Abstract

In recent years, to enlarge the single-mode fibers (SMFs) transmission capacity, researchers focused on the dimension of space, which is a new degree of freedom that is being considered for optical fiber communication beyond WDM. Space-division multiplexing (SDM), including mode-division multiplexing (MDM) using multimode fibers (MMFs) or few-mode fibers (FMFs), and core multiplexing using multicore fibers (MCFs), has attracted much recent attention. In an SDM system, high-density spatial channels are tightly packed into a single fiber, thus making crosstalk among cores or modes a critical challenge due to fiber imperfections, bending, and twisting. Previous studies have mostly been confined to the routing algorithms for crosstalk reduction but few focuses on the in-service crosstalk monitoring, tracing and quality-of-transmission (QoT)-oriented lightpath re-optimization. In this paper, we proposed novel in-service crosstalk monitoring and tracing (CMT) method and algorithm using fine-grained optical time slice monitoring channels for crosstalk reduction in SDM optical networks. Benefitting from the large amount of fine-grained channels provided by optical time slices, it becomes possible for every source node to allocate a dedicated monitoring time slice carrying the traffic and path information for each connection. Crosstalk monitoring and tracing can be realized by extracting the information contained in these monitoring time slices. Simulation results shows that the proposed CMT method and algorithm can obtain acceptable performance in large-scale network scenarios. Furthermore, we also proposed a quality-of-transmission (QoT)-oriented lightpath re-optimization mechanism based on in-service crosstalk monitoring and tracing to maintain a high level of QoT. Finally, we designed a prototype experiment to validate our proposed in-service crosstalk monitoring method. Results show that this method can realize in-service crosstalk monitoring, tracing and lightpath re-optimization over a seven-core fiber based transmission system, and the crosstalk with a minimum value of −37.9 dB can be monitored and successfully traced.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Software defined networking (SDN) over space division multiplexing (SDM) optical networks: features, benefits and experimental demonstration

N. Amaya, S. Yan, M. Channegowda, B. R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, E. Hugues-Salas, G. Zervas, R. Nejabati, D. Simeonidou, B.J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, H. Harai, and N. Wada
Opt. Express 22(3) 3638-3647 (2014)

Applying Multi-Controller Collaboration in Fine-Grained All-Optical Intra-Datacenter Networks

Yinqiu Jia, Nan Hua, Yanhe Li, and Xiaoping Zheng
J. Opt. Commun. Netw. 10(7) B37-B48 (2018)

Fast Parallel Lightpath Re-Optimization for Space-Division Multiplexing Optical Networks Based on Time Synchronization

Ruijie Luo, Nan Hua, Xiaoping Zheng, and Bingkun Zhou
J. Opt. Commun. Netw. 10(1) A8-A19 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. K. Korotky, “Price-points for components of multi-core fiber communication systems in backbone optical networks,” J. Opt. Commun. Netw. 4(5), 426–435 (2012).
  2. R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
  3. Y. Lee, K. Tanaka, E. Nomoto, H. Arimoto, and T. Sugawara, “Multi-core fiber technology for optical-access and short-range links,” in Proceedings of 12th Int. Conf. Opt. Internet (IEEE, 2014), pp. 1–2.
  4. M. Fiorani, M. Tornatore, J. Chen, L. Wosinska, and B. Mukherjee, “Spatial division multiplexing for high capacity optical interconnects in modular data centers,” J. Opt. Commun. Netw. 9(2), A143–A153 (2017).
  5. R. J. Essiambre, G. Karmer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
  6. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
  7. P. J. Winzer, “Spatial multiplexing: the next frontier in network capacity scaling,” in Proceedings of IET Conference, 2013, paper We.1.D.1.
  8. P. J. Winzer, “Making spatial multiplexing a reality,” Nat. Photonics 8(5), 345–348 (2014).
  9. L. Xiang, G. Shen, and M. Gao, “Nonlinear propagation in multicore fiber transmission link based on coupled mode analysis,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), paper ASu2A.76.
  10. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19×100×172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper PDP5C.1.
  11. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, “12-core x 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th5B.2.
  12. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB10.
  13. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [PubMed]
  14. Y. Li, N. Hua, and X. Zheng, “CapEx advantages of multi-core fiber networks,” Photonic Netw. Commun. 31(2), 228–238 (2016).
  15. Y. Li, N. Hua, and X. Zheng, “Routing, wavelength and core allocation planning for multi-core fiber networks with MIMO-based crosstalk suppression,” in Proceedings of Opto-Electronics and Communications Conference (IEEE, 2015), pp. 1–3.
  16. N. Cvijetic, E. Ip, N. Prasad, M. Li, and T. Wang, “Experimental time and frequency domain MIMO channel matrix characterization versus distance for 6×28Gbaud QPSK transmission over 40×25km few mode fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th1J. 3.
  17. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
  18. P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-mode fiber for uncoupled mode-division multiplexing transmissions,” in 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011), paper Tu.5.LeCervin.7.
  19. E. Ip, G. Milione, M. J. Li, N. Cvijetic, K. Kanonakis, J. Stone, G. Peng, X. Prieto, C. Montero, V. Moreno, and J. Liñares, “SDM transmission of real-time 10GbE traffic using commercial SFP + transceivers over 0.5km elliptical-core few-mode fiber,” Opt. Express 23(13), 17120–17126 (2015).
    [PubMed]
  20. T. Mizuno, K. Shibahara, H. Ono, Y. Abe, Y. Miyamoto, F. Ye, T. Morioka, Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, and M. Yamada, “32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th5C.3.
  21. T. Hu, J. Li, P. Zhu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Experimental demonstration of passive optical network based on mode-division-multiplexing,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th2A.63.
  22. A. Sano, H. Takara, T. Kobayashi, and Y. Miyamoto, “Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving,” J. Lightwave Technol. 32(16), 2771–2779 (2014).
  23. P. Winzer, A. Gnauck, A. Konczykowska, F. Jorge, and J. Dupuy, “Penalties from in-band crosstalk for advanced optical modulation formats,” in 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011), paper Tu.5.B.7.
  24. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Ultra-low-crosstalk multi-core fiber feasible to ultra-long-haul transmission,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPC2.
  25. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
    [PubMed]
  26. T. Mizuno, A. Isoda, K. Shibahara, Y. Miyamoto, S. Jain, S. Alam, D. J. Richardson, C. Castro, K. Pulverer, Y. Sasaki, Y. Amma, K. Takenaga, K. Aikawa, and T. Morioka, “In-service crosstalk monitoring for dense space division multiplexed multi-core fiber transmission systems,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3J.2.
  27. R. Luo, N. Hua, X. Zheng, and B. Zhou, “Fast parallel lightpath re-optimization for space-division multiplexing optical networks based on time synchronization,” J. Opt. Commun. Netw. 10(1), A8–A19 (2018).
  28. F. Solano and M. Pióro, “Lightpath reconfiguration in WDM networks,” J. Opt. Commun. Netw. 2(12), 1010–1021 (2010).
  29. E. Bouillet, J. F. Labourdette, R. Ramamurthy, and S. Chaudhuri, “Lightpath re-optimization in mesh optical networks,” IEEE/ACM Transactions on Networking (TON) 13(2), 437– 447 (2005).
  30. J. Ahmed, F. Solano, P. Monti, and L. Wosinska, “Traffic re-optimization strategies for dynamically provisioned WDM networks,” in Preecdings of Optical Network Design and Modeling Conference (IEEE, 2011), pp. 1–6.
  31. P. Zhu, J. Li, D. Wu, Y. Chen, Y. Tian, Z. Wu, D. Ge, X. Chen, Z. Chen, and Y. He, “Software-defined elastic optical network node supporting spectrum defragmentation,” J. Opt. Commun. Netw. 9(1), A63–A70 (2017).
  32. T. Takagi, H. Hasegawa, K. Sato, Y. Sone, A. Hirano, and M. Jinno, “Disruption minimized spectrum defragmentation in elastic optical path networks that adopt distance adaptive modulation,” in 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011), paper Mo.2.K.3.
  33. N. Hua and X. Zheng, “Optical time slice switching (OTSS): an all-optical sub-wavelength solution based on time synchronization,” in Asia Communications and Photonics Conference 2013 (Optical Society of America, 2013), paper AW3H.3.
  34. Y. Li, N. Hua, and X. Zheng, “Fine-grained all-optical switching based on optical time slice switching for hybrid packet-OCS intra-data center networks,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3J.5.
  35. N. Benzaoui, Y. Pointurier, and S. Bigo, “Latency in a 2D torus burst optical slot switching data center,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Th2A.33.
  36. F. Ye, J. Tu, K. Saitoh, K. Takenaga, S. Matsuo, and T. Morioka, “A new and simple method for crosstalk estimation in homogeneous trench-assisted multi-core fibers,” in Asia Communications and Photonics Conference 2014 (Optical Society of America, 2014), paper AW4C.3.

2018 (1)

2017 (2)

2016 (1)

Y. Li, N. Hua, and X. Zheng, “CapEx advantages of multi-core fiber networks,” Photonic Netw. Commun. 31(2), 228–238 (2016).

2015 (1)

2014 (3)

A. Sano, H. Takara, T. Kobayashi, and Y. Miyamoto, “Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving,” J. Lightwave Technol. 32(16), 2771–2779 (2014).

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).

P. J. Winzer, “Making spatial multiplexing a reality,” Nat. Photonics 8(5), 345–348 (2014).

2012 (2)

2011 (2)

2010 (3)

2005 (1)

E. Bouillet, J. F. Labourdette, R. Ramamurthy, and S. Chaudhuri, “Lightpath re-optimization in mesh optical networks,” IEEE/ACM Transactions on Networking (TON) 13(2), 437– 447 (2005).

Arimoto, H.

Y. Lee, K. Tanaka, E. Nomoto, H. Arimoto, and T. Sugawara, “Multi-core fiber technology for optical-access and short-range links,” in Proceedings of 12th Int. Conf. Opt. Internet (IEEE, 2014), pp. 1–2.

Bai, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).

Bolle, C.

Bolle, C. A.

Bouillet, E.

E. Bouillet, J. F. Labourdette, R. Ramamurthy, and S. Chaudhuri, “Lightpath re-optimization in mesh optical networks,” IEEE/ACM Transactions on Networking (TON) 13(2), 437– 447 (2005).

Burrows, E. C.

Chaudhuri, S.

E. Bouillet, J. F. Labourdette, R. Ramamurthy, and S. Chaudhuri, “Lightpath re-optimization in mesh optical networks,” IEEE/ACM Transactions on Networking (TON) 13(2), 437– 447 (2005).

Chen, J.

Chen, X.

Chen, Y.

Chen, Z.

Cvijetic, N.

Esmaeelpour, M.

Essiambre, R.

Essiambre, R. J.

Fiorani, M.

Foschini, G. J.

Ge, D.

Gnauck, A. H.

Goebel, B.

Hayashi, T.

He, Y.

Hua, N.

R. Luo, N. Hua, X. Zheng, and B. Zhou, “Fast parallel lightpath re-optimization for space-division multiplexing optical networks based on time synchronization,” J. Opt. Commun. Netw. 10(1), A8–A19 (2018).

Y. Li, N. Hua, and X. Zheng, “CapEx advantages of multi-core fiber networks,” Photonic Netw. Commun. 31(2), 228–238 (2016).

Y. Li, N. Hua, and X. Zheng, “Routing, wavelength and core allocation planning for multi-core fiber networks with MIMO-based crosstalk suppression,” in Proceedings of Opto-Electronics and Communications Conference (IEEE, 2015), pp. 1–3.

Ip, E.

Kanonakis, K.

Karmer, G.

Kobayashi, T.

Korotky, S. K.

Labourdette, J. F.

E. Bouillet, J. F. Labourdette, R. Ramamurthy, and S. Chaudhuri, “Lightpath re-optimization in mesh optical networks,” IEEE/ACM Transactions on Networking (TON) 13(2), 437– 447 (2005).

Lee, Y.

Y. Lee, K. Tanaka, E. Nomoto, H. Arimoto, and T. Sugawara, “Multi-core fiber technology for optical-access and short-range links,” in Proceedings of 12th Int. Conf. Opt. Internet (IEEE, 2014), pp. 1–2.

Li, G.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).

Li, J.

Li, M. J.

Li, Y.

Y. Li, N. Hua, and X. Zheng, “CapEx advantages of multi-core fiber networks,” Photonic Netw. Commun. 31(2), 228–238 (2016).

Y. Li, N. Hua, and X. Zheng, “Routing, wavelength and core allocation planning for multi-core fiber networks with MIMO-based crosstalk suppression,” in Proceedings of Opto-Electronics and Communications Conference (IEEE, 2015), pp. 1–3.

Liñares, J.

Lingle, R.

Luo, R.

McCurdy, A.

Milione, G.

Miyamoto, Y.

Montero, C.

Moreno, V.

Mukherjee, B.

Mumtaz, S.

Nomoto, E.

Y. Lee, K. Tanaka, E. Nomoto, H. Arimoto, and T. Sugawara, “Multi-core fiber technology for optical-access and short-range links,” in Proceedings of 12th Int. Conf. Opt. Internet (IEEE, 2014), pp. 1–2.

Peckham, D. W.

Peng, G.

Pióro, M.

Prieto, X.

Ramamurthy, R.

E. Bouillet, J. F. Labourdette, R. Ramamurthy, and S. Chaudhuri, “Lightpath re-optimization in mesh optical networks,” IEEE/ACM Transactions on Networking (TON) 13(2), 437– 447 (2005).

Randel, S.

Ryf, R.

Sano, A.

Sasaki, T.

Sasaoka, E.

Shimakawa, O.

Sierra, A.

Solano, F.

Stone, J.

Sugawara, T.

Y. Lee, K. Tanaka, E. Nomoto, H. Arimoto, and T. Sugawara, “Multi-core fiber technology for optical-access and short-range links,” in Proceedings of 12th Int. Conf. Opt. Internet (IEEE, 2014), pp. 1–2.

Takara, H.

Tanaka, K.

Y. Lee, K. Tanaka, E. Nomoto, H. Arimoto, and T. Sugawara, “Multi-core fiber technology for optical-access and short-range links,” in Proceedings of 12th Int. Conf. Opt. Internet (IEEE, 2014), pp. 1–2.

Taru, T.

Tian, Y.

Tkach, R. W.

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).

Tornatore, M.

Winzer, P. J.

Wosinska, L.

Wu, D.

Wu, Z.

Xia, C.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).

Zhao, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).

Zheng, X.

R. Luo, N. Hua, X. Zheng, and B. Zhou, “Fast parallel lightpath re-optimization for space-division multiplexing optical networks based on time synchronization,” J. Opt. Commun. Netw. 10(1), A8–A19 (2018).

Y. Li, N. Hua, and X. Zheng, “CapEx advantages of multi-core fiber networks,” Photonic Netw. Commun. 31(2), 228–238 (2016).

Y. Li, N. Hua, and X. Zheng, “Routing, wavelength and core allocation planning for multi-core fiber networks with MIMO-based crosstalk suppression,” in Proceedings of Opto-Electronics and Communications Conference (IEEE, 2015), pp. 1–3.

Zhou, B.

Zhu, P.

Adv. Opt. Photonics (1)

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).

Bell Labs Tech. J. (1)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).

IEEE/ACM Transactions on Networking (TON) (1)

E. Bouillet, J. F. Labourdette, R. Ramamurthy, and S. Chaudhuri, “Lightpath re-optimization in mesh optical networks,” IEEE/ACM Transactions on Networking (TON) 13(2), 437– 447 (2005).

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (5)

Nat. Photonics (1)

P. J. Winzer, “Making spatial multiplexing a reality,” Nat. Photonics 8(5), 345–348 (2014).

Opt. Express (3)

Photonic Netw. Commun. (1)

Y. Li, N. Hua, and X. Zheng, “CapEx advantages of multi-core fiber networks,” Photonic Netw. Commun. 31(2), 228–238 (2016).

Other (20)

Y. Li, N. Hua, and X. Zheng, “Routing, wavelength and core allocation planning for multi-core fiber networks with MIMO-based crosstalk suppression,” in Proceedings of Opto-Electronics and Communications Conference (IEEE, 2015), pp. 1–3.

N. Cvijetic, E. Ip, N. Prasad, M. Li, and T. Wang, “Experimental time and frequency domain MIMO channel matrix characterization versus distance for 6×28Gbaud QPSK transmission over 40×25km few mode fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th1J. 3.

P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-mode fiber for uncoupled mode-division multiplexing transmissions,” in 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011), paper Tu.5.LeCervin.7.

P. J. Winzer, “Spatial multiplexing: the next frontier in network capacity scaling,” in Proceedings of IET Conference, 2013, paper We.1.D.1.

L. Xiang, G. Shen, and M. Gao, “Nonlinear propagation in multicore fiber transmission link based on coupled mode analysis,” in Asia Communications and Photonics Conference (Optical Society of America, 2015), paper ASu2A.76.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19×100×172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper PDP5C.1.

T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, “12-core x 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Th5B.2.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPB10.

Y. Lee, K. Tanaka, E. Nomoto, H. Arimoto, and T. Sugawara, “Multi-core fiber technology for optical-access and short-range links,” in Proceedings of 12th Int. Conf. Opt. Internet (IEEE, 2014), pp. 1–2.

T. Mizuno, K. Shibahara, H. Ono, Y. Abe, Y. Miyamoto, F. Ye, T. Morioka, Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, and M. Yamada, “32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th5C.3.

T. Hu, J. Li, P. Zhu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Experimental demonstration of passive optical network based on mode-division-multiplexing,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th2A.63.

P. Winzer, A. Gnauck, A. Konczykowska, F. Jorge, and J. Dupuy, “Penalties from in-band crosstalk for advanced optical modulation formats,” in 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011), paper Tu.5.B.7.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Ultra-low-crosstalk multi-core fiber feasible to ultra-long-haul transmission,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPC2.

T. Mizuno, A. Isoda, K. Shibahara, Y. Miyamoto, S. Jain, S. Alam, D. J. Richardson, C. Castro, K. Pulverer, Y. Sasaki, Y. Amma, K. Takenaga, K. Aikawa, and T. Morioka, “In-service crosstalk monitoring for dense space division multiplexed multi-core fiber transmission systems,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3J.2.

T. Takagi, H. Hasegawa, K. Sato, Y. Sone, A. Hirano, and M. Jinno, “Disruption minimized spectrum defragmentation in elastic optical path networks that adopt distance adaptive modulation,” in 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011), paper Mo.2.K.3.

N. Hua and X. Zheng, “Optical time slice switching (OTSS): an all-optical sub-wavelength solution based on time synchronization,” in Asia Communications and Photonics Conference 2013 (Optical Society of America, 2013), paper AW3H.3.

Y. Li, N. Hua, and X. Zheng, “Fine-grained all-optical switching based on optical time slice switching for hybrid packet-OCS intra-data center networks,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3J.5.

N. Benzaoui, Y. Pointurier, and S. Bigo, “Latency in a 2D torus burst optical slot switching data center,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Th2A.33.

F. Ye, J. Tu, K. Saitoh, K. Takenaga, S. Matsuo, and T. Morioka, “A new and simple method for crosstalk estimation in homogeneous trench-assisted multi-core fibers,” in Asia Communications and Photonics Conference 2014 (Optical Society of America, 2014), paper AW4C.3.

J. Ahmed, F. Solano, P. Monti, and L. Wosinska, “Traffic re-optimization strategies for dynamically provisioned WDM networks,” in Preecdings of Optical Network Design and Modeling Conference (IEEE, 2011), pp. 1–6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Required “pilot tones” vs. network load.
Fig. 2
Fig. 2 Concept of in-service crosstalk monitoring and tracing.
Fig. 3
Fig. 3 Flow chart of lightpath re-optimization process.
Fig. 4
Fig. 4 (a) The traffic scenario of a MCF network. (b) The monitoring channel of Traffic #B. (c) The monitoring channel of Traffic #C. (d) Flow chart of the MTSA algorithm.
Fig. 5
Fig. 5 The 20x20 2D-Torus topology.
Fig. 6
Fig. 6 (a) Highest monitor sampling frequency vs. network load. (b) Highest monitor sampling frequency vs. crosstalk threshold for monitoring.
Fig. 7
Fig. 7 Experimental setup.
Fig. 8
Fig. 8 (a) Optical power spectrum at Port 1. (b) Crosstalk vs. wavelengths.
Fig. 9
Fig. 9 DSO screen shots for monitoring channels.
Fig. 10
Fig. 10 The parsed traffic and path information from the received monitoring time slices.
Fig. 11
Fig. 11 DSO screen shots of data channels during lightpath re-optimization.
Fig. 12
Fig. 12 Average traffic bitrates.
Fig. 13
Fig. 13 Monitoring results after lightpath re-optimization.

Tables (4)

Tables Icon

Table 1 RWCA algorithm

Tables Icon

Table 3 MTSA algorithm

Tables Icon

Table 4 Results of the monitoring time slices

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

XT= 2 κ 2 RL βΛ = κ 2 RL πΛ λ= k coff λ

Metrics