Abstract

Data processing of multi-wavelength pyrometer (MWP) is a difficult problem because unknown emissivity. So far some solutions developed generally assumed particular mathematical relations for emissivity versus wavelength or emissivity versus temperature. Due to the deviation between the hypothesis and actual situation, the inversion results can be seriously affected. So directly data processing algorithm of MWP that does not need to assume the spectral emissivity model in advance is main aim of the study. Two new data processing algorithms of MWP, Gradient Projection (GP) algorithm and Internal Penalty Function (IPF) algorithm, each of which does not require to fix emissivity model in advance, are proposed. The novelty core idea is that data processing problem of MWP is transformed into constraint optimization problem, then it can be solved by GP or IPF algorithms. By comparison of simulation results for some typical spectral emissivity models, it is found that IPF algorithm is superior to GP algorithm in terms of accuracy and efficiency. Rocket nozzle temperature experiment results show that true temperature inversion results from IPF algorithm agree well with the theoretical design temperature as well. So the proposed combination IPF algorithm with MWP is expected to be a directly data processing algorithm to clear up the unknown emissivity obstacle for MWP.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generalized inverse matrix-exterior penalty function (GIM-EPF) algorithm for data processing of multi-wavelength pyrometer (MWP)

Jiafeng Liang, Li Dai, Sheng Chen, Weihong Gu, Bo Peng, Nannan Jiang, Wenlong Song, and Jian Xing
Opt. Express 26(20) 25706-25720 (2018)

Emissivity range constraints algorithm for multi-wavelength pyrometer (MWP)

Jian Xing, R.S. Rana, and Weihong Gu
Opt. Express 24(17) 19185-19194 (2016)

New method to estimate surface upwelling long-wave radiation from MODIS cloud-free data

Chunlei Wang, Bo-Hui Tang, Xing Huo, and Zhao-Liang Li
Opt. Express 25(12) A574-A588 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Matsumoto, T. Koizumi, Y. Kawakami, K. Okamoto, and M. Tomita, “Perfect blackbody radiation from a graphene nanostructure with application to high-temperature spectral emissivity measurements,” Opt. Express 21(25), 30964–30974 (2013).
    [PubMed]
  2. B. Bouvry, G. Cheymol, L. Ramiandrisoa, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings,” Infrared Phys. Technol. 83, 78–87 (2017).
  3. M. Liang, B. Sun, X. Sun, and J. Xie, “Development of a new fiber-optic multi-target multispectral pyrometer for achievable true temperature measurement of the solid rocket plume,” Measurement 95, 239–245 (2017).
  4. E. Floyd, E. T. Gumbrell, J. Fyrth, J. D. Luis, J. W. Skidmore, S. Patankar, S. Giltrap, and R. Smith, “A high spatio-temporal resolution optical pyrometer at the ORION laser facility,” Rev. Sci. Instrum. 87(11), E546 (2016).
    [PubMed]
  5. T. Fu, J. Liu, J. Tang, M. Duan, H. Zhao, and C. Shi, “Temperature measurements of high-temperature semi-transparent infrared material using multi-wavelength pyrometry,” Infrared Phys. Technol. 66(9), 49–55 (2014).
  6. P. Hagqvist, F. Sikström, A. Christiansson, and B. Lennartson, “Emissivity compensated spectral pyrometry for varying emissivity metallic measurands,” Meas. Sci. Technol. 25(2), 405–412 (2014).
  7. D. L. Reuss, “Temperature measurements in a radially symmetric flame using holographic interferometry,” Combust. Flame 49(1), 207–219 (1983).
  8. X. Xiao, C. W. Choi, and I. K. Puri, “Temperature measurements in steady two-dimensional partially premixed flames using laser interferometric holography,” Combust. Flame 120(3), 318–332 (2000).
  9. R. Doleček, P. Psota, V. Lédl, T. Vít, J. Václavík, and V. Kopecký, “General temperature field measurement by digital holography,” Appl. Opt. 52(1), A319–A325 (2013).
    [PubMed]
  10. M. Kumar and C. Shakher, “Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element,” Opt. Lasers Eng. 73(7), 33–39 (2015).
  11. P. Coates, “The least-square approach to multi-wavelength pyrometry,” High Temp. High Press. 20(4), 433–441 (1988).
  12. M. A. Khan, C. Allemande, and T. W. Eagar, “Noncontact temperature measurement. I. Interpolation based techniques,” Rev. Sci. Instrum. 62(2), 392–402 (1991).
  13. G. Gathers, “Analysis of multiwavelength pyrometry using nonlinear chi-square fits and Monte Carlo methods,” Int. J. Thermophys. 13(3), 59–554 (1992).
  14. A. Bendada and M. Lamontagne, “A new infrared pyrometer for polymer temperature measurement during extrusion moulding,” Infrared Phys. Technol. 46(1–2), 11–15 (2004).
  15. F. Benedic, P. Bruno, and P. Pigeat, “Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling,” Appl. Phys. Lett. 90(13), 134104 (2007).
  16. H. Madura, M. Kastek, and T. Piatkowski, “Automatic compensation of emissivity in three-wavelength pyrometers,” Infrared Phys. Technol. 51(1), 1–8 (2007).
  17. A. Seifter and D. C. Swift, “Pyrometric measurement of the temperature of shocked molybdenum,” Phys. Rev. B 77(13), 761–768 (2007).
  18. T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of a diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132(5), 689–694 (2010).
  19. S. Liu, P. Farahmand, and R. Kovacevic, “Optical monitoring of high power direct diode laser cladding,” Opt. Laser Technol. 64(4), 363–376 (2014).
  20. T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
    [PubMed]
  21. D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).
  22. V. Scharfa and A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77(19), 2955–2957 (2000).
  23. T. Fu, J. Liu, and A. Zong, “Radiation temperature measurement method for semitransparent materials using one-channel infrared pyrometer,” Appl. Opt. 53(29), 6830–6839 (2014).
    [PubMed]
  24. D. Svet and S. Sergeev, “Triple-wavelength pyrometer that measures true temperature,” Meas. Tech. 54(11), 1273–1275 (2012).
  25. X. G. Sun, G. B. Yuan, J. M. Dai, and Z. X. Chu, “Processing method of multi-wavelength pyrometer data for continuous temperature measurements,” Int. J. Thermophys. 26(4), 1255–1261 (2005).
  26. J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).
  27. J. Xing, R. S. Rana, and W. Gu, “Emissivity range constraints algorithm for multi-wavelength pyrometer (MWP),” Opt. Express 24(17), 19185–19194 (2016).
    [PubMed]

2017 (2)

B. Bouvry, G. Cheymol, L. Ramiandrisoa, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings,” Infrared Phys. Technol. 83, 78–87 (2017).

M. Liang, B. Sun, X. Sun, and J. Xie, “Development of a new fiber-optic multi-target multispectral pyrometer for achievable true temperature measurement of the solid rocket plume,” Measurement 95, 239–245 (2017).

2016 (2)

E. Floyd, E. T. Gumbrell, J. Fyrth, J. D. Luis, J. W. Skidmore, S. Patankar, S. Giltrap, and R. Smith, “A high spatio-temporal resolution optical pyrometer at the ORION laser facility,” Rev. Sci. Instrum. 87(11), E546 (2016).
[PubMed]

J. Xing, R. S. Rana, and W. Gu, “Emissivity range constraints algorithm for multi-wavelength pyrometer (MWP),” Opt. Express 24(17), 19185–19194 (2016).
[PubMed]

2015 (2)

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).

M. Kumar and C. Shakher, “Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element,” Opt. Lasers Eng. 73(7), 33–39 (2015).

2014 (4)

T. Fu, J. Liu, J. Tang, M. Duan, H. Zhao, and C. Shi, “Temperature measurements of high-temperature semi-transparent infrared material using multi-wavelength pyrometry,” Infrared Phys. Technol. 66(9), 49–55 (2014).

P. Hagqvist, F. Sikström, A. Christiansson, and B. Lennartson, “Emissivity compensated spectral pyrometry for varying emissivity metallic measurands,” Meas. Sci. Technol. 25(2), 405–412 (2014).

S. Liu, P. Farahmand, and R. Kovacevic, “Optical monitoring of high power direct diode laser cladding,” Opt. Laser Technol. 64(4), 363–376 (2014).

T. Fu, J. Liu, and A. Zong, “Radiation temperature measurement method for semitransparent materials using one-channel infrared pyrometer,” Appl. Opt. 53(29), 6830–6839 (2014).
[PubMed]

2013 (2)

2012 (1)

D. Svet and S. Sergeev, “Triple-wavelength pyrometer that measures true temperature,” Meas. Tech. 54(11), 1273–1275 (2012).

2010 (2)

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of a diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132(5), 689–694 (2010).

T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
[PubMed]

2007 (3)

F. Benedic, P. Bruno, and P. Pigeat, “Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling,” Appl. Phys. Lett. 90(13), 134104 (2007).

H. Madura, M. Kastek, and T. Piatkowski, “Automatic compensation of emissivity in three-wavelength pyrometers,” Infrared Phys. Technol. 51(1), 1–8 (2007).

A. Seifter and D. C. Swift, “Pyrometric measurement of the temperature of shocked molybdenum,” Phys. Rev. B 77(13), 761–768 (2007).

2005 (1)

X. G. Sun, G. B. Yuan, J. M. Dai, and Z. X. Chu, “Processing method of multi-wavelength pyrometer data for continuous temperature measurements,” Int. J. Thermophys. 26(4), 1255–1261 (2005).

2004 (1)

A. Bendada and M. Lamontagne, “A new infrared pyrometer for polymer temperature measurement during extrusion moulding,” Infrared Phys. Technol. 46(1–2), 11–15 (2004).

2001 (1)

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).

2000 (2)

V. Scharfa and A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77(19), 2955–2957 (2000).

X. Xiao, C. W. Choi, and I. K. Puri, “Temperature measurements in steady two-dimensional partially premixed flames using laser interferometric holography,” Combust. Flame 120(3), 318–332 (2000).

1992 (1)

G. Gathers, “Analysis of multiwavelength pyrometry using nonlinear chi-square fits and Monte Carlo methods,” Int. J. Thermophys. 13(3), 59–554 (1992).

1991 (1)

M. A. Khan, C. Allemande, and T. W. Eagar, “Noncontact temperature measurement. I. Interpolation based techniques,” Rev. Sci. Instrum. 62(2), 392–402 (1991).

1988 (1)

P. Coates, “The least-square approach to multi-wavelength pyrometry,” High Temp. High Press. 20(4), 433–441 (1988).

1983 (1)

D. L. Reuss, “Temperature measurements in a radially symmetric flame using holographic interferometry,” Combust. Flame 49(1), 207–219 (1983).

Allemande, C.

M. A. Khan, C. Allemande, and T. W. Eagar, “Noncontact temperature measurement. I. Interpolation based techniques,” Rev. Sci. Instrum. 62(2), 392–402 (1991).

Bendada, A.

A. Bendada and M. Lamontagne, “A new infrared pyrometer for polymer temperature measurement during extrusion moulding,” Infrared Phys. Technol. 46(1–2), 11–15 (2004).

Benedic, F.

F. Benedic, P. Bruno, and P. Pigeat, “Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling,” Appl. Phys. Lett. 90(13), 134104 (2007).

Bouvry, B.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings,” Infrared Phys. Technol. 83, 78–87 (2017).

Bruno, P.

F. Benedic, P. Bruno, and P. Pigeat, “Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling,” Appl. Phys. Lett. 90(13), 134104 (2007).

Cheng, X.

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of a diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132(5), 689–694 (2010).

Cheymol, G.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings,” Infrared Phys. Technol. 83, 78–87 (2017).

Choi, C. W.

X. Xiao, C. W. Choi, and I. K. Puri, “Temperature measurements in steady two-dimensional partially premixed flames using laser interferometric holography,” Combust. Flame 120(3), 318–332 (2000).

Christiansson, A.

P. Hagqvist, F. Sikström, A. Christiansson, and B. Lennartson, “Emissivity compensated spectral pyrometry for varying emissivity metallic measurands,” Meas. Sci. Technol. 25(2), 405–412 (2014).

Chu, Z. X.

X. G. Sun, G. B. Yuan, J. M. Dai, and Z. X. Chu, “Processing method of multi-wavelength pyrometer data for continuous temperature measurements,” Int. J. Thermophys. 26(4), 1255–1261 (2005).

Coates, P.

P. Coates, “The least-square approach to multi-wavelength pyrometry,” High Temp. High Press. 20(4), 433–441 (1988).

Cui, S.

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).

Dai, J. M.

X. G. Sun, G. B. Yuan, J. M. Dai, and Z. X. Chu, “Processing method of multi-wavelength pyrometer data for continuous temperature measurements,” Int. J. Thermophys. 26(4), 1255–1261 (2005).

Destouches, C.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings,” Infrared Phys. Technol. 83, 78–87 (2017).

Dolecek, R.

Duan, M.

T. Fu, J. Liu, J. Tang, M. Duan, H. Zhao, and C. Shi, “Temperature measurements of high-temperature semi-transparent infrared material using multi-wavelength pyrometry,” Infrared Phys. Technol. 66(9), 49–55 (2014).

Duvaut, T.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings,” Infrared Phys. Technol. 83, 78–87 (2017).

Eagar, T. W.

M. A. Khan, C. Allemande, and T. W. Eagar, “Noncontact temperature measurement. I. Interpolation based techniques,” Rev. Sci. Instrum. 62(2), 392–402 (1991).

Farahmand, P.

S. Liu, P. Farahmand, and R. Kovacevic, “Optical monitoring of high power direct diode laser cladding,” Opt. Laser Technol. 64(4), 363–376 (2014).

Ferry, L.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings,” Infrared Phys. Technol. 83, 78–87 (2017).

Floyd, E.

E. Floyd, E. T. Gumbrell, J. Fyrth, J. D. Luis, J. W. Skidmore, S. Patankar, S. Giltrap, and R. Smith, “A high spatio-temporal resolution optical pyrometer at the ORION laser facility,” Rev. Sci. Instrum. 87(11), E546 (2016).
[PubMed]

Fralick, G.

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).

Fu, T.

T. Fu, J. Liu, and A. Zong, “Radiation temperature measurement method for semitransparent materials using one-channel infrared pyrometer,” Appl. Opt. 53(29), 6830–6839 (2014).
[PubMed]

T. Fu, J. Liu, J. Tang, M. Duan, H. Zhao, and C. Shi, “Temperature measurements of high-temperature semi-transparent infrared material using multi-wavelength pyrometry,” Infrared Phys. Technol. 66(9), 49–55 (2014).

T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
[PubMed]

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of a diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132(5), 689–694 (2010).

Fyrth, J.

E. Floyd, E. T. Gumbrell, J. Fyrth, J. D. Luis, J. W. Skidmore, S. Patankar, S. Giltrap, and R. Smith, “A high spatio-temporal resolution optical pyrometer at the ORION laser facility,” Rev. Sci. Instrum. 87(11), E546 (2016).
[PubMed]

Gallou, C.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings,” Infrared Phys. Technol. 83, 78–87 (2017).

Gathers, G.

G. Gathers, “Analysis of multiwavelength pyrometry using nonlinear chi-square fits and Monte Carlo methods,” Int. J. Thermophys. 13(3), 59–554 (1992).

Giltrap, S.

E. Floyd, E. T. Gumbrell, J. Fyrth, J. D. Luis, J. W. Skidmore, S. Patankar, S. Giltrap, and R. Smith, “A high spatio-temporal resolution optical pyrometer at the ORION laser facility,” Rev. Sci. Instrum. 87(11), E546 (2016).
[PubMed]

Gonnier, C.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings,” Infrared Phys. Technol. 83, 78–87 (2017).

Gu, W.

Gumbrell, E. T.

E. Floyd, E. T. Gumbrell, J. Fyrth, J. D. Luis, J. W. Skidmore, S. Patankar, S. Giltrap, and R. Smith, “A high spatio-temporal resolution optical pyrometer at the ORION laser facility,” Rev. Sci. Instrum. 87(11), E546 (2016).
[PubMed]

Hagqvist, P.

P. Hagqvist, F. Sikström, A. Christiansson, and B. Lennartson, “Emissivity compensated spectral pyrometry for varying emissivity metallic measurands,” Meas. Sci. Technol. 25(2), 405–412 (2014).

Horny, N.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings,” Infrared Phys. Technol. 83, 78–87 (2017).

Kastek, M.

H. Madura, M. Kastek, and T. Piatkowski, “Automatic compensation of emissivity in three-wavelength pyrometers,” Infrared Phys. Technol. 51(1), 1–8 (2007).

Katzir, A.

V. Scharfa and A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77(19), 2955–2957 (2000).

Kawakami, Y.

Khan, M. A.

M. A. Khan, C. Allemande, and T. W. Eagar, “Noncontact temperature measurement. I. Interpolation based techniques,” Rev. Sci. Instrum. 62(2), 392–402 (1991).

Koizumi, T.

Kopecký, V.

Kovacevic, R.

S. Liu, P. Farahmand, and R. Kovacevic, “Optical monitoring of high power direct diode laser cladding,” Opt. Laser Technol. 64(4), 363–376 (2014).

Kumar, M.

M. Kumar and C. Shakher, “Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element,” Opt. Lasers Eng. 73(7), 33–39 (2015).

Lamontagne, M.

A. Bendada and M. Lamontagne, “A new infrared pyrometer for polymer temperature measurement during extrusion moulding,” Infrared Phys. Technol. 46(1–2), 11–15 (2004).

Lédl, V.

Lennartson, B.

P. Hagqvist, F. Sikström, A. Christiansson, and B. Lennartson, “Emissivity compensated spectral pyrometry for varying emissivity metallic measurands,” Meas. Sci. Technol. 25(2), 405–412 (2014).

Liang, M.

M. Liang, B. Sun, X. Sun, and J. Xie, “Development of a new fiber-optic multi-target multispectral pyrometer for achievable true temperature measurement of the solid rocket plume,” Measurement 95, 239–245 (2017).

Liu, J.

T. Fu, J. Liu, J. Tang, M. Duan, H. Zhao, and C. Shi, “Temperature measurements of high-temperature semi-transparent infrared material using multi-wavelength pyrometry,” Infrared Phys. Technol. 66(9), 49–55 (2014).

T. Fu, J. Liu, and A. Zong, “Radiation temperature measurement method for semitransparent materials using one-channel infrared pyrometer,” Appl. Opt. 53(29), 6830–6839 (2014).
[PubMed]

Liu, S.

S. Liu, P. Farahmand, and R. Kovacevic, “Optical monitoring of high power direct diode laser cladding,” Opt. Laser Technol. 64(4), 363–376 (2014).

Luis, J. D.

E. Floyd, E. T. Gumbrell, J. Fyrth, J. D. Luis, J. W. Skidmore, S. Patankar, S. Giltrap, and R. Smith, “A high spatio-temporal resolution optical pyrometer at the ORION laser facility,” Rev. Sci. Instrum. 87(11), E546 (2016).
[PubMed]

Madura, H.

H. Madura, M. Kastek, and T. Piatkowski, “Automatic compensation of emissivity in three-wavelength pyrometers,” Infrared Phys. Technol. 51(1), 1–8 (2007).

Maskrot, H.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings,” Infrared Phys. Technol. 83, 78–87 (2017).

Matsumoto, T.

Ng, D.

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).

Okamoto, K.

Patankar, S.

E. Floyd, E. T. Gumbrell, J. Fyrth, J. D. Luis, J. W. Skidmore, S. Patankar, S. Giltrap, and R. Smith, “A high spatio-temporal resolution optical pyrometer at the ORION laser facility,” Rev. Sci. Instrum. 87(11), E546 (2016).
[PubMed]

Piatkowski, T.

H. Madura, M. Kastek, and T. Piatkowski, “Automatic compensation of emissivity in three-wavelength pyrometers,” Infrared Phys. Technol. 51(1), 1–8 (2007).

Pigeat, P.

F. Benedic, P. Bruno, and P. Pigeat, “Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling,” Appl. Phys. Lett. 90(13), 134104 (2007).

Psota, P.

Puri, I. K.

X. Xiao, C. W. Choi, and I. K. Puri, “Temperature measurements in steady two-dimensional partially premixed flames using laser interferometric holography,” Combust. Flame 120(3), 318–332 (2000).

Qi, W.

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).

Ramiandrisoa, L.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings,” Infrared Phys. Technol. 83, 78–87 (2017).

Rana, R. S.

Reuss, D. L.

D. L. Reuss, “Temperature measurements in a radially symmetric flame using holographic interferometry,” Combust. Flame 49(1), 207–219 (1983).

Scharfa, V.

V. Scharfa and A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77(19), 2955–2957 (2000).

Seifter, A.

A. Seifter and D. C. Swift, “Pyrometric measurement of the temperature of shocked molybdenum,” Phys. Rev. B 77(13), 761–768 (2007).

Sergeev, S.

D. Svet and S. Sergeev, “Triple-wavelength pyrometer that measures true temperature,” Meas. Tech. 54(11), 1273–1275 (2012).

Shakher, C.

M. Kumar and C. Shakher, “Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element,” Opt. Lasers Eng. 73(7), 33–39 (2015).

Shi, C.

T. Fu, J. Liu, J. Tang, M. Duan, H. Zhao, and C. Shi, “Temperature measurements of high-temperature semi-transparent infrared material using multi-wavelength pyrometry,” Infrared Phys. Technol. 66(9), 49–55 (2014).

T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
[PubMed]

Sikström, F.

P. Hagqvist, F. Sikström, A. Christiansson, and B. Lennartson, “Emissivity compensated spectral pyrometry for varying emissivity metallic measurands,” Meas. Sci. Technol. 25(2), 405–412 (2014).

Skidmore, J. W.

E. Floyd, E. T. Gumbrell, J. Fyrth, J. D. Luis, J. W. Skidmore, S. Patankar, S. Giltrap, and R. Smith, “A high spatio-temporal resolution optical pyrometer at the ORION laser facility,” Rev. Sci. Instrum. 87(11), E546 (2016).
[PubMed]

Smith, R.

E. Floyd, E. T. Gumbrell, J. Fyrth, J. D. Luis, J. W. Skidmore, S. Patankar, S. Giltrap, and R. Smith, “A high spatio-temporal resolution optical pyrometer at the ORION laser facility,” Rev. Sci. Instrum. 87(11), E546 (2016).
[PubMed]

Sun, B.

M. Liang, B. Sun, X. Sun, and J. Xie, “Development of a new fiber-optic multi-target multispectral pyrometer for achievable true temperature measurement of the solid rocket plume,” Measurement 95, 239–245 (2017).

Sun, W.

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).

Sun, X.

M. Liang, B. Sun, X. Sun, and J. Xie, “Development of a new fiber-optic multi-target multispectral pyrometer for achievable true temperature measurement of the solid rocket plume,” Measurement 95, 239–245 (2017).

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).

Sun, X. G.

X. G. Sun, G. B. Yuan, J. M. Dai, and Z. X. Chu, “Processing method of multi-wavelength pyrometer data for continuous temperature measurements,” Int. J. Thermophys. 26(4), 1255–1261 (2005).

Svet, D.

D. Svet and S. Sergeev, “Triple-wavelength pyrometer that measures true temperature,” Meas. Tech. 54(11), 1273–1275 (2012).

Swift, D. C.

A. Seifter and D. C. Swift, “Pyrometric measurement of the temperature of shocked molybdenum,” Phys. Rev. B 77(13), 761–768 (2007).

Tang, J.

T. Fu, J. Liu, J. Tang, M. Duan, H. Zhao, and C. Shi, “Temperature measurements of high-temperature semi-transparent infrared material using multi-wavelength pyrometry,” Infrared Phys. Technol. 66(9), 49–55 (2014).

Tomita, M.

Václavík, J.

Vít, T.

Wang, Z.

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of a diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132(5), 689–694 (2010).

Xiao, X.

X. Xiao, C. W. Choi, and I. K. Puri, “Temperature measurements in steady two-dimensional partially premixed flames using laser interferometric holography,” Combust. Flame 120(3), 318–332 (2000).

Xie, J.

M. Liang, B. Sun, X. Sun, and J. Xie, “Development of a new fiber-optic multi-target multispectral pyrometer for achievable true temperature measurement of the solid rocket plume,” Measurement 95, 239–245 (2017).

Xing, J.

J. Xing, R. S. Rana, and W. Gu, “Emissivity range constraints algorithm for multi-wavelength pyrometer (MWP),” Opt. Express 24(17), 19185–19194 (2016).
[PubMed]

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).

Yuan, G. B.

X. G. Sun, G. B. Yuan, J. M. Dai, and Z. X. Chu, “Processing method of multi-wavelength pyrometer data for continuous temperature measurements,” Int. J. Thermophys. 26(4), 1255–1261 (2005).

Zeng, J.

T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
[PubMed]

Zhang, F.

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).

Zhao, H.

T. Fu, J. Liu, J. Tang, M. Duan, H. Zhao, and C. Shi, “Temperature measurements of high-temperature semi-transparent infrared material using multi-wavelength pyrometry,” Infrared Phys. Technol. 66(9), 49–55 (2014).

T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
[PubMed]

Zhong, M.

T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
[PubMed]

Zong, A.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

F. Benedic, P. Bruno, and P. Pigeat, “Real-time optical monitoring of thin film growth by in situ pyrometry through multiple layers and effective media approximation modeling,” Appl. Phys. Lett. 90(13), 134104 (2007).

V. Scharfa and A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77(19), 2955–2957 (2000).

Combust. Flame (2)

D. L. Reuss, “Temperature measurements in a radially symmetric flame using holographic interferometry,” Combust. Flame 49(1), 207–219 (1983).

X. Xiao, C. W. Choi, and I. K. Puri, “Temperature measurements in steady two-dimensional partially premixed flames using laser interferometric holography,” Combust. Flame 120(3), 318–332 (2000).

High Temp. High Press. (1)

P. Coates, “The least-square approach to multi-wavelength pyrometry,” High Temp. High Press. 20(4), 433–441 (1988).

Infrared Phys. Technol. (4)

B. Bouvry, G. Cheymol, L. Ramiandrisoa, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings,” Infrared Phys. Technol. 83, 78–87 (2017).

T. Fu, J. Liu, J. Tang, M. Duan, H. Zhao, and C. Shi, “Temperature measurements of high-temperature semi-transparent infrared material using multi-wavelength pyrometry,” Infrared Phys. Technol. 66(9), 49–55 (2014).

A. Bendada and M. Lamontagne, “A new infrared pyrometer for polymer temperature measurement during extrusion moulding,” Infrared Phys. Technol. 46(1–2), 11–15 (2004).

H. Madura, M. Kastek, and T. Piatkowski, “Automatic compensation of emissivity in three-wavelength pyrometers,” Infrared Phys. Technol. 51(1), 1–8 (2007).

Int. J. Thermophys. (2)

X. G. Sun, G. B. Yuan, J. M. Dai, and Z. X. Chu, “Processing method of multi-wavelength pyrometer data for continuous temperature measurements,” Int. J. Thermophys. 26(4), 1255–1261 (2005).

G. Gathers, “Analysis of multiwavelength pyrometry using nonlinear chi-square fits and Monte Carlo methods,” Int. J. Thermophys. 13(3), 59–554 (1992).

J. Heat Transfer (1)

T. Fu, Z. Wang, and X. Cheng, “Temperature measurements of a diesel fuel combustion with multicolor pyrometry,” J. Heat Transfer 132(5), 689–694 (2010).

Meas. Sci. Technol. (1)

P. Hagqvist, F. Sikström, A. Christiansson, and B. Lennartson, “Emissivity compensated spectral pyrometry for varying emissivity metallic measurands,” Meas. Sci. Technol. 25(2), 405–412 (2014).

Meas. Tech. (1)

D. Svet and S. Sergeev, “Triple-wavelength pyrometer that measures true temperature,” Meas. Tech. 54(11), 1273–1275 (2012).

Measurement (2)

J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, and W. Sun, “A data processing algorithm for multi-wavelength pyrometry-which does not need to assume the emissivity model in advance,” Measurement 67(5), 92–98 (2015).

M. Liang, B. Sun, X. Sun, and J. Xie, “Development of a new fiber-optic multi-target multispectral pyrometer for achievable true temperature measurement of the solid rocket plume,” Measurement 95, 239–245 (2017).

Opt. Express (2)

Opt. Laser Technol. (1)

S. Liu, P. Farahmand, and R. Kovacevic, “Optical monitoring of high power direct diode laser cladding,” Opt. Laser Technol. 64(4), 363–376 (2014).

Opt. Lasers Eng. (1)

M. Kumar and C. Shakher, “Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element,” Opt. Lasers Eng. 73(7), 33–39 (2015).

Phys. Rev. B (1)

A. Seifter and D. C. Swift, “Pyrometric measurement of the temperature of shocked molybdenum,” Phys. Rev. B 77(13), 761–768 (2007).

Rev. Sci. Instrum. (4)

E. Floyd, E. T. Gumbrell, J. Fyrth, J. D. Luis, J. W. Skidmore, S. Patankar, S. Giltrap, and R. Smith, “A high spatio-temporal resolution optical pyrometer at the ORION laser facility,” Rev. Sci. Instrum. 87(11), E546 (2016).
[PubMed]

T. Fu, H. Zhao, J. Zeng, M. Zhong, and C. Shi, “Two-color optical charge-coupled-device-based pyrometer using a two-peak filter,” Rev. Sci. Instrum. 81(12), 124903 (2010).
[PubMed]

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72(2), 1522–1530 (2001).

M. A. Khan, C. Allemande, and T. W. Eagar, “Noncontact temperature measurement. I. Interpolation based techniques,” Rev. Sci. Instrum. 62(2), 392–402 (1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Comparison of emissivity at different v
Fig. 2
Fig. 2 Comparison of emissivity (‘set’ represents true value, ‘minRosen’ represents GP, ‘minNF’ represents IPF, below figures are the same)
Fig. 3
Fig. 3 Comparison of temperature relative error
Fig. 4
Fig. 4 Comparison of running time
Fig. 5
Fig. 5 Comparison of minf value

Tables (11)

Tables Icon

Table 1 Target Emissivity Model

Tables Icon

Table 2 Temperature Simulation Results by GP Algorithm (unit: K)

Tables Icon

Table 3 Temperature Simulation Results by GP Algorithm (5% Random Noise)

Tables Icon

Table 4 Comparison of Temperature Relative Error (%) with v

Tables Icon

Table 5 Comparison of minf with v

Tables Icon

Table 6 Comparison of Time (unit s)

Tables Icon

Table 7 Temperature Simulation Results by IPF Algorithm

Tables Icon

Table 8 Temperature Simulation Results by IPF Algorithm (5% Random Noise)

Tables Icon

Table 9 Effective Wavelength of the Pyrometer and Output at the Reference Temperature( = 2252 K)

Tables Icon

Table 10 Practical Data Performed on a Solid Propellant Rocket Plume

Tables Icon

Table 11 Temperature Simulation Results by IPF algorithm (unit: K)

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

V i = A λ i ε ( λ i , T ) * 1 λ i 5 ( e C 2 / λ i T 1 ) ( i = 1 , 2 , ... , n )
V i = A λ i λ i 5 e C 2 λ i T , [ ε ( λ i , T ) = 1.0 f o r b l a c k b o d y ]
V i V i = ε ( λ i , T ) e C 2 λ i T e C 2 λ i T
i = 1 n [ T i E ( T i ) ] 2 = 0
min f ( x ) = i = 1 n [ T i E ( T i ) ] 2 0
ln ( V i V i ) C 2 λ i T = C 2 λ i T + ln ε ( λ i , T )
T i = C 2 λ i * 1 x i + D i
E ( T i ) = 1 n i = 1 n C 2 λ i * 1 x i + D i
min f ( x )= i = 1 n [ C 2 λ i * 1 x i + D i 1 n i = 1 n C 2 λ i * 1 x i + D i ] 2
{ min f ( x ) = i = 1 n [ C 2 λ i 1 x i + D i 1 n i = 1 n C 2 λ i 1 x i + D i ] 2 x i < 0
{ min f ( x ) A x b
A = [ 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ]
x i = [ x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 ] T
b = [ 0.1 2.3 0.1 2.3 0.1 2.3 0.1 2.3 ] T
{ min f ( x ) g i ( x ) 0 , i = 1 , 2 , , k
A = [ 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ]
x i = [ x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 ] T
b = [ 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 ] T
u = | f ( x 0 ) j = 1 p 1 g j ( x 0 ) |

Metrics