Abstract

The camera-based visible light communication (CVLC) exploiting rolling shutter effect (RSE) is a cost-efficient technique that ensures secured data transmission. By controlling the on-off state of the light emitting diode (LED), data can be modulated onto the emitting visible light. The corresponding data recovery can be realized by exploiting the RSE of the mobile-phone camera. In this paper, based on a commercial RGB-LED and a single mobile-phone camera, a wavelength division-multiplexing (WDM) CVLC system exploiting RSE is experimentally demonstrated. For the generation and reception of the WDM signals, a structure of three parallel-independent channels is applied to the system. To mitigate the sampling frequency offset (SFO) effect, a low-complexity sampling reconstruction (SR) scheme is proposed and used in each channel of the system. Experimental results show that with the help of the proposed SR scheme, the system can achieve a theoretical data rate up to 2.38 Kbits/frame, with the bit error rate (BER) lower than 3.8 × 10−3.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Non-flickering 100 m RGB visible light communication transmission based on a CMOS image sensor

Chi-Wai Chow, Ruei-Jie Shiu, Yen-Chun Liu, Yang Liu, and Chien-Hung Yeh
Opt. Express 26(6) 7079-7084 (2018)

CMOS camera based visible light communication (VLC) using grayscale value distribution and machine learning algorithm

Ke-Ling Hsu, Yu-Chun Wu, Yu-Cheng Chuang, Chi-Wai Chow, Yang Liu, Xin-Lan Liao, Kun-Hsien Lin, and Yi-Yuan Chen
Opt. Express 28(2) 2427-2432 (2020)

RGB visible light communication using mobile-phone camera and multi-input multi-output

Kevin Liang, Chi-Wai Chow, and Yang Liu
Opt. Express 24(9) 9383-9388 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34(6), 1533–1544 (2015).
  2. B. Fahs and M. M. Hella, “3 Gb/s OOK VLC link using bandwidth-enhanced CMOS Avalanche photodiode,” in Proc. of OFC (Optical Society of America, 2017), paper W3F.2.
  3. N. Chi, Y. Zhou, J. Shi, Y. Wang, and X. Huang, “Enabling technologies for high speed visible light communication,” in Proc. of OFC (Optical Society of America, 2017), paper Th1E.3.
  4. R. Boubezari, H. Le Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone Camera Based Visible Light Communication,” J. Lightwave Technol. 34(17), 4121–4127 (2016).
  5. S. H. Chen and C. W. Chow, “Color-filter-free spatial visible light communication using RGB-LED and mobile-phone camera,” Opt. Express 22(25), 30713–30718 (2014).
    [PubMed]
  6. K. Liang, C. W. Chow, Y. Liu, and C. H. Yeh, “Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms,” Opt. Express 24(22), 25641–25646 (2016).
    [PubMed]
  7. K. Liang, C. W. Chow, and Y. Liu, “RGB visible light communication using mobile-phone camera and multi-input multi-output,” Opt. Express 24(9), 9383–9388 (2016).
    [PubMed]
  8. J. Shi, J. He, J. He, R. Deng, Y. Wei, F. Long, Y. Cheng, and L. Chen, “Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera,” Opt. Express 25(14), 15905–15912 (2017).
    [PubMed]
  9. P. Ji, H. M. Tsai, C. Wang, and F. Liu, “Vehicular Visible Light Communications with LED Taillight and Rolling Shutter Camera,” in IEEE 79th Vehicular Technology Conference, (2014).
  10. Y. Liu, K. Liang, H. Y. Chen, L. Y. Wei, C. W. Hsu, C. W. Chow, and C. H. Yeh, “Light encryption scheme using light-emitting diode and camera image sensor,” IEEE Photonics J. 8(1), 1–8 (2016).
  11. H. Du, J. Han, X. Jian, T. Jung, C. Bo, Y. Wang, H. Xu, and X. Li, “Martian: Message Broadcast via LED Lights to Heterogeneous Smartphones,” IEEE J. Sel. Areas Comm. 35(5), 1154–1162 (2017).
  12. C. W. Chow, C. Y. Chen, and S. H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23(20), 26080–26085 (2015).
    [PubMed]
  13. C. W. Chen, C. W. Chow, Y. Liu, and C. H. Yeh, “Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications,” Opt. Express 25(20), 24362–24367 (2017).
    [PubMed]
  14. M. Reinecke and K. Hansen, “Advanced 3b4b channel coding for low error-rate optical links at 2.488 Gbit/s,” in Proceedings International Conference on Information Technology: Coding and Computing, (2001).
  15. C. H. Séquin, “Blooming Suppression in Charge Coupled Area Imaging Devices,” Bell Labs Tech. J. 51(8), 1923–1926 (1972).

2017 (3)

2016 (4)

2015 (2)

2014 (1)

1972 (1)

C. H. Séquin, “Blooming Suppression in Charge Coupled Area Imaging Devices,” Bell Labs Tech. J. 51(8), 1923–1926 (1972).

Bo, C.

H. Du, J. Han, X. Jian, T. Jung, C. Bo, Y. Wang, H. Xu, and X. Li, “Martian: Message Broadcast via LED Lights to Heterogeneous Smartphones,” IEEE J. Sel. Areas Comm. 35(5), 1154–1162 (2017).

Boubezari, R.

Bouridane, A.

Chen, C.

Chen, C. W.

Chen, C. Y.

Chen, H. Y.

Y. Liu, K. Liang, H. Y. Chen, L. Y. Wei, C. W. Hsu, C. W. Chow, and C. H. Yeh, “Light encryption scheme using light-emitting diode and camera image sensor,” IEEE Photonics J. 8(1), 1–8 (2016).

Chen, L.

Chen, S. H.

Cheng, Y.

Chow, C. W.

Deng, R.

Du, H.

H. Du, J. Han, X. Jian, T. Jung, C. Bo, Y. Wang, H. Xu, and X. Li, “Martian: Message Broadcast via LED Lights to Heterogeneous Smartphones,” IEEE J. Sel. Areas Comm. 35(5), 1154–1162 (2017).

Ghassemlooy, Z.

Haas, H.

Han, J.

H. Du, J. Han, X. Jian, T. Jung, C. Bo, Y. Wang, H. Xu, and X. Li, “Martian: Message Broadcast via LED Lights to Heterogeneous Smartphones,” IEEE J. Sel. Areas Comm. 35(5), 1154–1162 (2017).

Hansen, K.

M. Reinecke and K. Hansen, “Advanced 3b4b channel coding for low error-rate optical links at 2.488 Gbit/s,” in Proceedings International Conference on Information Technology: Coding and Computing, (2001).

He, J.

Hsu, C. W.

Y. Liu, K. Liang, H. Y. Chen, L. Y. Wei, C. W. Hsu, C. W. Chow, and C. H. Yeh, “Light encryption scheme using light-emitting diode and camera image sensor,” IEEE Photonics J. 8(1), 1–8 (2016).

Ji, P.

P. Ji, H. M. Tsai, C. Wang, and F. Liu, “Vehicular Visible Light Communications with LED Taillight and Rolling Shutter Camera,” in IEEE 79th Vehicular Technology Conference, (2014).

Jian, X.

H. Du, J. Han, X. Jian, T. Jung, C. Bo, Y. Wang, H. Xu, and X. Li, “Martian: Message Broadcast via LED Lights to Heterogeneous Smartphones,” IEEE J. Sel. Areas Comm. 35(5), 1154–1162 (2017).

Jung, T.

H. Du, J. Han, X. Jian, T. Jung, C. Bo, Y. Wang, H. Xu, and X. Li, “Martian: Message Broadcast via LED Lights to Heterogeneous Smartphones,” IEEE J. Sel. Areas Comm. 35(5), 1154–1162 (2017).

Le Minh, H.

Li, X.

H. Du, J. Han, X. Jian, T. Jung, C. Bo, Y. Wang, H. Xu, and X. Li, “Martian: Message Broadcast via LED Lights to Heterogeneous Smartphones,” IEEE J. Sel. Areas Comm. 35(5), 1154–1162 (2017).

Liang, K.

Liu, F.

P. Ji, H. M. Tsai, C. Wang, and F. Liu, “Vehicular Visible Light Communications with LED Taillight and Rolling Shutter Camera,” in IEEE 79th Vehicular Technology Conference, (2014).

Liu, Y.

Long, F.

Reinecke, M.

M. Reinecke and K. Hansen, “Advanced 3b4b channel coding for low error-rate optical links at 2.488 Gbit/s,” in Proceedings International Conference on Information Technology: Coding and Computing, (2001).

Séquin, C. H.

C. H. Séquin, “Blooming Suppression in Charge Coupled Area Imaging Devices,” Bell Labs Tech. J. 51(8), 1923–1926 (1972).

Shi, J.

Tsai, H. M.

P. Ji, H. M. Tsai, C. Wang, and F. Liu, “Vehicular Visible Light Communications with LED Taillight and Rolling Shutter Camera,” in IEEE 79th Vehicular Technology Conference, (2014).

Wang, C.

P. Ji, H. M. Tsai, C. Wang, and F. Liu, “Vehicular Visible Light Communications with LED Taillight and Rolling Shutter Camera,” in IEEE 79th Vehicular Technology Conference, (2014).

Wang, Y.

H. Du, J. Han, X. Jian, T. Jung, C. Bo, Y. Wang, H. Xu, and X. Li, “Martian: Message Broadcast via LED Lights to Heterogeneous Smartphones,” IEEE J. Sel. Areas Comm. 35(5), 1154–1162 (2017).

H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34(6), 1533–1544 (2015).

Wei, L. Y.

Y. Liu, K. Liang, H. Y. Chen, L. Y. Wei, C. W. Hsu, C. W. Chow, and C. H. Yeh, “Light encryption scheme using light-emitting diode and camera image sensor,” IEEE Photonics J. 8(1), 1–8 (2016).

Wei, Y.

Xu, H.

H. Du, J. Han, X. Jian, T. Jung, C. Bo, Y. Wang, H. Xu, and X. Li, “Martian: Message Broadcast via LED Lights to Heterogeneous Smartphones,” IEEE J. Sel. Areas Comm. 35(5), 1154–1162 (2017).

Yeh, C. H.

Yin, L.

Bell Labs Tech. J. (1)

C. H. Séquin, “Blooming Suppression in Charge Coupled Area Imaging Devices,” Bell Labs Tech. J. 51(8), 1923–1926 (1972).

IEEE J. Sel. Areas Comm. (1)

H. Du, J. Han, X. Jian, T. Jung, C. Bo, Y. Wang, H. Xu, and X. Li, “Martian: Message Broadcast via LED Lights to Heterogeneous Smartphones,” IEEE J. Sel. Areas Comm. 35(5), 1154–1162 (2017).

IEEE Photonics J. (1)

Y. Liu, K. Liang, H. Y. Chen, L. Y. Wei, C. W. Hsu, C. W. Chow, and C. H. Yeh, “Light encryption scheme using light-emitting diode and camera image sensor,” IEEE Photonics J. 8(1), 1–8 (2016).

J. Lightwave Technol. (2)

Opt. Express (6)

Other (4)

M. Reinecke and K. Hansen, “Advanced 3b4b channel coding for low error-rate optical links at 2.488 Gbit/s,” in Proceedings International Conference on Information Technology: Coding and Computing, (2001).

B. Fahs and M. M. Hella, “3 Gb/s OOK VLC link using bandwidth-enhanced CMOS Avalanche photodiode,” in Proc. of OFC (Optical Society of America, 2017), paper W3F.2.

N. Chi, Y. Zhou, J. Shi, Y. Wang, and X. Huang, “Enabling technologies for high speed visible light communication,” in Proc. of OFC (Optical Society of America, 2017), paper Th1E.3.

P. Ji, H. M. Tsai, C. Wang, and F. Liu, “Vehicular Visible Light Communications with LED Taillight and Rolling Shutter Camera,” in IEEE 79th Vehicular Technology Conference, (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The experimental setup of the proposed CVLC system; (b) the flowchart of the proposed WDM transmission scheme.
Fig. 2
Fig. 2 The principle of the WDM image signal generation based on the applied scheme.
Fig. 3
Fig. 3 Sampling offset between the inaccurate recovered clock and the transmitter clock.
Fig. 4
Fig. 4 The detailed experimental results when sampling rate is set as 25 KHz: (a) the captured HDR photo; (b) extracted red/green/blue pixels of the captured photo; (c) the received signal in R channel: the grayscale value of one row of the extracted red pixels; (d) the signal after preprocessed; (e) the signal after normalized; (f) one packet signal after synchronization; (g) the logic signal of one packet after bit decision and the original transmitted logic signal.
Fig. 5
Fig. 5 BER versus sampling rate and data rate versus sampling rate. CR: clock recovery. SR: sampling reconstruction.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R [ i + n N 1 ] = m = 0 M S [ n m ] h [ i + m N 1 ] , i = 0 , 1 , ... , N 1 1
D [ i ] = { 1 , 1 / N 2 ( k = i N 2 i N 2 + N 2 1 R [ k ] ) > T h 0 , 1 / N 2 ( k = i N 2 i N 2 + N 2 1 R [ k ] ) T h i = 0 , 1 , ... , N 1 1

Metrics