Abstract

A multi-channel Raman lidar has been developed, allowing for the first time simultaneous and high-resolution profiling of hydrogen gas and water vapor. The lidar measures vibrational Raman scattering in the UV (355 nm) domain. It works in a high-bandwidth photon counting regime using fast SiPM detectors and takes into account the spectral overlap between hydrogen and water vapor Raman spectra. Measurement of concentration profiles of H2 and H2O are demonstrated along a 5-meter-long open gas cell with 1-meter resolution at 85 meters. The instrument precision is investigated by numerical simulation to anticipate the potential performance at longer range. This lidar could find applications in the French project Cigéo for monitoring radioactive waste disposal cells.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Water vapor differential absorption lidar development and evaluation

E. V. Browell, T. D. Wilkerson, and T. J. Mcilrath
Appl. Opt. 18(20) 3474-3483 (1979)

Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O and CO2 emission by cockroaches and scarab beetles

F. G. C. Bijnen, F. J. M. Harren, J. H. P. Hackstein, and J. Reuss
Appl. Opt. 35(27) 5357-5368 (1996)

References

  • View by:
  • |
  • |
  • |

  1. T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
    [Crossref]
  2. S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Phéron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photonics Technol. Lett. 24(17), 1475–1477 (2012).
    [Crossref]
  3. A. Campargue, S. Kassi, K. Pachucki, and J. Komasa, “The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab initio line list up to 35000 cm-1.,” Phys. Chem. Chem. Phys. 14(2), 802–815 (2012).
    [Crossref] [PubMed]
  4. R. G. Sellar and D. Wang, “Assessment of remote sensing technologies for location of hydrogen and helium leaks,” NAG10–0290, Florida Space Inst. (2000).
  5. I. Asahi, S. Sugimoto, H. Ninomiya, T. Fukuchi, and T. Shiina, “Remote sensing of hydrogen gas concentration distribution by Raman lidar,” Proc. SPIE 8526, 85260X (2012).
  6. U. Wandinger, “Raman lidar” in Lidar: Range Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed., Springer Series in Optical Sciences 102, 241–271 (Springer, 2005).
  7. D. A. Long, The Raman Effect (Wiley, 2002), Chap.6.
  8. W. F. Murphy, W. Holzer, and H. J. Bernstein, “Gas phase Raman intensities: A review of “Pre-Laser” data,” Appl. Spectrosc. 23(3), 211–218 (1969).
    [Crossref]
  9. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley & Sons, Inc., 1984).
  10. G. Avila, J. M. Fernández, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228(1), 38–65 (2004).
    [Crossref]
  11. A. Liméry, N. Cézard, J. Bertrand, and A. Hauchecorne, “A multi-channel Raman Lidar in photon counting mode using SiPM technology,” in Proceedings of the Imaging and Applied Optics Conference 2016, OSA, paper LTh1G.4 (2016).
  12. R. Agishev, A. Comerón, J. Bach, A. Rodriguez, M. Sicard, J. Riu, and S. Royo, “Lidar with SiPM: Some capabilities and limitations in real environment,” Opt. Laser Technol. 49, 86–90 (2013).
    [Crossref]

2013 (1)

R. Agishev, A. Comerón, J. Bach, A. Rodriguez, M. Sicard, J. Riu, and S. Royo, “Lidar with SiPM: Some capabilities and limitations in real environment,” Opt. Laser Technol. 49, 86–90 (2013).
[Crossref]

2012 (3)

S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Phéron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photonics Technol. Lett. 24(17), 1475–1477 (2012).
[Crossref]

A. Campargue, S. Kassi, K. Pachucki, and J. Komasa, “The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab initio line list up to 35000 cm-1.,” Phys. Chem. Chem. Phys. 14(2), 802–815 (2012).
[Crossref] [PubMed]

I. Asahi, S. Sugimoto, H. Ninomiya, T. Fukuchi, and T. Shiina, “Remote sensing of hydrogen gas concentration distribution by Raman lidar,” Proc. SPIE 8526, 85260X (2012).

2011 (1)

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

2004 (1)

G. Avila, J. M. Fernández, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228(1), 38–65 (2004).
[Crossref]

1969 (1)

Agishev, R.

R. Agishev, A. Comerón, J. Bach, A. Rodriguez, M. Sicard, J. Riu, and S. Royo, “Lidar with SiPM: Some capabilities and limitations in real environment,” Opt. Laser Technol. 49, 86–90 (2013).
[Crossref]

Asahi, I.

I. Asahi, S. Sugimoto, H. Ninomiya, T. Fukuchi, and T. Shiina, “Remote sensing of hydrogen gas concentration distribution by Raman lidar,” Proc. SPIE 8526, 85260X (2012).

Avila, G.

G. Avila, J. M. Fernández, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228(1), 38–65 (2004).
[Crossref]

Bach, J.

R. Agishev, A. Comerón, J. Bach, A. Rodriguez, M. Sicard, J. Riu, and S. Royo, “Lidar with SiPM: Some capabilities and limitations in real environment,” Opt. Laser Technol. 49, 86–90 (2013).
[Crossref]

Banach, U.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Bernstein, H. J.

Bertrand, J.

S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Phéron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photonics Technol. Lett. 24(17), 1475–1477 (2012).
[Crossref]

Black, G.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Boon-Brett, L.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Campargue, A.

A. Campargue, S. Kassi, K. Pachucki, and J. Komasa, “The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab initio line list up to 35000 cm-1.,” Phys. Chem. Chem. Phys. 14(2), 802–815 (2012).
[Crossref] [PubMed]

Comerón, A.

R. Agishev, A. Comerón, J. Bach, A. Rodriguez, M. Sicard, J. Riu, and S. Royo, “Lidar with SiPM: Some capabilities and limitations in real environment,” Opt. Laser Technol. 49, 86–90 (2013).
[Crossref]

Delepine-Lesoille, S.

S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Phéron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photonics Technol. Lett. 24(17), 1475–1477 (2012).
[Crossref]

Fernández, J. M.

G. Avila, J. M. Fernández, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228(1), 38–65 (2004).
[Crossref]

Fukuchi, T.

I. Asahi, S. Sugimoto, H. Ninomiya, T. Fukuchi, and T. Shiina, “Remote sensing of hydrogen gas concentration distribution by Raman lidar,” Proc. SPIE 8526, 85260X (2012).

Holzer, W.

Hübert, T.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Kassi, S.

A. Campargue, S. Kassi, K. Pachucki, and J. Komasa, “The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab initio line list up to 35000 cm-1.,” Phys. Chem. Chem. Phys. 14(2), 802–815 (2012).
[Crossref] [PubMed]

Komasa, J.

A. Campargue, S. Kassi, K. Pachucki, and J. Komasa, “The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab initio line list up to 35000 cm-1.,” Phys. Chem. Chem. Phys. 14(2), 802–815 (2012).
[Crossref] [PubMed]

Lablonde, L.

S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Phéron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photonics Technol. Lett. 24(17), 1475–1477 (2012).
[Crossref]

Montero, S.

G. Avila, J. M. Fernández, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228(1), 38–65 (2004).
[Crossref]

Murphy, W. F.

Ninomiya, H.

I. Asahi, S. Sugimoto, H. Ninomiya, T. Fukuchi, and T. Shiina, “Remote sensing of hydrogen gas concentration distribution by Raman lidar,” Proc. SPIE 8526, 85260X (2012).

Pachucki, K.

A. Campargue, S. Kassi, K. Pachucki, and J. Komasa, “The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab initio line list up to 35000 cm-1.,” Phys. Chem. Chem. Phys. 14(2), 802–815 (2012).
[Crossref] [PubMed]

Phéron, X.

S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Phéron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photonics Technol. Lett. 24(17), 1475–1477 (2012).
[Crossref]

Riu, J.

R. Agishev, A. Comerón, J. Bach, A. Rodriguez, M. Sicard, J. Riu, and S. Royo, “Lidar with SiPM: Some capabilities and limitations in real environment,” Opt. Laser Technol. 49, 86–90 (2013).
[Crossref]

Rodriguez, A.

R. Agishev, A. Comerón, J. Bach, A. Rodriguez, M. Sicard, J. Riu, and S. Royo, “Lidar with SiPM: Some capabilities and limitations in real environment,” Opt. Laser Technol. 49, 86–90 (2013).
[Crossref]

Royo, S.

R. Agishev, A. Comerón, J. Bach, A. Rodriguez, M. Sicard, J. Riu, and S. Royo, “Lidar with SiPM: Some capabilities and limitations in real environment,” Opt. Laser Technol. 49, 86–90 (2013).
[Crossref]

Shiina, T.

I. Asahi, S. Sugimoto, H. Ninomiya, T. Fukuchi, and T. Shiina, “Remote sensing of hydrogen gas concentration distribution by Raman lidar,” Proc. SPIE 8526, 85260X (2012).

Sicard, M.

R. Agishev, A. Comerón, J. Bach, A. Rodriguez, M. Sicard, J. Riu, and S. Royo, “Lidar with SiPM: Some capabilities and limitations in real environment,” Opt. Laser Technol. 49, 86–90 (2013).
[Crossref]

Sugimoto, S.

I. Asahi, S. Sugimoto, H. Ninomiya, T. Fukuchi, and T. Shiina, “Remote sensing of hydrogen gas concentration distribution by Raman lidar,” Proc. SPIE 8526, 85260X (2012).

Tejeda, G.

G. Avila, J. M. Fernández, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228(1), 38–65 (2004).
[Crossref]

Appl. Spectrosc. (1)

IEEE Photonics Technol. Lett. (1)

S. Delepine-Lesoille, J. Bertrand, L. Lablonde, and X. Phéron, “Distributed hydrogen sensing with Brillouin scattering in optical fibers,” IEEE Photonics Technol. Lett. 24(17), 1475–1477 (2012).
[Crossref]

J. Mol. Spectrosc. (1)

G. Avila, J. M. Fernández, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228(1), 38–65 (2004).
[Crossref]

Opt. Laser Technol. (1)

R. Agishev, A. Comerón, J. Bach, A. Rodriguez, M. Sicard, J. Riu, and S. Royo, “Lidar with SiPM: Some capabilities and limitations in real environment,” Opt. Laser Technol. 49, 86–90 (2013).
[Crossref]

Phys. Chem. Chem. Phys. (1)

A. Campargue, S. Kassi, K. Pachucki, and J. Komasa, “The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab initio line list up to 35000 cm-1.,” Phys. Chem. Chem. Phys. 14(2), 802–815 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

I. Asahi, S. Sugimoto, H. Ninomiya, T. Fukuchi, and T. Shiina, “Remote sensing of hydrogen gas concentration distribution by Raman lidar,” Proc. SPIE 8526, 85260X (2012).

Sens. Actuators B Chem. (1)

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Other (5)

U. Wandinger, “Raman lidar” in Lidar: Range Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed., Springer Series in Optical Sciences 102, 241–271 (Springer, 2005).

D. A. Long, The Raman Effect (Wiley, 2002), Chap.6.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley & Sons, Inc., 1984).

R. G. Sellar and D. Wang, “Assessment of remote sensing technologies for location of hydrogen and helium leaks,” NAG10–0290, Florida Space Inst. (2000).

A. Liméry, N. Cézard, J. Bertrand, and A. Hauchecorne, “A multi-channel Raman Lidar in photon counting mode using SiPM technology,” in Proceedings of the Imaging and Applied Optics Conference 2016, OSA, paper LTh1G.4 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Vibrational-rotational Raman spectra for an air composition of 78% N2, 20% O2, 1% H2O and 1% H2 at 300K for a 355 nm laser excitation. (b) Zoom on H2O and H2 VRR spectra along with optical transmissions on each channel (transmission product of dichroic mirrors (DMs) and bandpass filters, discussed in Sec.3.1)
Fig. 2
Fig. 2 Experimental configuration for H2 and H2O measurements into a gas generation cell.
Fig. 3
Fig. 3 Profiles comparison for water vapor and hydrogen gas mixing ratio (top and bottom resp.) with 3 different gases in the tube: i) natural atmosphere, no added gas (blue); ii) dry air (green) and iii) 2% of H2 in dry air with its ± 1σ estimated error bars (red).
Fig. 4
Fig. 4 Evolution over time of the LOD of H2 at 500 m in humid (blue) and dry (green) atmosphere (laser energy of 25 mJ and a range resolution of 3m are assumed here).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

| Δ ν ˜ | J S = ν ˜ vib +2 B 1 (2J+3) D 1 [ 3(2J+3)+ (2J+3) 3 ] with J=0,1,2,
| Δ ν ˜ | J O = ν ˜ vib 2 B 1 (2J1)+ D 1 [ 3(2J1)+ (2J1) 3 ] with J=2,3,4,
N m i (z)= K i β π,i (z) γ(z) z² T λ L atm (z) T λ R,i atm (z)
x H 2 (z)=C N t H 2 (z)k N t H 2 O (z) N t N 2 (z) T λ R, N 2 atm (z) T λ R, H 2 atm (z)
σ x H 2 x H 2 = V( N t H 2 )+k²V( N t H 2 O ) ( N t H 2 k N t H 2 O ) 2 + V( N t N 2 ) N t N 2 2

Metrics