, and R. J. Ram, “Thermoelectrically pumped light-emitting diodes operating above unity efficiency,” Phys. Rev. Lett. 108(9), 097403 (2012).
[PubMed]

Proc. SPIE (1)

M. Ochiai-Holcomb, M. R. Krames, G. E. Hofler, C. Carter-Coman, E. Chen, P. Grillot, K. Park, N. F. Gardner, J.-W. Huang, J. Posselt, D. Collins, S. A. Stockman, M. G. Craford, F. A. Kish, I.-H. Tan, T. S. Tan, C. P. Kocot, and M. Hueschen, “High-power truncated-inverted-pyramid (Al(x)Ga(1-x))0.5In0.5P Light-Emitting Diodes,” Proc. SPIE 3938, 77 (2000).

Top. Appl. Phys. (1)

J. Y. Tsao, J. J. Wierer, L. E. S. Rohwer, M. E. Coltrin, M. H. Crawford, J. A. Simmons, P. C. Hung, H. Saunders, D. S. Sizov, R. Bhat, and C. E. Zah, “Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches,” Top. Appl. Phys. 133, 11–28 (2017).

Other (7)

U.S. Department of Energy, 2016 Solid-State Lighting R&D Plan (2016).

E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, 2006).

E. Matioli and C. Weisbuch, “Active Region Part A. Internal Quantum Efficiency in LEDs,” in III-Nitride Based Light Emitting Diodes and Applications, T.-Y. Seong, J. Han, H. Amano, and H. Morkoc, eds. (Springer Netherlands, 2013), pp. 121–152.

C. L. Keraly, L. Y. Kuritzky, M. Cochet, and C. Weisbuch, “Ray Tracing for Light Extraction Efficiency (LEE) Modeling in Nitride LEDs,” in III-Nitride Based Light Emitting Diodes and Applications, T.-Y. Seong, J. Han, H. Amano, and H. Morkoc, eds., Topics in Applied Physics (Springer Netherlands, 2013), Vol. 126, pp. 213–269.

L. Y. Kuritzky, R. Ram, C. Weisbuch, and J. S. Speck, “Prospects for III-Nitride LEDs with 100% Wall-Plug Efficiency,” (in preparation).

S. P. DenBaars, S. Nakamura, and J. S. Speck, “Transparent mirrorless light emitting diode,” U.S. patent US 7,781,789 B2 (2010).

B. P. Yonkee, “Hybrid MOCVD/MBE III-Nitride Tunnel Junctions,” University of California, Santa Barbara, Doctoral Thesis, (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of LED chip structures of (a) the reference PSS design similar to [15] and (b) the low loss PSS design for low J, using thin ITO, small contact surface areas, and a diffusely reflective header.
Fig. 2
Fig. 2 Photograph showing the difference in reflectivity between an uncoated silver header (left), versus a header dip-coated with Avian B, a diffusely reflective integrating sphere coating (right).
Fig. 3
Fig. 3 WPE, EQE, and Vp/Vas a function of current density (plotted on a logarithmic scale) for the low loss design, which was processed and packaged on blue-emitting MQW commercial epitaxial material. The peak WPE exceeds 78% at room temperature and is accompanied by Vp/V = 103%.
Fig. 4
Fig. 4 EL images of on-wafer LEDs with ITO thicknesses (a) 0 nm (b) 33 nm (c) 70 nm (d) 83 nm under 1 A/cm2 injection. Images were all taken at room temperature with 1 ms integration time.
Fig. 5
Fig. 5 Voltage measurements for the ITO thickness series LEDs at an input current density of 1 A/cm2. The data points are average values and the error bars represent +/− the standard deviation. The data set represents measurements of 10, 10, 14, and 11 LED die for the 0, 30, 70, and 83 nm ITO samples, respectively.
Fig. 6
Fig. 6 EL measurements show a reduction of EL intensity of 9% from 273 K to 303 K for a commercial blue epitaxial material. This indicates an IQE which is far-from-unity. This material produced a best peak room temperature EQE of 74.5%, compared to the best die from another commercial material (EQE = 75.8%).

Tables (3)

Tables Icon

Table 1 Summary of the sources of optical losses in high LEE LED designs. The rightmost column calculates the relative change (Δ) in absorption in the low loss design compared with the reference design for each material in the epitaxy and package.

Tables Icon

Table 2 Dimensions used in simulations for the reference (based on [15]) and low loss LED Designs. The layer dimensions are given by the surface area SA and thickness t, unless otherwise notated as values of the radius r, height h or fractional surface area coverage fsa. The fsa refers to the surface area coverage of the metal contacts divided by the mesa area of the chip.

Tables Icon

Table 3 Optical materials parameters used in the ray tracing simulations of the reference and low loss LED chip designs. Reflectivity values refer to the GaN/metal or GaN/dielectric interface.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W P E = I Q E × L E E × V P V
E Q E = I Q E × L E E = P / h v I / q

Metrics