Abstract

We have demonstrated a laser in which the frequency shift due to small cavity fluctuations is far less than what would be expected from a conventional laser. The factor of sensitivity suppression is inferred to be equal to the effective group index experienced by the laser, implying that this laser is subluminal. We have observed a suppression factor as high as 663. Such a laser is highly self-stabilized compared to a conventional laser, and is expected to have a far smaller Schawlow-Townes linewidth. As a result, this laser may have potentially significant applications in the fields of high-precision optical metrology and passive frequency stabilization.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Superluminal Raman laser with enhanced cavity length sensitivity

Zifan Zhou, Minchuan Zhou, and Selim M. Shahriar
Opt. Express 27(21) 29738-29745 (2019)

Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser

Joshua Yablon, Zifan Zhou, Minchuan Zhou, Ye Wang, S. Tseng, and M. S. Shahriar
Opt. Express 24(24) 27444-27456 (2016)

Lasing dynamics of super and sub luminal lasers

Jacob Scheuer and Selim M. Shahriar
Opt. Express 23(25) 32350-32366 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
  2. H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
    [PubMed]
  3. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281, 4931–4935 (2008).
  4. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
    [PubMed]
  5. D. D. Smith, K. Myneni, H. Chang, A. Toftul, C. Schambeau, J. A. Odutola, and J. C. Diels, “Tuning the sensitivity of an optical cavity with slow and fast light,” Proc. SPIE 8273, 82730T (2012).
  6. N. B. Phillips, I. Novikova, E. E. Mikhailov, D. Budker, and S. Rochester, “Controllable steep dispersion with gain in a four-level N-scheme with four-wave mixing,” J. Mod. Opt. 60(1), 64–72 (2013).
  7. M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
    [PubMed]
  8. Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultrastable subluminal laser,” Opt. Commun. 358, 6–19 (2016).
  9. C. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
  10. M. A. Biot, “General theorems on the equivalence of group velocity and energy transport,” Phys. Rev. 105(4), 1129–1137 (1957).
  11. M. O. Scully and W. E. Lamb, Laser Physics (Westview, 1974).
  12. J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444–27456 (2016).
    [PubMed]
  13. H. C. Bolton and G. J. Troup, “The modification of the Kronig-Kramers relations under saturation conditions,” Philos. Mag. 19(159), 477–485 (1969).
  14. G. J. Troup and A. Bambini, “The use of the modified Kramers-Kronig relation in the rate equation approach of laser theory,” Phys. Lett. 45(5), 393–394 (1973).
  15. H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12(10), 104018 (2010).
  16. Y. Wang, Z. Zhou, J. Yablon, and M. S. Shahriar, “Effect of multiorder harmonics in a double-Raman pumped gain medium for a superluminal laser,” Opt. Eng. 54(5), 057106 (2015).
  17. “Vapor pressure of the metallic elements”, in CRC Handbook of Chemistry and Physics, Internet Version 2005, David R. Lide, ed., < http://www.hbcpnetbase.com >, CRC Press, Boca Raton, FL, 2005.
  18. D. Phillips, “Notes on the Rb Maser and the CPT Clock,” https://www.cfa.harvard.edu/~dphil/work/rbmaser/masernotes.pdf .
  19. M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorizaition of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).

2016 (2)

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultrastable subluminal laser,” Opt. Commun. 358, 6–19 (2016).

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444–27456 (2016).
[PubMed]

2015 (1)

Y. Wang, Z. Zhou, J. Yablon, and M. S. Shahriar, “Effect of multiorder harmonics in a double-Raman pumped gain medium for a superluminal laser,” Opt. Eng. 54(5), 057106 (2015).

2014 (1)

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorizaition of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).

2013 (2)

N. B. Phillips, I. Novikova, E. E. Mikhailov, D. Budker, and S. Rochester, “Controllable steep dispersion with gain in a four-level N-scheme with four-wave mixing,” J. Mod. Opt. 60(1), 64–72 (2013).

M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
[PubMed]

2012 (1)

D. D. Smith, K. Myneni, H. Chang, A. Toftul, C. Schambeau, J. A. Odutola, and J. C. Diels, “Tuning the sensitivity of an optical cavity with slow and fast light,” Proc. SPIE 8273, 82730T (2012).

2010 (2)

H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12(10), 104018 (2010).

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[PubMed]

2009 (1)

2008 (1)

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281, 4931–4935 (2008).

2007 (1)

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).

1982 (1)

C. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).

1973 (1)

G. J. Troup and A. Bambini, “The use of the modified Kramers-Kronig relation in the rate equation approach of laser theory,” Phys. Lett. 45(5), 393–394 (1973).

1969 (1)

H. C. Bolton and G. J. Troup, “The modification of the Kronig-Kramers relations under saturation conditions,” Philos. Mag. 19(159), 477–485 (1969).

1957 (1)

M. A. Biot, “General theorems on the equivalence of group velocity and energy transport,” Phys. Rev. 105(4), 1129–1137 (1957).

Bambini, A.

G. J. Troup and A. Bambini, “The use of the modified Kramers-Kronig relation in the rate equation approach of laser theory,” Phys. Lett. 45(5), 393–394 (1973).

Biot, M. A.

M. A. Biot, “General theorems on the equivalence of group velocity and energy transport,” Phys. Rev. 105(4), 1129–1137 (1957).

Bolton, H. C.

H. C. Bolton and G. J. Troup, “The modification of the Kronig-Kramers relations under saturation conditions,” Philos. Mag. 19(159), 477–485 (1969).

Budker, D.

N. B. Phillips, I. Novikova, E. E. Mikhailov, D. Budker, and S. Rochester, “Controllable steep dispersion with gain in a four-level N-scheme with four-wave mixing,” J. Mod. Opt. 60(1), 64–72 (2013).

Chang, H.

D. D. Smith, K. Myneni, H. Chang, A. Toftul, C. Schambeau, J. A. Odutola, and J. C. Diels, “Tuning the sensitivity of an optical cavity with slow and fast light,” Proc. SPIE 8273, 82730T (2012).

Diels, J. C.

D. D. Smith, K. Myneni, H. Chang, A. Toftul, C. Schambeau, J. A. Odutola, and J. C. Diels, “Tuning the sensitivity of an optical cavity with slow and fast light,” Proc. SPIE 8273, 82730T (2012).

Gopal, V.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).

Heifetz, A.

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultrastable subluminal laser,” Opt. Commun. 358, 6–19 (2016).

Henry, C.

C. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).

Krishnamurthy, S.

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorizaition of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).

Kröll, S.

M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
[PubMed]

Li, Q.

M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
[PubMed]

Messall, M.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).

Mikhailov, E. E.

N. B. Phillips, I. Novikova, E. E. Mikhailov, D. Budker, and S. Rochester, “Controllable steep dispersion with gain in a four-level N-scheme with four-wave mixing,” J. Mod. Opt. 60(1), 64–72 (2013).

Mohan, R. K.

M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
[PubMed]

Myneni, K.

D. D. Smith, K. Myneni, H. Chang, A. Toftul, C. Schambeau, J. A. Odutola, and J. C. Diels, “Tuning the sensitivity of an optical cavity with slow and fast light,” Proc. SPIE 8273, 82730T (2012).

Novikova, I.

N. B. Phillips, I. Novikova, E. E. Mikhailov, D. Budker, and S. Rochester, “Controllable steep dispersion with gain in a four-level N-scheme with four-wave mixing,” J. Mod. Opt. 60(1), 64–72 (2013).

Odutola, J. A.

D. D. Smith, K. Myneni, H. Chang, A. Toftul, C. Schambeau, J. A. Odutola, and J. C. Diels, “Tuning the sensitivity of an optical cavity with slow and fast light,” Proc. SPIE 8273, 82730T (2012).

Pati, G. S.

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorizaition of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
[PubMed]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281, 4931–4935 (2008).

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).

Phillips, N. B.

N. B. Phillips, I. Novikova, E. E. Mikhailov, D. Budker, and S. Rochester, “Controllable steep dispersion with gain in a four-level N-scheme with four-wave mixing,” J. Mod. Opt. 60(1), 64–72 (2013).

Rippe, L.

M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
[PubMed]

Rochester, S.

N. B. Phillips, I. Novikova, E. E. Mikhailov, D. Budker, and S. Rochester, “Controllable steep dispersion with gain in a four-level N-scheme with four-wave mixing,” J. Mod. Opt. 60(1), 64–72 (2013).

Sabooni, M.

M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
[PubMed]

Salit, K.

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[PubMed]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
[PubMed]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281, 4931–4935 (2008).

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).

Salit, M.

Schambeau, C.

D. D. Smith, K. Myneni, H. Chang, A. Toftul, C. Schambeau, J. A. Odutola, and J. C. Diels, “Tuning the sensitivity of an optical cavity with slow and fast light,” Proc. SPIE 8273, 82730T (2012).

Shahriar, M. S.

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultrastable subluminal laser,” Opt. Commun. 358, 6–19 (2016).

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444–27456 (2016).
[PubMed]

Y. Wang, Z. Zhou, J. Yablon, and M. S. Shahriar, “Effect of multiorder harmonics in a double-Raman pumped gain medium for a superluminal laser,” Opt. Eng. 54(5), 057106 (2015).

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorizaition of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).

H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12(10), 104018 (2010).

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[PubMed]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009).
[PubMed]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281, 4931–4935 (2008).

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).

Smith, D. D.

D. D. Smith, K. Myneni, H. Chang, A. Toftul, C. Schambeau, J. A. Odutola, and J. C. Diels, “Tuning the sensitivity of an optical cavity with slow and fast light,” Proc. SPIE 8273, 82730T (2012).

Toftul, A.

D. D. Smith, K. Myneni, H. Chang, A. Toftul, C. Schambeau, J. A. Odutola, and J. C. Diels, “Tuning the sensitivity of an optical cavity with slow and fast light,” Proc. SPIE 8273, 82730T (2012).

Tripathi, R.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).

Troup, G. J.

G. J. Troup and A. Bambini, “The use of the modified Kramers-Kronig relation in the rate equation approach of laser theory,” Phys. Lett. 45(5), 393–394 (1973).

H. C. Bolton and G. J. Troup, “The modification of the Kronig-Kramers relations under saturation conditions,” Philos. Mag. 19(159), 477–485 (1969).

Tseng, S.

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444–27456 (2016).
[PubMed]

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorizaition of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).

Tu, Y.

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorizaition of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).

Wang, Y.

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444–27456 (2016).
[PubMed]

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultrastable subluminal laser,” Opt. Commun. 358, 6–19 (2016).

Y. Wang, Z. Zhou, J. Yablon, and M. S. Shahriar, “Effect of multiorder harmonics in a double-Raman pumped gain medium for a superluminal laser,” Opt. Eng. 54(5), 057106 (2015).

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorizaition of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[PubMed]

Yablon, J.

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444–27456 (2016).
[PubMed]

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultrastable subluminal laser,” Opt. Commun. 358, 6–19 (2016).

Y. Wang, Z. Zhou, J. Yablon, and M. S. Shahriar, “Effect of multiorder harmonics in a double-Raman pumped gain medium for a superluminal laser,” Opt. Eng. 54(5), 057106 (2015).

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[PubMed]

Yum, H. N.

H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12(10), 104018 (2010).

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[PubMed]

Zhou, M.

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444–27456 (2016).
[PubMed]

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultrastable subluminal laser,” Opt. Commun. 358, 6–19 (2016).

Zhou, Z.

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultrastable subluminal laser,” Opt. Commun. 358, 6–19 (2016).

J. Yablon, Z. Zhou, M. Zhou, Y. Wang, S. Tseng, and M. S. Shahriar, “Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser,” Opt. Express 24(24), 27444–27456 (2016).
[PubMed]

Y. Wang, Z. Zhou, J. Yablon, and M. S. Shahriar, “Effect of multiorder harmonics in a double-Raman pumped gain medium for a superluminal laser,” Opt. Eng. 54(5), 057106 (2015).

IEEE J. Quantum Electron. (1)

C. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).

J. Mod. Opt. (2)

N. B. Phillips, I. Novikova, E. E. Mikhailov, D. Budker, and S. Rochester, “Controllable steep dispersion with gain in a four-level N-scheme with four-wave mixing,” J. Mod. Opt. 60(1), 64–72 (2013).

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, and S. Tseng, “Evolution of an N-level system via automated vectorizaition of the Liouville equations and application to optically controlled polarization rotation,” J. Mod. Opt. 61(4), 351–367 (2014).

J. Opt. (1)

H. N. Yum and M. S. Shahriar, “Pump-probe model for the Kramers-Kronig relations in a laser,” J. Opt. 12(10), 104018 (2010).

Opt. Commun. (2)

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultrastable subluminal laser,” Opt. Commun. 358, 6–19 (2016).

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement-measurement-sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281, 4931–4935 (2008).

Opt. Eng. (1)

Y. Wang, Z. Zhou, J. Yablon, and M. S. Shahriar, “Effect of multiorder harmonics in a double-Raman pumped gain medium for a superluminal laser,” Opt. Eng. 54(5), 057106 (2015).

Opt. Express (3)

Philos. Mag. (1)

H. C. Bolton and G. J. Troup, “The modification of the Kronig-Kramers relations under saturation conditions,” Philos. Mag. 19(159), 477–485 (1969).

Phys. Lett. (1)

G. J. Troup and A. Bambini, “The use of the modified Kramers-Kronig relation in the rate equation approach of laser theory,” Phys. Lett. 45(5), 393–394 (1973).

Phys. Rev. (1)

M. A. Biot, “General theorems on the equivalence of group velocity and energy transport,” Phys. Rev. 105(4), 1129–1137 (1957).

Phys. Rev. A (1)

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).

Phys. Rev. Lett. (1)

M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
[PubMed]

Proc. SPIE (1)

D. D. Smith, K. Myneni, H. Chang, A. Toftul, C. Schambeau, J. A. Odutola, and J. C. Diels, “Tuning the sensitivity of an optical cavity with slow and fast light,” Proc. SPIE 8273, 82730T (2012).

Other (3)

M. O. Scully and W. E. Lamb, Laser Physics (Westview, 1974).

“Vapor pressure of the metallic elements”, in CRC Handbook of Chemistry and Physics, Internet Version 2005, David R. Lide, ed., < http://www.hbcpnetbase.com >, CRC Press, Boca Raton, FL, 2005.

D. Phillips, “Notes on the Rb Maser and the CPT Clock,” https://www.cfa.harvard.edu/~dphil/work/rbmaser/masernotes.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Energy levels and optical fields involved in the subluminal laser (configuration A); (b) Energy levels and optical fields corresponding to (a), but with the optical pump modeled as an effective decay rate.
Fig. 2
Fig. 2 (a) Schematic of the Raman laser and measurement system used to determine the SSF; (b) One example of an oscilloscope measurement produced by this experiment. The dotted line is the PZT input voltage, while the solid line is the demodulator output voltage; (c) Another example of an oscilloscope measurement. Though the peak-to-peak input voltage is the same as in (b), the peak-to-peak output voltage is larger than in (b), implying a lower SSF.
Fig. 3
Fig. 3 Measured values of SSF versus ΔRP at four different temperatures. These data were then used to create the inset plots of SSF versus temperature at ΔRP = 1800 and ΔRP = 2100 MHz.
Fig. 4
Fig. 4 SSF (left axis) and output power (right axis) vs. detuning, using two different values of Raman pump power
Fig. 5
Fig. 5 SSF (left axis) and output power (right axis) vs. detuning, using two different output coupler reflectivities
Fig. 6
Fig. 6 SSF vs. detuning, for positive and negative values of ΔRP, at three different temperatures
Fig. 7
Fig. 7 (a) Energy levels, coupling fields, and decay rates used in the simulation, corresponding to configuration B; (b) The SSF is the ratio between the “empty cavity” slope (dfEC/dL) and the laser output slope (df/dL).
Fig. 8
Fig. 8 SSF versus ΔRP: Comparison between simulation and experiment

Metrics