Abstract

Quantum key distribution (QKD) at telecom wavelengths (1260 – 1625 nm) has the potential for fast deployment due to existing optical fibre infrastructure and mature telecom technologies. At these wavelengths, Indium Gallium Arsenide (InGaAs) avalanche photodiode (APD) based detectors are the preferred choice for photon detection. Similar to their Silicon counterparts used at shorter wavelengths, they exhibit fluorescence from recombination of electron-hole pairs generated in the avalanche breakdown process. This fluorescence may open side channels for attacks on QKD systems. Here, we characterize the breakdown fluorescence from two commercial InGaAs single photon counting modules, and find a spectral distribution between 1000 nm and 1600 nm. We also show that by spectral filtering, this side channel can be efficiently suppressed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode

Naoto Namekata, Shunsuke Adachi, and Shuichiro Inoue
Opt. Express 17(8) 6275-6282 (2009)

Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode

Guang Wu, Yi Jian, E Wu, and Heping Zeng
Opt. Express 17(21) 18782-18787 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in International Conference on Computers, Systems & Signal Processing, Bangalore, India (1984), pp. 175–179.
  2. W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
    [Crossref]
  3. I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, “Free-space quantum key distribution with entangled photons,” Appl. Phys. Lett. 89, 101122 (2006).
    [Crossref]
  4. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2012).
    [Crossref]
  5. P. D. Townsend, “Quantum cryptography in optical fiber networks,” in OFC/IOOC Technical Digest, Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication (1999), vol. 4, pp. 141–143.
  6. M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, and E. Sundberg, “Experiments on long wavelength (1550nm) ‘plug and play’ quantum cryptography systems,” Opt. Express 4, 383–387 (1999).
    [Crossref] [PubMed]
  7. G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).
    [Crossref]
  8. R. J. Hughes, G. L. Morgan, and C. G. Peterson, “Quantum key distribution over a 48 km optical fibre network,” J. Mod. Opt. 47, 533–547 (2000).
  9. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “‘plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
    [Crossref]
  10. D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
    [Crossref]
  11. R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
    [Crossref]
  12. J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4, e286 (2015).
    [Crossref]
  13. J. Bude, N. Sano, and A. Yoshii, “Hot-carrier luminescence in Si,” Phys. Rev. B 45, 5848–5856 (1992).
    [Crossref]
  14. A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices,” IEEE Trans. Electron. Dev. 40, 577–582 (1993).
    [Crossref]
  15. C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, “The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks?” J. Mod. Opt. 48, 2039–2047 (2001).
    [Crossref]
  16. F. Acerbi, A. Tosi, and F. Zappa, “Avalanche current waveform estimated from electroluminescence in InGaAs/InP SPADs,” IEEE Photon. Technol. Lett. 25, 1778–1780 (2013).
    [Crossref]
  17. L. Marini, R. Camphausen, C. Xiong, B. Eggleton, and S. Palomba, “Breakdown flash at telecom wavelengths in direct bandgap single-photon avalanche photodiodes,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP) (2016).
  18. A. Meda, I. P. Degiovanni, A. Tosi, Z. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2016).
    [Crossref]
  19. I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, “Optical crosstalk in single photon avalanche diode arrays: a new complete model,” Opt. Express 16, 8381–8394 (2008).
    [Crossref] [PubMed]
  20. R. D. Younger, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated geiger-mode avalanche photodiode focal plane arrays,” Proc. SPIE 7320, 73200Q (2009).
    [Crossref]
  21. W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87, 835–842 (1952).
    [Crossref]
  22. ID Quantique, Data sheet for ID220 Infrared Single-Photon Detector.
  23. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
    [Crossref]

2016 (1)

A. Meda, I. P. Degiovanni, A. Tosi, Z. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2016).
[Crossref]

2015 (1)

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4, e286 (2015).
[Crossref]

2013 (1)

F. Acerbi, A. Tosi, and F. Zappa, “Avalanche current waveform estimated from electroluminescence in InGaAs/InP SPADs,” IEEE Photon. Technol. Lett. 25, 1778–1780 (2013).
[Crossref]

2012 (1)

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2012).
[Crossref]

2009 (2)

R. D. Younger, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated geiger-mode avalanche photodiode focal plane arrays,” Proc. SPIE 7320, 73200Q (2009).
[Crossref]

R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

2008 (1)

2006 (1)

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, “Free-space quantum key distribution with entangled photons,” Appl. Phys. Lett. 89, 101122 (2006).
[Crossref]

2001 (3)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, “The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks?” J. Mod. Opt. 48, 2039–2047 (2001).
[Crossref]

2000 (2)

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).
[Crossref]

R. J. Hughes, G. L. Morgan, and C. G. Peterson, “Quantum key distribution over a 48 km optical fibre network,” J. Mod. Opt. 47, 533–547 (2000).

1999 (1)

1998 (1)

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

1997 (1)

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “‘plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

1993 (1)

A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices,” IEEE Trans. Electron. Dev. 40, 577–582 (1993).
[Crossref]

1992 (1)

J. Bude, N. Sano, and A. Yoshii, “Hot-carrier luminescence in Si,” Phys. Rev. B 45, 5848–5856 (1992).
[Crossref]

1952 (1)

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87, 835–842 (1952).
[Crossref]

Acerbi, F.

F. Acerbi, A. Tosi, and F. Zappa, “Avalanche current waveform estimated from electroluminescence in InGaAs/InP SPADs,” IEEE Photon. Technol. Lett. 25, 1778–1780 (2013).
[Crossref]

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in International Conference on Computers, Systems & Signal Processing, Bangalore, India (1984), pp. 175–179.

Bigliardi, S.

A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices,” IEEE Trans. Electron. Dev. 40, 577–582 (1993).
[Crossref]

Bourennane, M.

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in International Conference on Computers, Systems & Signal Processing, Bangalore, India (1984), pp. 175–179.

Brida, G.

A. Meda, I. P. Degiovanni, A. Tosi, Z. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2016).
[Crossref]

Bude, J.

J. Bude, N. Sano, and A. Yoshii, “Hot-carrier luminescence in Si,” Phys. Rev. B 45, 5848–5856 (1992).
[Crossref]

Buttler, W. T.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Camphausen, R.

L. Marini, R. Camphausen, C. Xiong, B. Eggleton, and S. Palomba, “Breakdown flash at telecom wavelengths in direct bandgap single-photon avalanche photodiodes,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP) (2016).

Chludzinski, J. W.

R. D. Younger, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated geiger-mode avalanche photodiode focal plane arrays,” Proc. SPIE 7320, 73200Q (2009).
[Crossref]

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Cova, S.

Degiovanni, I. P.

A. Meda, I. P. Degiovanni, A. Tosi, Z. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2016).
[Crossref]

Diamanti, E.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2012).
[Crossref]

Donnelly, J. P.

R. D. Younger, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated geiger-mode avalanche photodiode focal plane arrays,” Proc. SPIE 7320, 73200Q (2009).
[Crossref]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Eggleton, B.

L. Marini, R. Camphausen, C. Xiong, B. Eggleton, and S. Palomba, “Breakdown flash at telecom wavelengths in direct bandgap single-photon avalanche photodiodes,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP) (2016).

Funk, J. E.

R. D. Younger, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated geiger-mode avalanche photodiode focal plane arrays,” Proc. SPIE 7320, 73200Q (2009).
[Crossref]

Gautier, J. D.

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).
[Crossref]

Genovese, M.

A. Meda, I. P. Degiovanni, A. Tosi, Z. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2016).
[Crossref]

Ghioni, M.

Gibson, F.

Gisin, N.

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “‘plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Grangier, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2012).
[Crossref]

Guinnard, O.

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).
[Crossref]

Hadfield, R.

R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

Hening, A.

Herzog, T.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “‘plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Hughes, R. J.

R. J. Hughes, G. L. Morgan, and C. G. Peterson, “Quantum key distribution over a 48 km optical fibre network,” J. Mod. Opt. 47, 533–547 (2000).

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Huttner, B.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “‘plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Ingargiola, A.

Itzler, M. A.

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4, e286 (2015).
[Crossref]

Jonsson, P.

Jouguet, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2012).
[Crossref]

Karlsson, A.

Kunz-Jacques, S.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2012).
[Crossref]

Kurtsiefer, C.

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, “Free-space quantum key distribution with entangled photons,” Appl. Phys. Lett. 89, 101122 (2006).
[Crossref]

C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, “The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks?” J. Mod. Opt. 48, 2039–2047 (2001).
[Crossref]

Kwiat, P. G.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Labanca, I.

Lacaita, A. L.

A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices,” IEEE Trans. Electron. Dev. 40, 577–582 (1993).
[Crossref]

Lamas-Linares, A.

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, “Free-space quantum key distribution with entangled photons,” Appl. Phys. Lett. 89, 101122 (2006).
[Crossref]

Lamoreaux, S. K.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Leverrier, A.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2012).
[Crossref]

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Ljunggren, D.

Luther, G. G.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Mahoney, L. J.

R. D. Younger, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated geiger-mode avalanche photodiode focal plane arrays,” Proc. SPIE 7320, 73200Q (2009).
[Crossref]

Manfredi, M.

A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices,” IEEE Trans. Electron. Dev. 40, 577–582 (1993).
[Crossref]

Marangoni, S.

Marcikic, I.

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, “Free-space quantum key distribution with entangled photons,” Appl. Phys. Lett. 89, 101122 (2006).
[Crossref]

Marini, L.

L. Marini, R. Camphausen, C. Xiong, B. Eggleton, and S. Palomba, “Breakdown flash at telecom wavelengths in direct bandgap single-photon avalanche photodiodes,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP) (2016).

Mayer, S.

C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, “The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks?” J. Mod. Opt. 48, 2039–2047 (2001).
[Crossref]

McIntosh, K. A.

R. D. Younger, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated geiger-mode avalanche photodiode focal plane arrays,” Proc. SPIE 7320, 73200Q (2009).
[Crossref]

Meda, A.

A. Meda, I. P. Degiovanni, A. Tosi, Z. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2016).
[Crossref]

Morgan, G. L.

R. J. Hughes, G. L. Morgan, and C. G. Peterson, “Quantum key distribution over a 48 km optical fibre network,” J. Mod. Opt. 47, 533–547 (2000).

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Muller, A.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “‘plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Nordholt, J. E.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Oakley, D. C.

R. D. Younger, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated geiger-mode avalanche photodiode focal plane arrays,” Proc. SPIE 7320, 73200Q (2009).
[Crossref]

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Palomba, S.

L. Marini, R. Camphausen, C. Xiong, B. Eggleton, and S. Palomba, “Breakdown flash at telecom wavelengths in direct bandgap single-photon avalanche photodiodes,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP) (2016).

Pan, J.-W.

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4, e286 (2015).
[Crossref]

Peterson, C. G.

R. J. Hughes, G. L. Morgan, and C. G. Peterson, “Quantum key distribution over a 48 km optical fibre network,” J. Mod. Opt. 47, 533–547 (2000).

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Rarity, J. G.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Read, W. T.

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87, 835–842 (1952).
[Crossref]

Rech, I.

Ribordy, G.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).
[Crossref]

Sano, N.

J. Bude, N. Sano, and A. Yoshii, “Hot-carrier luminescence in Si,” Phys. Rev. B 45, 5848–5856 (1992).
[Crossref]

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Shockley, W.

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87, 835–842 (1952).
[Crossref]

Simmons, C. M.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Spinelli, R.

Stefanov, A.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Stucki, D.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Sundberg, E.

Tittel, W.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “‘plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Tosi, A.

A. Meda, I. P. Degiovanni, A. Tosi, Z. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2016).
[Crossref]

F. Acerbi, A. Tosi, and F. Zappa, “Avalanche current waveform estimated from electroluminescence in InGaAs/InP SPADs,” IEEE Photon. Technol. Lett. 25, 1778–1780 (2013).
[Crossref]

Townsend, P. D.

P. D. Townsend, “Quantum cryptography in optical fiber networks,” in OFC/IOOC Technical Digest, Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication (1999), vol. 4, pp. 141–143.

Tsegaye, T.

Verghese, S.

R. D. Younger, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated geiger-mode avalanche photodiode focal plane arrays,” Proc. SPIE 7320, 73200Q (2009).
[Crossref]

Voronov, B.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Wall, T.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

Weinfurter, H.

C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, “The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks?” J. Mod. Opt. 48, 2039–2047 (2001).
[Crossref]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Xiong, C.

L. Marini, R. Camphausen, C. Xiong, B. Eggleton, and S. Palomba, “Breakdown flash at telecom wavelengths in direct bandgap single-photon avalanche photodiodes,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP) (2016).

Yoshii, A.

J. Bude, N. Sano, and A. Yoshii, “Hot-carrier luminescence in Si,” Phys. Rev. B 45, 5848–5856 (1992).
[Crossref]

Younger, R. D.

R. D. Younger, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated geiger-mode avalanche photodiode focal plane arrays,” Proc. SPIE 7320, 73200Q (2009).
[Crossref]

Yuan, Z.

A. Meda, I. P. Degiovanni, A. Tosi, Z. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2016).
[Crossref]

Zappa, F.

F. Acerbi, A. Tosi, and F. Zappa, “Avalanche current waveform estimated from electroluminescence in InGaAs/InP SPADs,” IEEE Photon. Technol. Lett. 25, 1778–1780 (2013).
[Crossref]

A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices,” IEEE Trans. Electron. Dev. 40, 577–582 (1993).
[Crossref]

Zarda, P.

C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, “The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks?” J. Mod. Opt. 48, 2039–2047 (2001).
[Crossref]

Zbinden, H.

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4, e286 (2015).
[Crossref]

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “‘plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Zhang, J.

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4, e286 (2015).
[Crossref]

Appl. Phys. Lett. (3)

I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, “Free-space quantum key distribution with entangled photons,” Appl. Phys. Lett. 89, 101122 (2006).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “‘plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Acerbi, A. Tosi, and F. Zappa, “Avalanche current waveform estimated from electroluminescence in InGaAs/InP SPADs,” IEEE Photon. Technol. Lett. 25, 1778–1780 (2013).
[Crossref]

IEEE Trans. Electron. Dev. (1)

A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices,” IEEE Trans. Electron. Dev. 40, 577–582 (1993).
[Crossref]

J. Mod. Opt. (4)

C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, “The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks?” J. Mod. Opt. 48, 2039–2047 (2001).
[Crossref]

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001).
[Crossref]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Fast and user-friendly quantum key distribution,” J. Mod. Opt. 47, 517–531 (2000).
[Crossref]

R. J. Hughes, G. L. Morgan, and C. G. Peterson, “Quantum key distribution over a 48 km optical fibre network,” J. Mod. Opt. 47, 533–547 (2000).

Light Sci. Appl. (2)

J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4, e286 (2015).
[Crossref]

A. Meda, I. P. Degiovanni, A. Tosi, Z. Yuan, G. Brida, and M. Genovese, “Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution,” Light Sci. Appl. 6, e16261 (2016).
[Crossref]

Nat. Photonics (2)

R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2012).
[Crossref]

Opt. Express (2)

Phys. Rev. (1)

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87, 835–842 (1952).
[Crossref]

Phys. Rev. B (1)

J. Bude, N. Sano, and A. Yoshii, “Hot-carrier luminescence in Si,” Phys. Rev. B 45, 5848–5856 (1992).
[Crossref]

Phys. Rev. Lett. (1)

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283–3286 (1998).
[Crossref]

Proc. SPIE (1)

R. D. Younger, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analysis of integrated geiger-mode avalanche photodiode focal plane arrays,” Proc. SPIE 7320, 73200Q (2009).
[Crossref]

Other (4)

L. Marini, R. Camphausen, C. Xiong, B. Eggleton, and S. Palomba, “Breakdown flash at telecom wavelengths in direct bandgap single-photon avalanche photodiodes,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP) (2016).

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in International Conference on Computers, Systems & Signal Processing, Bangalore, India (1984), pp. 175–179.

P. D. Townsend, “Quantum cryptography in optical fiber networks,” in OFC/IOOC Technical Digest, Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication (1999), vol. 4, pp. 141–143.

ID Quantique, Data sheet for ID220 Infrared Single-Photon Detector.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Setup for detecting the breakdown flash. The two APDs are optically coupled to each other by a pair of reflective collimators (RC1 and RC2). It takes Δt ≈ 32.5 ns for a photon to travel the optical distance between APD1 and APD2. (b) Schematics of the lengths of fibre patchcords. The output signals from APDs are sent to an oscilloscope with an electrical delay Δt′ ≈ 127 ns applied to APD1. The oscilloscope triggers on signals received from APD2, and records the arrival times of signals from APD1. We record coincidence both events where APD1 emits a breakdown flash that is detected by APD2, and the other way round. An optical bandpass filter in a another measurement to suppress the number of breakdown flash events. The transmission profile of the bandpass filter is shown in (c).
Fig. 2
Fig. 2 (a) Histogram of signal arrival times from APD1 recorded by an oscilloscope. Peak 1 corresponds to APD1 emitting a breakdown flash that detected by APD2 (path A-B-C-D), peak 2 to the reverse direction (path D-C-B-A). Peak 3 is suspected to be due to the afterpulsing of APD1. Peaks 4 and 5 are due to the back reflection of breakdown flash light at fibre joints (paths A-B-C-D-C/B-D and D-C-B-A-B/C-A). (b) Same measurement, but with a bandpass filter in the optical path. The number of breakdown flash events is suppressed by a factor of over 100. An integration time of 12 hours is used for both measurements.
Fig. 3
Fig. 3 (a) Setup for a coincidence measurement to determine the rate of detecting breakdown flashes from APD1. An electrical delay is applied to APD1 such that the dark count signal from APD1 and the breakdown flash signal from APD2 arrive at the coincidence stage at the same time. A counter is used to log the number of events per second. The setup can also measure the breakdown flash rates from APD2 with the electrical delay connected to APD2. (b) Setup for measuring the spectral distribution of the breakdown flashes. The working principle is the same as the one in (a), except that the reflective collimators are replaced by a grating monochromator to select different transmission wavelength.
Fig. 4
Fig. 4 Spectral distribution of the InGaAs APD breakdown flash. The integration time for each data point is 30 minutes. We record cases where APD1 emits a breakdown flash that is detected by APD2 and vice versa. The two spectra range from 1000 nm to 1600 nm and peak at about 1300 nm. The dashed line indicates the background due to accidental coincidences.

Metrics