Abstract

We report a monolithic 1240 nm diamond Raman laser producing pulses with duration of 42–62 ps at 100 kHz repetition rate, and maximum average power of 246 mW. The Raman laser is formed by a 0.5-mm thick planar diamond, coated on both sides and pumped by ~100 ps pulses from a Q-switched 1064 nm laser. The maximum conversion efficiency from 1064 nm to 1240 nm was about 25%. The 1240 nm signal was frequency-doubled in single-pass configuration through a 10-mm long LBO crystal, enabling generation of pulses with a duration of 29–46 ps at 620 nm. The maximum average power at 620 nm was 128 mW, and the maximum conversion efficiency from 1240 nm to 620 nm was 50%. The Raman laser provides an efficient and flexible way to extend short pulse operation to wavelengths in spectral domains difficult to reach, such as 620 nm and in addition provides a simple pulse shortening mechanisms.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm

Aravindan M. Warrier, Jipeng Lin, Helen M. Pask, Richard P. Mildren, David W. Coutts, and David J. Spence
Opt. Express 22(3) 3325-3333 (2014)

Nanosecond pulsed 620  nm source by frequency-doubling a phosphosilicate Raman fiber amplifier

A. M. Chandran, T. H. Runcorn, R. T. Murray, and J. R. Taylor
Opt. Lett. 44(24) 6025-6028 (2019)

1240 nm diamond Raman laser operating near the quantum limit

Alexander Sabella, James A. Piper, and Richard P. Mildren
Opt. Lett. 35(23) 3874-3876 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
    [PubMed]
  2. E. Mehner, B. Bernard, H. Giessen, D. Kopf, and B. Braun, “Sub-20-ps pulses from a passively Q-switched microchip laser at 1 MHz repetition rate,” Opt. Lett. 39(10), 2940–2943 (2014).
    [PubMed]
  3. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).
  4. R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
    [PubMed]
  5. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett. 35(17), 2994–2996 (2010).
    [PubMed]
  6. R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39(14), 4152–4155 (2014).
    [PubMed]
  7. R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008).
    [PubMed]
  8. S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40(6), 930–933 (2015).
    [PubMed]
  9. D. J. Spence, E. Granados, and R. P. Mildren, “Mode-locked picosecond diamond Raman laser,” Opt. Lett. 35(4), 556–558 (2010).
    [PubMed]
  10. J. Lin and D. J. Spence, “25.5 fs dissipative soliton diamond Raman laser,” Opt. Lett. 41(8), 1861–1864 (2016).
    [PubMed]
  11. P. Černý, H. Jelínková, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
  12. T. T. Basiev, P. G. Zverev, A. Ya. Karasik, V. V. Osiko, A. A. Sobol, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).
  13. A. A. Kaminskii, H. J. Eichler, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. García-Sole, J. Fernández, and R. Balda, “Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals,” Appl. Opt. 38(21), 4533–4547 (1999).
    [PubMed]
  14. A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).
  15. A. Penzkofer, A. Laubereau, and W. Kaiser, High Intensity Raman Interactions (Pergamon Press, 1979).
  16. V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).
  17. J. Nikkinen, A. Härkönen, I. Leino, and M. Guina, “Generation of sub-100 ps pulses at 532 nm, 355 nm and 266 nm using a SESAM Q-switched microchip laser,” IEEE Photonics Technol. Lett. 29(21), 1816–1819 (2017).
  18. R. Mildren and J. Rabeau, Optical Engineering of Diamond (Wiley-VCH, 2013).
  19. Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
  20. S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).

2017 (1)

J. Nikkinen, A. Härkönen, I. Leino, and M. Guina, “Generation of sub-100 ps pulses at 532 nm, 355 nm and 266 nm using a SESAM Q-switched microchip laser,” IEEE Photonics Technol. Lett. 29(21), 1816–1819 (2017).

2016 (1)

2015 (1)

2014 (2)

2013 (1)

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).

2010 (2)

2009 (1)

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

2008 (1)

2006 (1)

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).

2004 (1)

T. T. Basiev, P. G. Zverev, A. Ya. Karasik, V. V. Osiko, A. A. Sobol, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).

2002 (1)

P. Černý, H. Jelínková, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).

2000 (1)

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

1999 (2)

1997 (1)

1965 (1)

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).

Annanenkov, A. N.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

Balda, R.

Balmer, R. S.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Barnes, J. C.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

Basiev, T. T.

T. T. Basiev, P. G. Zverev, A. Ya. Karasik, V. V. Osiko, A. A. Sobol, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).

P. Černý, H. Jelínková, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).

Bernard, B.

Bloembergen, N.

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).

Bonner, G. M.

Brandon, J. R.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Braun, B.

Burns, D.

Butler, J. E.

Cerný, P.

P. Černý, H. Jelínková, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).

Chang, J.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).

Chunaev, D. S.

T. T. Basiev, P. G. Zverev, A. Ya. Karasik, V. V. Osiko, A. A. Sobol, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).

Chyba, T. H.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

Clewes, S. L.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Dawson, M. D.

Dhillon, H. K.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Ding, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).

Dodson, J. M.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Eichler, H. J.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

A. A. Kaminskii, H. J. Eichler, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. García-Sole, J. Fernández, and R. Balda, “Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals,” Appl. Opt. 38(21), 4533–4547 (1999).
[PubMed]

Fan, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).

Fernández, J.

Findeisen, J.

Fluck, R.

Friel, I.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Gad, G. M. A.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

García-Sole, J.

Giessen, H.

Gini, E.

Granados, E.

Gu, E.

Guina, M.

J. Nikkinen, A. Härkönen, I. Leino, and M. Guina, “Generation of sub-100 ps pulses at 532 nm, 355 nm and 266 nm using a SESAM Q-switched microchip laser,” IEEE Photonics Technol. Lett. 29(21), 1816–1819 (2017).

Härkönen, A.

J. Nikkinen, A. Härkönen, I. Leino, and M. Guina, “Generation of sub-100 ps pulses at 532 nm, 355 nm and 266 nm using a SESAM Q-switched microchip laser,” IEEE Photonics Technol. Lett. 29(21), 1816–1819 (2017).

Hastie, J. E.

Inglis, P. N.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Jaque, D.

Jelínková, H.

P. Černý, H. Jelínková, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).

Kaminskii, A. A.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

A. A. Kaminskii, H. J. Eichler, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. García-Sole, J. Fernández, and R. Balda, “Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals,” Appl. Opt. 38(21), 4533–4547 (1999).
[PubMed]

Karasik, A. Ya.

T. T. Basiev, P. G. Zverev, A. Ya. Karasik, V. V. Osiko, A. A. Sobol, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).

Kärtner, F. X.

Keller, U.

Kemp, A. J.

Kitzler, O.

Klassen, N. V.

Kopf, D.

Lee, H. R.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

Lee, S. W.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

Legun, V. D.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

Leino, I.

J. Nikkinen, A. Härkönen, I. Leino, and M. Guina, “Generation of sub-100 ps pulses at 532 nm, 355 nm and 266 nm using a SESAM Q-switched microchip laser,” IEEE Photonics Technol. Lett. 29(21), 1816–1819 (2017).

Li, L. E.

Li, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).

Lin, J.

Liu, H.

Liu, Y.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).

Lubeigt, W.

Madgwick, T. D.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Markham, M. L.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Marsh, W. D.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

McCray, C. L.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

McKay, A.

Mehner, E.

Mildren, R. P.

Mollart, T. P.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Moser, M.

Nikkinen, J.

J. Nikkinen, A. Härkönen, I. Leino, and M. Guina, “Generation of sub-100 ps pulses at 532 nm, 355 nm and 266 nm using a SESAM Q-switched microchip laser,” IEEE Photonics Technol. Lett. 29(21), 1816–1819 (2017).

Osiko, V. V.

T. T. Basiev, P. G. Zverev, A. Ya. Karasik, V. V. Osiko, A. A. Sobol, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).

Paschotta, R.

Perkins, N.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Rabeau, J. R.

Redkin, B. S.

Reilly, S.

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[PubMed]

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).

Savitski, V. G.

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond Raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[PubMed]

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).

Scarsbrook, G. A.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Shen, Y. R.

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).

Sobol, A. A.

T. T. Basiev, P. G. Zverev, A. Ya. Karasik, V. V. Osiko, A. A. Sobol, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).

Spence, D. J.

Spühler, G. J.

Su, F.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).

Temple, D. A.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

Twitchen, D. J.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Ueda, K.

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

A. A. Kaminskii, H. J. Eichler, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. García-Sole, J. Fernández, and R. Balda, “Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals,” Appl. Opt. 38(21), 4533–4547 (1999).
[PubMed]

Wang, Q.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).

Wang, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).

Whitehead, A. J.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Williams, R. J.

Wilman, J. J.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Woollard, S. M.

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Zhang, G.

Zhang, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).

Zhang, X.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).

Zverev, P. G.

T. T. Basiev, P. G. Zverev, A. Ya. Karasik, V. V. Osiko, A. A. Sobol, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).

P. Černý, H. Jelínková, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).

Appl. Opt. (1)

Appl. Phys. B (1)

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).

IEEE J. Quantum Electron. (2)

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).

P. Černý, H. Jelínková, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).

IEEE Photonics Technol. Lett. (1)

J. Nikkinen, A. Härkönen, I. Leino, and M. Guina, “Generation of sub-100 ps pulses at 532 nm, 355 nm and 266 nm using a SESAM Q-switched microchip laser,” IEEE Photonics Technol. Lett. 29(21), 1816–1819 (2017).

J. Exp. Theor. Phys. (1)

T. T. Basiev, P. G. Zverev, A. Ya. Karasik, V. V. Osiko, A. A. Sobol, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, “Chemical vapour deposition synthetic diamond: materials, technology and applications,” J. Phys. Condens. Matter 21(36), 364221 (2009).
[PubMed]

Opt. Commun. (1)

A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun. 183(1–4), 277–287 (2000).

Opt. Express (1)

Opt. Lett. (7)

Phys. Rev. (1)

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).

Other (2)

A. Penzkofer, A. Laubereau, and W. Kaiser, High Intensity Raman Interactions (Pergamon Press, 1979).

R. Mildren and J. Rabeau, Optical Engineering of Diamond (Wiley-VCH, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A schematic presentation of the setup. DRL: diamond Raman laser, HWP: half-wave plate, LBO: lithium triborate, DM: dichroic mirror.
Fig. 2
Fig. 2 (a) Diamond Raman laser average output power and conversion efficiency to the 1240 nm 1st Stokes line and (b) Output spectrum of the diamond Raman laser at 1240 nm. Inset: Beam profile of the 1240 nm output.
Fig. 3
Fig. 3 (a) Typical autocorrelation trace of the 1240 nm diamond Raman laser output with Gaussian fit and (b) measured pulse durations at 1240 nm and 620 nm, given as a function of 1240 nm output power. The 1240 nm pulse duration was measured separately from 620 nm frequency doubling.
Fig. 4
Fig. 4 Measured Raman laser output spectra including 1st–3rd anti-Stokes and 1st–3rd Stokes lines. Intensities are normalized.
Fig. 5
Fig. 5 (a) Average power and the conversion efficiency of the 620 nm frequency doubled output and (b) spectrum of the 620 nm output. Inset: Beam profile of the 620 nm output.

Metrics