Abstract

Aiming at high-power laser frequency conversion, we present a new scheme that can self-compensate for the thermally induced phase mismatch. The basic design of the scheme is that three crystals with the same type are cascaded, of which the crystals at both ends are used for frequency conversion and the middle crystal is used for compensating phase mismatch. By configuring the polarization states of the interacting waves in the middle crystal, the sign of the first temperature derivative of the phase mismatch is opposite to that of the frequency conversion crystals. The thermally induced phase mismatch in the first crystal can thus be self-compensated in the middle crystal. To verify the utility of the proposed scheme, we experimentally demonstrated temperature-insensitive second and third harmonic generation using KH2PO4 crystals. The results show that the temperature acceptance bandwidth is about two times larger than that of using a single crystal. Since the crystals used are of the same type, this scheme has excellent universal applicability and is almost completely free from the limitations of the laser wavelength, crystal and phase-matching type. Therefore, the scheme can be widely applied to various frequency conversion processes and is scarcely any limitations.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compensation method for temperature-induced phase mismatch during frequency conversion in high-power laser systems

Zijian Cui, Dean Liu, Meizhi Sun, Jie Miao, and Jianqiang Zhu
J. Opt. Soc. Am. B 33(4) 525-534 (2016)

Three-crystal method for thermally induced phase mismatch compensation in second-harmonic generation

Xun Liu, Xueju Shen, Jianling Yin, and Xiaoming Li
J. Opt. Soc. Am. B 34(2) 383-388 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photonics Rev. 7(6), L89–L92 (2013).
  2. K. A. Fedorova, G. S. Sokolovskii, P. R. Battle, D. A. Livshits, and E. U. Rafailov, “574-647 nm wavelength tuning by second-harmonic generation from diode-pumped PPKTP waveguides,” Opt. Lett. 40(5), 835–838 (2015).
    [PubMed]
  3. K. Devi, S. C. Kumar, and M. Ebrahim-Zadeh, “Tunable, continuous-wave, ultraviolet source based on intracavity sum-frequency-generation in an optical parametric oscillator using BiB3O6,” Opt. Express 21(21), 24829–24836 (2013).
    [PubMed]
  4. A. M. Pugachev, V. I. Kovalevskii, N. V. Surovtsev, S. Kojima, S. A. Prosandeev, I. P. Raevski, and S. I. Raevskaya, “Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation,” Phys. Rev. Lett. 108(24), 247601 (2012).
    [PubMed]
  5. C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
  6. J. Trull, I. Sola, B. Wang, A. Parra, W. Krolikowski, Y. Sheng, R. Vilaseca, and C. Cojocaru, “Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal,” Appl. Phys. Lett. 106(22), 221108 (2015).
  7. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
  8. P. Wang, H. Shi, F. Tan, and P. Wang, “Tunable femtosecond pulse source from 1.6 to 2.3 μm with 100 kW peak power in an all-fiber system,” Chin. Opt. Lett. 14(9), 091405 (2016).
  9. C. Wang, H. Wei, Y. Jiang, J. Wang, Z. Qiao, J. Guo, W. Fan, and X. Li, “VCSEL-pumped Nd:YAG laser with 95 W average power and user-selectable nanosecond pulses,” Chin. Opt. Lett. 14(12), 121402 (2016).
  10. D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).
  11. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
    [PubMed]
  12. Y. Liang, R. Su, L. Lu, and H. Liu, “Temperature nonuniformity occurring during the cooling process of a KDP crystal and its effects on second-harmonic generation,” Appl. Opt. 53(23), 5109–5116 (2014).
    [PubMed]
  13. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  14. J. Rothhardt, S. Demmler, S. Hädrich, T. Peschel, J. Limpert, and A. Tünnermann, “Thermal effects in high average power optical parametric amplifiers,” Opt. Lett. 38(5), 763–765 (2013).
    [PubMed]
  15. D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23(5), 575–592 (1987).
  16. A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, and C. Barty, “High-average-power femto-petawatt laser pumped by the Mercury laser facility,” J. Opt. Soc. Am. B 25(7), B57–B61 (2008).
  17. A. Godard, M. Raybaut, T. Schmid, M. Lefebvre, A.-M. Michel, and M. Péalat, “Management of thermal effects in high-repetition-rate pulsed optical parametric oscillators,” Opt. Lett. 35(21), 3667–3669 (2010).
    [PubMed]
  18. H. Z. Zhong, P. Yuan, H. Y. Zhu, and L. J. Qian, “Versatile temperature-insensitive second-harmonic generation by compensating thermally induced phase-mismatch in a two-crystal design,” Laser Phys. Lett. 9(6), 434–439 (2012).
  19. H. Zhong, P. Yuan, S. Wen, and L. Qian, “Temperature-insensitive frequency tripling for generating high-average power UV lasers,” Opt. Express 22(4), 4267–4276 (2014).
    [PubMed]
  20. Z. Cui, D. Liu, M. Sun, J. Miao, and J. Zhu, “Compensation method for temperature-induced phase mismatch during frequency conversion in high-power laser systems,” J. Opt. Soc. Am. B 33(4), 525–534 (2016).
  21. Z. Cui, D. Liu, A. Yang, J. Miao, J. Zhang, and J. Zhu, “Temperature-insensitive frequency conversion by electro-optic effect compensating for phase mismatch,” IEEE Photonics J. 8(5), 1–8 (2016).
  22. X. Liu, X. Shen, J. Yin, and X. Li, “Three-crystal method for thermally induced phase mismatch compensation in second-harmonic generation,” J. Opt. Soc. Am. B 34(2), 383–388 (2017).
  23. A. Yariv and P. Yeh, Optical Wave in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).
  24. G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, and KD*P for nonlinear devices,” IEEE J. Quantum Electron. 18(2), 143–145 (1982).
  25. R. A. Phillips, “Temperature variation of the index of refraction of ADP, KDP, and deuterated KDP,” J. Opt. Soc. Am. 56(5), 629–632 (1966).
  26. L. S. Zhang, M. X. Xu, B. A. Liu, L. L. Zhu, B. Wang, H. L. Zhou, F. F. Liu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).
  27. L. Zhang, F. Zhang, M. Xu, Z. Wang, and X. Sun, “Noncritical phase matching fourth harmonic generation properties of KD2PO4 crystals,” Opt. Express 23(18), 23401–23413 (2015).
    [PubMed]
  28. J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
  29. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

2017 (2)

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

X. Liu, X. Shen, J. Yin, and X. Li, “Three-crystal method for thermally induced phase mismatch compensation in second-harmonic generation,” J. Opt. Soc. Am. B 34(2), 383–388 (2017).

2016 (4)

2015 (5)

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).

J. Trull, I. Sola, B. Wang, A. Parra, W. Krolikowski, Y. Sheng, R. Vilaseca, and C. Cojocaru, “Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal,” Appl. Phys. Lett. 106(22), 221108 (2015).

L. S. Zhang, M. X. Xu, B. A. Liu, L. L. Zhu, B. Wang, H. L. Zhou, F. F. Liu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

K. A. Fedorova, G. S. Sokolovskii, P. R. Battle, D. A. Livshits, and E. U. Rafailov, “574-647 nm wavelength tuning by second-harmonic generation from diode-pumped PPKTP waveguides,” Opt. Lett. 40(5), 835–838 (2015).
[PubMed]

L. Zhang, F. Zhang, M. Xu, Z. Wang, and X. Sun, “Noncritical phase matching fourth harmonic generation properties of KD2PO4 crystals,” Opt. Express 23(18), 23401–23413 (2015).
[PubMed]

2014 (2)

2013 (3)

J. Rothhardt, S. Demmler, S. Hädrich, T. Peschel, J. Limpert, and A. Tünnermann, “Thermal effects in high average power optical parametric amplifiers,” Opt. Lett. 38(5), 763–765 (2013).
[PubMed]

K. Devi, S. C. Kumar, and M. Ebrahim-Zadeh, “Tunable, continuous-wave, ultraviolet source based on intracavity sum-frequency-generation in an optical parametric oscillator using BiB3O6,” Opt. Express 21(21), 24829–24836 (2013).
[PubMed]

A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photonics Rev. 7(6), L89–L92 (2013).

2012 (2)

A. M. Pugachev, V. I. Kovalevskii, N. V. Surovtsev, S. Kojima, S. A. Prosandeev, I. P. Raevski, and S. I. Raevskaya, “Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation,” Phys. Rev. Lett. 108(24), 247601 (2012).
[PubMed]

H. Z. Zhong, P. Yuan, H. Y. Zhu, and L. J. Qian, “Versatile temperature-insensitive second-harmonic generation by compensating thermally induced phase-mismatch in a two-crystal design,” Laser Phys. Lett. 9(6), 434–439 (2012).

2010 (2)

2008 (2)

2004 (1)

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).

1987 (1)

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23(5), 575–592 (1987).

1982 (1)

G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, and KD*P for nonlinear devices,” IEEE J. Quantum Electron. 18(2), 143–145 (1982).

1966 (1)

Armstrong, J.

Badikov, D.

A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photonics Rev. 7(6), L89–L92 (2013).

Badikov, V.

A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photonics Rev. 7(6), L89–L92 (2013).

Barty, C.

Battle, P. R.

Bayramian, A.

Beer, G.

Bhar, G. C.

G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, and KD*P for nonlinear devices,” IEEE J. Quantum Electron. 18(2), 143–145 (1982).

Borden, M. R.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).

Caird, J.

Campbell, J. H.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).

Campbell, R.

Chai, B.

Clarkson, W. A.

Cojocaru, C.

J. Trull, I. Sola, B. Wang, A. Parra, W. Krolikowski, Y. Sheng, R. Vilaseca, and C. Cojocaru, “Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal,” Appl. Phys. Lett. 106(22), 221108 (2015).

Cross, R.

Cui, Z.

Z. Cui, D. Liu, A. Yang, J. Miao, J. Zhang, and J. Zhu, “Temperature-insensitive frequency conversion by electro-optic effect compensating for phase mismatch,” IEEE Photonics J. 8(5), 1–8 (2016).

Z. Cui, D. Liu, M. Sun, J. Miao, and J. Zhu, “Compensation method for temperature-induced phase mismatch during frequency conversion in high-power laser systems,” J. Opt. Soc. Am. B 33(4), 525–534 (2016).

Danson, C.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).

Demmler, S.

Devi, K.

Ebbers, C.

Ebrahim-Zadeh, M.

Eimerl, D.

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23(5), 575–592 (1987).

Erlandson, A.

Esteban-Martin, A.

A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photonics Rev. 7(6), L89–L92 (2013).

Fan, W.

Fedorova, K. A.

Fei, Y.

Feit, M. D.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).

Feng, J.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Fintisova, A.

A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photonics Rev. 7(6), L89–L92 (2013).

Freitas, B.

Ghosh, G. C.

G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, and KD*P for nonlinear devices,” IEEE J. Quantum Electron. 18(2), 143–145 (1982).

Godard, A.

Guo, J.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

C. Wang, H. Wei, Y. Jiang, J. Wang, Z. Qiao, J. Guo, W. Fan, and X. Li, “VCSEL-pumped Nd:YAG laser with 95 W average power and user-selectable nanosecond pulses,” Chin. Opt. Lett. 14(12), 121402 (2016).

Hackel, R. P.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).

Hädrich, S.

Hawley-Fedder, R. A.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).

He, Y.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Hillier, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).

Hopps, N.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).

Jiang, Y.

Katagai, T.

Kent, R.

Kojima, S.

A. M. Pugachev, V. I. Kovalevskii, N. V. Surovtsev, S. Kojima, S. A. Prosandeev, I. P. Raevski, and S. I. Raevskaya, “Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation,” Phys. Rev. Lett. 108(24), 247601 (2012).
[PubMed]

Kovalevskii, V. I.

A. M. Pugachev, V. I. Kovalevskii, N. V. Surovtsev, S. Kojima, S. A. Prosandeev, I. P. Raevski, and S. I. Raevskaya, “Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation,” Phys. Rev. Lett. 108(24), 247601 (2012).
[PubMed]

Krolikowski, W.

J. Trull, I. Sola, B. Wang, A. Parra, W. Krolikowski, Y. Sheng, R. Vilaseca, and C. Cojocaru, “Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal,” Appl. Phys. Lett. 106(22), 221108 (2015).

Kumar, S. C.

Kurimura, S.

Lefebvre, M.

Li, X.

Liang, Y.

Limpert, J.

Liu, B. A.

L. S. Zhang, M. X. Xu, B. A. Liu, L. L. Zhu, B. Wang, H. L. Zhou, F. F. Liu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

Liu, D.

Z. Cui, D. Liu, A. Yang, J. Miao, J. Zhang, and J. Zhu, “Temperature-insensitive frequency conversion by electro-optic effect compensating for phase mismatch,” IEEE Photonics J. 8(5), 1–8 (2016).

Z. Cui, D. Liu, M. Sun, J. Miao, and J. Zhu, “Compensation method for temperature-induced phase mismatch during frequency conversion in high-power laser systems,” J. Opt. Soc. Am. B 33(4), 525–534 (2016).

Liu, F. F.

L. S. Zhang, M. X. Xu, B. A. Liu, L. L. Zhu, B. Wang, H. L. Zhou, F. F. Liu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

Liu, H.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Y. Liang, R. Su, L. Lu, and H. Liu, “Temperature nonuniformity occurring during the cooling process of a KDP crystal and its effects on second-harmonic generation,” Appl. Opt. 53(23), 5109–5116 (2014).
[PubMed]

Liu, P.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Liu, X.

Livshits, D. A.

Lu, L.

Marchev, G.

A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photonics Rev. 7(6), L89–L92 (2013).

Menapace, J.

Menapace, J. A.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).

Miao, J.

Z. Cui, D. Liu, A. Yang, J. Miao, J. Zhang, and J. Zhu, “Temperature-insensitive frequency conversion by electro-optic effect compensating for phase mismatch,” IEEE Photonics J. 8(5), 1–8 (2016).

Z. Cui, D. Liu, M. Sun, J. Miao, and J. Zhu, “Compensation method for temperature-induced phase mismatch during frequency conversion in high-power laser systems,” J. Opt. Soc. Am. B 33(4), 525–534 (2016).

Michel, A.-M.

Mio, N.

Molander, W.

Moriwaki, S.

Neely, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).

Nilsson, J.

Ohmae, N.

Panyutin, V.

A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photonics Rev. 7(6), L89–L92 (2013).

Parra, A.

J. Trull, I. Sola, B. Wang, A. Parra, W. Krolikowski, Y. Sheng, R. Vilaseca, and C. Cojocaru, “Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal,” Appl. Phys. Lett. 106(22), 221108 (2015).

Péalat, M.

Peschel, T.

Petrov, V.

A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photonics Rev. 7(6), L89–L92 (2013).

Phillips, R. A.

Prosandeev, S. A.

A. M. Pugachev, V. I. Kovalevskii, N. V. Surovtsev, S. Kojima, S. A. Prosandeev, I. P. Raevski, and S. I. Raevskaya, “Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation,” Phys. Rev. Lett. 108(24), 247601 (2012).
[PubMed]

Pugachev, A. M.

A. M. Pugachev, V. I. Kovalevskii, N. V. Surovtsev, S. Kojima, S. A. Prosandeev, I. P. Raevski, and S. I. Raevskaya, “Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation,” Phys. Rev. Lett. 108(24), 247601 (2012).
[PubMed]

Qian, L.

Qian, L. J.

H. Z. Zhong, P. Yuan, H. Y. Zhu, and L. J. Qian, “Versatile temperature-insensitive second-harmonic generation by compensating thermally induced phase-mismatch in a two-crystal design,” Laser Phys. Lett. 9(6), 434–439 (2012).

Qiao, Z.

Raevskaya, S. I.

A. M. Pugachev, V. I. Kovalevskii, N. V. Surovtsev, S. Kojima, S. A. Prosandeev, I. P. Raevski, and S. I. Raevskaya, “Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation,” Phys. Rev. Lett. 108(24), 247601 (2012).
[PubMed]

Raevski, I. P.

A. M. Pugachev, V. I. Kovalevskii, N. V. Surovtsev, S. Kojima, S. A. Prosandeev, I. P. Raevski, and S. I. Raevskaya, “Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation,” Phys. Rev. Lett. 108(24), 247601 (2012).
[PubMed]

Rafailov, E. U.

Raybaut, M.

Richardson, D. J.

Riley, M. O.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).

Rothhardt, J.

Runkel, M.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).

Schaffers, K.

Schmid, T.

Sheina, S.

A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photonics Rev. 7(6), L89–L92 (2013).

Shen, X.

Sheng, Y.

J. Trull, I. Sola, B. Wang, A. Parra, W. Krolikowski, Y. Sheng, R. Vilaseca, and C. Cojocaru, “Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal,” Appl. Phys. Lett. 106(22), 221108 (2015).

Shevyrdyaeva, G.

A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photonics Rev. 7(6), L89–L92 (2013).

Shi, H.

Shi, J.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Shi, W.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Siders, C.

Sokolovskii, G. S.

Sola, I.

J. Trull, I. Sola, B. Wang, A. Parra, W. Krolikowski, Y. Sheng, R. Vilaseca, and C. Cojocaru, “Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal,” Appl. Phys. Lett. 106(22), 221108 (2015).

Starikova, M.

A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photonics Rev. 7(6), L89–L92 (2013).

Stolz, C. J.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).

Su, R.

Sun, M.

Sun, X.

L. Zhang, F. Zhang, M. Xu, Z. Wang, and X. Sun, “Noncritical phase matching fourth harmonic generation properties of KD2PO4 crystals,” Opt. Express 23(18), 23401–23413 (2015).
[PubMed]

L. S. Zhang, M. X. Xu, B. A. Liu, L. L. Zhu, B. Wang, H. L. Zhou, F. F. Liu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

Surovtsev, N. V.

A. M. Pugachev, V. I. Kovalevskii, N. V. Surovtsev, S. Kojima, S. A. Prosandeev, I. P. Raevski, and S. I. Raevskaya, “Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation,” Phys. Rev. Lett. 108(24), 247601 (2012).
[PubMed]

Sutton, S.

Suzuki, I.

Takeno, K.

Tan, F.

Tang, L.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Tassano, J.

Telford, S.

Tovstonog, S. V.

Trull, J.

J. Trull, I. Sola, B. Wang, A. Parra, W. Krolikowski, Y. Sheng, R. Vilaseca, and C. Cojocaru, “Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal,” Appl. Phys. Lett. 106(22), 221108 (2015).

Tsang, Y. H.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Tünnermann, A.

Tyazhev, A.

A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photonics Rev. 7(6), L89–L92 (2013).

Vilaseca, R.

J. Trull, I. Sola, B. Wang, A. Parra, W. Krolikowski, Y. Sheng, R. Vilaseca, and C. Cojocaru, “Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal,” Appl. Phys. Lett. 106(22), 221108 (2015).

Wang, B.

J. Trull, I. Sola, B. Wang, A. Parra, W. Krolikowski, Y. Sheng, R. Vilaseca, and C. Cojocaru, “Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal,” Appl. Phys. Lett. 106(22), 221108 (2015).

L. S. Zhang, M. X. Xu, B. A. Liu, L. L. Zhu, B. Wang, H. L. Zhou, F. F. Liu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

Wang, C.

Wang, J.

Wang, P.

Wang, Y.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Wang, Z.

Wei, H.

Wen, S.

Whitman, P. K.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).

Xu, D.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Xu, M.

Xu, M. X.

L. S. Zhang, M. X. Xu, B. A. Liu, L. L. Zhu, B. Wang, H. L. Zhou, F. F. Liu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

Yan, C.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Yan, D.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Yang, A.

Z. Cui, D. Liu, A. Yang, J. Miao, J. Zhang, and J. Zhu, “Temperature-insensitive frequency conversion by electro-optic effect compensating for phase mismatch,” IEEE Photonics J. 8(5), 1–8 (2016).

Yao, J.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Yin, J.

Yu, J.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).

Yuan, P.

H. Zhong, P. Yuan, S. Wen, and L. Qian, “Temperature-insensitive frequency tripling for generating high-average power UV lasers,” Opt. Express 22(4), 4267–4276 (2014).
[PubMed]

H. Z. Zhong, P. Yuan, H. Y. Zhu, and L. J. Qian, “Versatile temperature-insensitive second-harmonic generation by compensating thermally induced phase-mismatch in a two-crystal design,” Laser Phys. Lett. 9(6), 434–439 (2012).

Zhang, F.

Zhang, J.

Z. Cui, D. Liu, A. Yang, J. Miao, J. Zhang, and J. Zhu, “Temperature-insensitive frequency conversion by electro-optic effect compensating for phase mismatch,” IEEE Photonics J. 8(5), 1–8 (2016).

Zhang, L.

Zhang, L. S.

L. S. Zhang, M. X. Xu, B. A. Liu, L. L. Zhu, B. Wang, H. L. Zhou, F. F. Liu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

Zhong, H.

Zhong, H. Z.

H. Z. Zhong, P. Yuan, H. Y. Zhu, and L. J. Qian, “Versatile temperature-insensitive second-harmonic generation by compensating thermally induced phase-mismatch in a two-crystal design,” Laser Phys. Lett. 9(6), 434–439 (2012).

Zhong, K.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Zhou, H. L.

L. S. Zhang, M. X. Xu, B. A. Liu, L. L. Zhu, B. Wang, H. L. Zhou, F. F. Liu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

Zhu, H. Y.

H. Z. Zhong, P. Yuan, H. Y. Zhu, and L. J. Qian, “Versatile temperature-insensitive second-harmonic generation by compensating thermally induced phase-mismatch in a two-crystal design,” Laser Phys. Lett. 9(6), 434–439 (2012).

Zhu, J.

Z. Cui, D. Liu, A. Yang, J. Miao, J. Zhang, and J. Zhu, “Temperature-insensitive frequency conversion by electro-optic effect compensating for phase mismatch,” IEEE Photonics J. 8(5), 1–8 (2016).

Z. Cui, D. Liu, M. Sun, J. Miao, and J. Zhu, “Compensation method for temperature-induced phase mismatch during frequency conversion in high-power laser systems,” J. Opt. Soc. Am. B 33(4), 525–534 (2016).

Zhu, L. L.

L. S. Zhang, M. X. Xu, B. A. Liu, L. L. Zhu, B. Wang, H. L. Zhou, F. F. Liu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Trull, I. Sola, B. Wang, A. Parra, W. Krolikowski, Y. Sheng, R. Vilaseca, and C. Cojocaru, “Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal,” Appl. Phys. Lett. 106(22), 221108 (2015).

Chin. Opt. Lett. (2)

CrystEngComm (1)

L. S. Zhang, M. X. Xu, B. A. Liu, L. L. Zhu, B. Wang, H. L. Zhou, F. F. Liu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

High Power Laser Sci. Eng. (1)

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).

IEEE J. Quantum Electron. (2)

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23(5), 575–592 (1987).

G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, and KD*P for nonlinear devices,” IEEE J. Quantum Electron. 18(2), 143–145 (1982).

IEEE Photonics J. (1)

Z. Cui, D. Liu, A. Yang, J. Miao, J. Zhang, and J. Zhu, “Temperature-insensitive frequency conversion by electro-optic effect compensating for phase mismatch,” IEEE Photonics J. 8(5), 1–8 (2016).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (4)

Laser Photonics Rev. (1)

A. Esteban-Martin, G. Marchev, V. Badikov, V. Panyutin, V. Petrov, G. Shevyrdyaeva, D. Badikov, M. Starikova, S. Sheina, A. Fintisova, and A. Tyazhev, “High-energy optical parametric oscillator for the 6 μm spectral range based on HgGa2S4 pumped at 1064 nm,” Laser Photonics Rev. 7(6), L89–L92 (2013).

Laser Phys. Lett. (1)

H. Z. Zhong, P. Yuan, H. Y. Zhu, and L. J. Qian, “Versatile temperature-insensitive second-harmonic generation by compensating thermally induced phase-mismatch in a two-crystal design,” Laser Phys. Lett. 9(6), 434–439 (2012).

Opt. Express (4)

Opt. Lett. (3)

Photonics Res. (1)

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photonics Res. 5(2), 82–87 (2017).

Phys. Rev. Lett. (1)

A. M. Pugachev, V. I. Kovalevskii, N. V. Surovtsev, S. Kojima, S. A. Prosandeev, I. P. Raevski, and S. I. Raevskaya, “Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation,” Phys. Rev. Lett. 108(24), 247601 (2012).
[PubMed]

Proc. SPIE (1)

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).

Other (3)

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

A. Yariv and P. Yeh, Optical Wave in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Configuration of polarization states for temperature-insensitive frequency conversion. (a) Type-I second harmonic generation (SHG). (b) Type-II third harmonic generation (THG).
Fig. 2
Fig. 2 Values of Δ k , L B , and Δ K B ( T 0 ) as a function of angles. (a), (c), and (e) Type-I SHG. (b), (d), and (f) Type-II THG.
Fig. 3
Fig. 3 Schematic diagrams of temperature-insensitive (a) SHG and (b) THG experiments.
Fig. 4
Fig. 4 Measured and simulated efficiencies of (a) SHG and (b) THG vary with temperature using a single KDP crystal.
Fig. 5
Fig. 5 Measured and simulated efficiencies vary with temperature based on the cascaded KDP crystals. (a) SHG and (c) THG without phase mismatch compensation. (b) SHG and (d) THG with phase mismatch compensation. All the efficiencies were normalized to their maximum values at the initial phase-matching temperature.
Fig. 6
Fig. 6 (a) Simulated results of crystal cascade and (b) schematic diagrams of crystals sequence with different number. (c) The change of SHG efficiency with Δ K Air induced by air dispersion and the change of Δ K B induced by crystal B with the rotation angle. (d) Variation of the crystal length in the direction of beams propagation. In (a) and (c), all the efficiencies were normalized to the maximum values. In (b), dark blue rectangles indicate the crystals used for SHG, and light blue rectangles indicate the phase mismatch compensation crystals.
Fig. 7
Fig. 7 (a) Walk-off angles of the FW and SH vary with the cutting angle of crystal B. (b) Spatial walk-off distances of the FW and SH.

Tables (2)

Tables Icon

Table 1 Experimental and simulated results of the conventional scheme and the proposed scheme

Tables Icon

Table 2 Simulated results of crystal cascade with different number

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δ k A SHG = k e ( ω 2 )2 k o ( ω 1 )= 2 ω 1 c [ n e ( ω 2 , θ pm SHG ,T ) n o ( ω 1 ,T ) ]
Δ k A SHG = Δ k A SHG T = 2 ω 1 c [ n e ( ω 2 , θ pm SHG ,T ) n o ( ω 1 ,T ) ] T
Δ k B SHG = k o ( ω 2 )2 k e ( ω 1 )= 2 ω 1 c [ n o ( ω 2 ,T ) n e ( ω 1 , θ B SHG ,T ) ]
Δ k B SHG = Δ k B SHG T = 2 ω 1 c [ n o ( ω 2 ,T ) n e ( ω 1 , θ B SHG ,T ) ] T
Δ k A THG = k e ( ω 3 ) k o ( ω 2 ) k e ( ω 1 )= ω 1 c [ 3 n e ( ω 3 , θ pm THG ,T )2 n o ( ω 2 ,T ) n e ( ω 1 , θ pm THG ,T ) ]
Δ k A THG = Δ k A THG T = ω 1 c [ 3 n e ( ω 3 , θ pm THG ,T )2 n o ( ω 2 ,T ) n e ( ω 1 , θ pm THG ,T ) ] T
Δ k B THG = k o ( ω 3 ) k e ( ω 2 ) k o ( ω 1 )= ω 1 c [ 3 n o ( ω 3 ,T )2 n e ( ω 2 , θ B THG ,T ) n o ( ω 1 ,T ) ]
Δ k B THG = Δ k B THG T = ω 1 c [ 3 n o ( ω 3 ,T )2 n e ( ω 2 , θ B THG ,T ) n o ( ω 1 ,T ) ] T
Δ k B L B =Δ k A L A
Δ K B ( T 0 )=Δ k B ( T 0 ) L B =N2π
Δ K B ( T 0 )+Δ K Air =Δ k B ( T 0 ) L B / cos( θ ) +Δ K Air =N2π
d ooe = d 36 sin( θ )sin( 2φ )
d oee = d eoe = d 36 sin( 2θ )cos( 2φ )

Metrics