Abstract

An integral imaging microscopy (IIM) system with improved depth-of-field (DoF) using a custom-designed bifocal polarization-dependent liquid-crystalline polymer micro lens array (LCP-MLA) is proposed. The implemented MLA has improved electro-optical properties such as a small focal ratio, high fill factor, low driving voltage, and fast switching speed, utilizing a well-aligned reactive mesogen on the imprinted reverse shape of the lens and a polarization switching layer. A bifocal MLA switches its focal length according to the polarization angle and acquires different DoF information of the specimen. After two elemental image arrays are captured, the depth-slices are reconstructed and combined to provide a widened DoF. The fabricated bifocal MLA consists of two identical polarization-dependent LCP-MLAs with 1.6 mm and f/16 focal ratio. Our experimental results confirmed that the proposed system improves the DoF of IIM without the need for mechanical manipulation.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced depth-of-field of an integral imaging microscope using a bifocal holographic optical element-micro lens array

Ki-Chul Kwon, Young-Tae Lim, Chang-Won Shin, Munkh-Uchral Erdenebat, Jae-Moon Hwang, and Nam Kim
Opt. Lett. 42(16) 3209-3212 (2017)

Integral imaging microscopy with enhanced depth-of-field using a spatial multiplexing

Ki-Chul Kwon, Munkh-Uchral Erdenebat, Md. Ashraful Alam, Young-Tae Lim, Kwang Gi Kim, and Nam Kim
Opt. Express 24(3) 2072-2083 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. B. Murphy and M. W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging, 2nd ed. (Wiley-Blackwell, 2012).
  2. J.-S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29(11), 1230–1232 (2004).
    [PubMed]
  3. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” Proc. SIGGRAPH06, 924–934 (2006).
  4. N. Kim and M.-U. Erdenebat, 3-D Integral Photography (SPIE Press, 2016).
  5. Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009).
    [PubMed]
  6. K.-C. Kwon, J.-S. Jeong, M.-U. Erdenebat, Y.-T. Lim, K.-H. Yoo, and N. Kim, “Real-time interactive display for integral imaging microscopy,” Appl. Opt. 53(20), 4450–4459 (2014).
    [PubMed]
  7. Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Analysis on enhanced depth of field for integral imaging microscope,” Opt. Express 20(21), 23480–23488 (2012).
    [PubMed]
  8. S.-W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42(20), 4186–4195 (2003).
    [PubMed]
  9. J.-S. Jang and B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28(20), 1924–1926 (2003).
    [PubMed]
  10. K.-C. Kwon, M.-U. Erdenebat, M. A. Alam, Y.-T. Lim, K. G. Kim, and N. Kim, “Integral imaging microscopy with enhanced depth-of-field using a spatial multiplexing,” Opt. Express 24(3), 2072–2083 (2016).
    [PubMed]
  11. K.-C. Kwon, Y.-T. Lim, C.-W. Shin, M.-U. Erdenebat, J.-M. Hwang, and N. Kim, “Enhanced depth-of-field of an integral imaging microscope using a bifocal holographic optical element-micro lens array,” Opt. Lett. 42(16), 3209–3212 (2017).
    [PubMed]
  12. Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
    [PubMed]
  13. M.-K. Park, H. Park, K.-I. Joo, H.-D. Jeong, J.-C. Choi, and H.-R. Kim, “Continuous viewing angle distribution control of liquid crystal displays using polarization-dependent prism array film stacked on directional backlight unit,” J. Opt. Soc. Korea 20, 799–806 (2016).
  14. M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722 (2006).
  15. M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16(6), 4302–4308 (2008).
    [PubMed]
  16. C.-T. Lee, Y. Li, H.-Y. Lin, and S.-T. Wu, “Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19(18), 17402–17407 (2011).
    [PubMed]
  17. J. Kim, J. Kim, J.-H. Na, B. Lee, and S.-D. Lee, “Liquid crystal-based square lens array with tunable focal length,” Opt. Express 22(3), 3316–3324 (2014).
    [PubMed]
  18. H. Ren, Y.-H. Fan, and S.-T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
    [PubMed]
  19. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
    [PubMed]
  20. S.-J. Hwang, Y.-X. Liu, and G. A. Porter, “Improvement of performance of liquid crystal microlens with polymer surface modification,” Opt. Express 22(4), 4620–4627 (2014).
    [PubMed]
  21. C.-J. Yun and J.-K. Song, “Functional films using reactive mesogens for display applications,” J. Inf. Disp. 18, 119–129 (2017).
  22. K.-B. Son, M. Kim, M.-K. Park, and H.-R. Kim, “Polarization-dependent microlens array using reactive mesogen aligned by top-down nanogrooves for switchable three-dimensional applications,” J. Opt. Soc. Korea 19, 265–271 (2015).

2017 (2)

2016 (2)

2015 (1)

2014 (4)

2012 (1)

2011 (1)

2009 (2)

2008 (1)

2006 (1)

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722 (2006).

2004 (2)

2003 (2)

Adams, A.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” Proc. SIGGRAPH06, 924–934 (2006).

Alam, M. A.

Chang, Y.-C.

Choi, J.-C.

Dai, H. T.

Erdenebat, M.-U.

Fan, Y.-H.

Footer, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” Proc. SIGGRAPH06, 924–934 (2006).

Horowitz, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” Proc. SIGGRAPH06, 924–934 (2006).

Huang, Y.-P.

Hwang, J.-M.

Hwang, S.-J.

Jang, J.-S.

Javidi, B.

Jen, T.-H.

Jeong, H.-D.

Jeong, J.-S.

Joo, K.-I.

Kim, H.-R.

Kim, J.

Kim, K. G.

Kim, M.

Kim, N.

Kwon, K.-C.

Lee, B.

Lee, C.-T.

Lee, S.-D.

Levoy, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” Proc. SIGGRAPH06, 924–934 (2006).

Li, Y.

Lim, Y.-T.

Lin, H.-Y.

Liu, Y. J.

Liu, Y.-X.

Luo, D.

Min, S.-W.

Na, J.-H.

Ng, R.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” Proc. SIGGRAPH06, 924–934 (2006).

Park, H.

Park, J.-H.

Park, M.-K.

Porter, G. A.

Ren, H.

Sato, S.

Shin, C.-W.

Son, K.-B.

Song, J.-K.

C.-J. Yun and J.-K. Song, “Functional films using reactive mesogens for display applications,” J. Inf. Disp. 18, 119–129 (2017).

Sun, X. W.

Ting, C.-H.

Wang, B.

Wu, S.-T.

Ye, M.

Yoo, K.-H.

Yun, C.-J.

C.-J. Yun and J.-K. Song, “Functional films using reactive mesogens for display applications,” J. Inf. Disp. 18, 119–129 (2017).

Appl. Opt. (2)

J. Inf. Disp. (1)

C.-J. Yun and J.-K. Song, “Functional films using reactive mesogens for display applications,” J. Inf. Disp. 18, 119–129 (2017).

J. Opt. Soc. Korea (2)

Opt. Commun. (1)

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722 (2006).

Opt. Express (9)

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16(6), 4302–4308 (2008).
[PubMed]

C.-T. Lee, Y. Li, H.-Y. Lin, and S.-T. Wu, “Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19(18), 17402–17407 (2011).
[PubMed]

J. Kim, J. Kim, J.-H. Na, B. Lee, and S.-D. Lee, “Liquid crystal-based square lens array with tunable focal length,” Opt. Express 22(3), 3316–3324 (2014).
[PubMed]

K.-C. Kwon, M.-U. Erdenebat, M. A. Alam, Y.-T. Lim, K. G. Kim, and N. Kim, “Integral imaging microscopy with enhanced depth-of-field using a spatial multiplexing,” Opt. Express 24(3), 2072–2083 (2016).
[PubMed]

H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
[PubMed]

S.-J. Hwang, Y.-X. Liu, and G. A. Porter, “Improvement of performance of liquid crystal microlens with polymer surface modification,” Opt. Express 22(4), 4620–4627 (2014).
[PubMed]

Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Analysis on enhanced depth of field for integral imaging microscope,” Opt. Express 20(21), 23480–23488 (2012).
[PubMed]

Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009).
[PubMed]

Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
[PubMed]

Opt. Lett. (4)

Other (3)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” Proc. SIGGRAPH06, 924–934 (2006).

N. Kim and M.-U. Erdenebat, 3-D Integral Photography (SPIE Press, 2016).

D. B. Murphy and M. W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging, 2nd ed. (Wiley-Blackwell, 2012).

Supplementary Material (2)

NameDescription
» Visualization 1       Visualization 1 (Figure 7)
» Visualization 2       Visualization 2 (Figure 8)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the optical layout of the proposed integral imaging microscopy (IIM) system with switchable bifocal liquid-crystalline polymer micro lens array (LCP-MLA).
Fig. 2
Fig. 2 Operational principle of the implemented polarization-dependent bifocal LCP-MLA according to the polarization direction of incident light: (a) focusing on the effective focal plane fLA1 with θin = 90ο and (b) focusing on the effective focal plane fLA2 with θin = 0ο.
Fig. 3
Fig. 3 (a) Different focusing of bifocal LCP-MLA according to the polarizing direction switching and (b) two depth-of-field (DoF) ranges generated by both focal modes.
Fig. 4
Fig. 4 Analysis for the expected improvement of DoF through the proposed IIM system using an electro-switchable bifocal LCP-MLA.
Fig. 5
Fig. 5 Photographs of the prototype DoF-enhanced IIM system using a bifocal LCP-MLA and liquid-crystal (LC)-based electro-switching polarizer.
Fig. 6
Fig. 6 Optical properties of the implemented bifocal active MLA: (a, b) polarization optical microscope images of fabricated bifocal LCP-MLA with different focal position according to the change of polarization direction and (c, d) intensity profiles corresponding to the white dotted lines in Figs. 6(c) and (d).
Fig. 7
Fig. 7 Captured elemental image arrays (EIAs; EIA1 and EIA2) and reconstructed depth slices for a fruit fly specimen: from (a) MLA1 and (b) MLA2 (Visualization 1).
Fig. 8
Fig. 8 Two captured EIAs and reconstructed depth slices for a surface-mounted resistor: from (a) MLA1 and (b) MLA2 (Visualization 2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ z t o t = Δ z I I M 1 + Δ z I I M 2 d = g 1 g 2 ( 4 λ N A L A 2 ( 3 z 1 z 2 ) ) + 2 P S N A L A ( z 1 g 2 + g 1 z 2 ) 2 M 2 N A L A 2 g 1 g 2
Δ z t o t _ max = Δ z I I M 1 + Δ z I I M 2 = 2 λ g 1 g 2 + P S N A L A ( z 1 g 2 + g 1 z 2 ) M 2 N A L A 2 g 1 g 2

Metrics