Abstract

We propose and investigate a metallic Fresnel zone plate (FZP/MFZP) implemented on a silver-coated optical fiber facet for super-variable focusing of light, the focal point of which can be drastically relocated by varying the wavelength of the incident light. We numerically show that when its nominal focal length is set to 20 μm at 550 nm, its effective focal length can be tuned by ~13.7 μm for 300-nm change in the visible wavelength range. This tuning sensitivity is over 20 times higher than that of a conventional silica-based spherical lens. Even with such high tuning sensitivity with respect to the incident wavelength change, the effective beam radius at the focal point is preserved nearly unchanged, irrespective of the incident wavelength. Then, we fabricate the proposed device, exploiting electron- and focused-ion-beam processes, and experimentally verify its super-variable focusing functionality at typical red, green, and blue wavelengths in the visible wavelength range, which is in good agreement with the numerical prediction. Moreover, we propose a novel MFZP structure that primarily exploits the surface-plasmon-polariton-mediated, extra-ordinary transmission effect. For this we make all the openings of an MFZP, which are determined by the fundamental FZP design formula, be partitioned by multi-rings of all-sub-wavelength annular slits, so that the transmission of azimuthally polarized light is inherently prohibited, thereby leading to super-variable and selective focusing of radially polarized light. We design and fabricate a proof-of-principle structure implemented on a gold-coated fused-silica substrate, and verify its novel characteristics both numerically and experimentally, which are mutually in good agreement. We stress that both the MFZP structures proposed here will be very useful for micro-machining, optical trapping, and biomedical sensing, in particular, which invariably seek compact, high-precision, and flexible focusing schemes.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tight focusing of laser light using a chromium Fresnel zone plate

V. V. Kotlyar, S. S. Stafeev, A. G. Nalimov, M. V. Kotlyar, L. O’Faolain, and E. S. Kozlova
Opt. Express 25(17) 19662-19671 (2017)

Near-field focusing properties of zone plates in visible regime – New insights

Rakesh G. Mote, S. F. Yu, B. K. Ng, Wei Zhou, and S. P. Lau
Opt. Express 16(13) 9554-9564 (2008)

Comprehensive focusing analysis of various Fresnel zone plates

Qing Cao and Jürgen Jahns
J. Opt. Soc. Am. A 21(4) 561-571 (2004)

References

  • View by:
  • |
  • |
  • |

  1. K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603 (2006).
  2. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [PubMed]
  3. H. Kim, L. A. Vazquez-Zuniga, J. Kim, K. Park, D. Lee, S. Hong, and Y. Jeong, “Fiberized plasmonic Fresnel zone plate for wavelength dependent position tunable optical trapping,” in 2015 Conference on Lasers and Electro-Optics Pacific Rim, (Optical Society of America, 2015), paper 28E2_1.
  4. R. S. Rodrigues Ribeiro, P. Dahal, A. Guerreiro, P. A. S. Jorge, and J. Viegas, “Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells,” Sci. Rep. 7(1), 4485 (2017).
    [PubMed]
  5. K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy,” Opt. Lett. 34(7), 971–973 (2009).
    [PubMed]
  6. H. Kim, S.-Y. Lee, S. Koo, J. Kim, K. Park, D. Lee, L. A. Vazquez-Zuniga, N. Park, B. Lee, and Y. Jeong, “Theoretical study on the generation of a low-noise plasmonic hotspot by means of a trench-assisted circular nano-slit,” Opt. Express 22(22), 26844–26853 (2014).
    [PubMed]
  7. H. Kim, H. An, Y. Lee, G. Lee, J. Kim, K. Park, H. S. Kim, L. A. Vasquez-Zuniga, B. Lee, and Y. Jeong, “Fiberized plasmonic Fresnel-zone plate for radially polarized focused light generation with focal-length tunability,” in Advanced Solid State Lasers (Optical Society of America, 2016), paper AM5A.3.
  8. C. Guan, M. Ding, J. Shi, P. Hua, P. Wang, L. Yuan, and G. Brambilla, “Experimental observation and analysis of all-fiber plasmonic double Airy beams,” Opt. Express 22(15), 18365–18371 (2014).
    [PubMed]
  9. W. B. Chen, W. Han, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13, 015003 (2011).
  10. G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
    [PubMed]
  11. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1988).
  12. H. Kim, H. An, J. Kim, S. Lee, K. Park, S. Lee, S. Hong, L. A. Vazquez-Zuniga, S. Y. Lee, B. Lee, and Y. Jeong, “Corrugation-assisted metal-coated angled fiber facet for wavelength-dependent off-axis directional beaming,” Opt. Express 25(7), 8366–8385 (2017).
    [PubMed]
  13. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
    [PubMed]
  14. H. Kim, Y. Kwon, L. A. Vazquez-Zuniga, S. Lee, W. Park, Y. Ham, S. Song, J. Yang, and Y. Jeong, “Rigorous analysis on ring-doped-core fibers for generating cylindrical vector beams,” J. Opt. Soc. Korea 18, 650–656 (2014).
  15. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [PubMed]
  16. L. A. Vazquez-Zuniga, H. S. Kim, Y. Kwon, and Y. Jeong, “Adaptive broadband continuum source at 1200-1400 nm based on an all-fiber dual-wavelength master-oscillator power amplifier and a high-birefringence fiber,” Opt. Express 21(6), 7712–7725 (2013).
    [PubMed]
  17. Y. Kwon, L. A. Vazquez-Zuniga, K. Park, S. Lee, H. Chang, and Y. Jeong, “Combinatorial study of supercontinuum generation dynamics in photonic crystal fiber pumped by ultrafast fiber lasers,” IEEE J. Quantum Electron. 52, 6400311 (2016).
  18. P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102(18), 183902 (2009).
    [PubMed]
  19. Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
  20. E. Wang, L. Li, W. Yu, T. Wang, J. Gao, Y. Fu, and Y. Liu, “The focusing property of immersed plasmonic nanolenses under radially polarized illumination,” IEEE Photonics J. 5, 4500207 (2013).
  21. Y. J. Jung, D. Park, S. Koo, S. Yu, and N. Park, “Metal slit array Fresnel lens for wavelength-scale optical coupling to nanophotonic waveguides,” Opt. Express 17(21), 18852–18857 (2009).
    [PubMed]
  22. D. Choi, Y. Lim, S. Roh, I.-M. Lee, J. Jung, and B. Lee, “Optical beam focusing with a metal slit array arranged along a semicircular surface and its optimization with a genetic algorithm,” Appl. Opt. 49(7), A30–A35 (2010).
    [PubMed]
  23. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2006).
  24. V. V. Kotlyar, S. S. Stafeev, A. G. Nalimov, M. V. Kotlyar, L. O’Faolain, and E. S. Kozlova, “Tight focusing of laser light using a chromium Fresnel zone plate,” Opt. Express 25(17), 19662–19671 (2017).
    [PubMed]
  25. Y. Fu and X. Zhou, “Plasmonic Lenses: A Review,” Plasmonics 5, 287 (2010).
  26. J. Hu, C.-H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
    [PubMed]
  27. M. Young, “Zone plate and their aberrations,” J. Opt. Soc. Am. 62, 972–976 (1972).
  28. W. Wan, C. Ma, and Z. Liu, “Control the dispersive properties of compound plasmonic lenses,” Opt. Commun. 291, 390–394 (2013).
  29. J. Kim, W. Ha, J. Park, J. K. Kim, I.-B. Sohn, W. Shin, and K. Oh, “Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed laser,” IEEE Photonics Technol. Lett. 25, 761–763 (2013).
  30. V. M. Sundaram and S. B. Wen, “Fabrication of micro-optical devices at the end of a multimode optical fiber with negative tone lift-off EBL,” J. Micromech. Microeng. 21, 065021 (2011).
  31. E. Afsharipour, P. Glowacki, and C. Shafai, “A MEMS-controllable Fresnel zone plate for miniaturized UV spectrometer,” Proceedings 1, 563 (2017).
  32. H. C. Kim, H. Ko, and M. Cheng, “Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer,” J. Vac. Sci. Technol. B 26, 2197–2203 (2008).
  33. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).
  34. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
  35. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [PubMed]
  36. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [PubMed]
  37. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  38. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
  39. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998).
    [PubMed]
  40. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
  41. H. H. Barrett and F. A. Horrigan, “Fresnel zone plate imaging of gamma rays; theory,” Appl. Opt. 12(11), 2686–2702 (1973).
    [PubMed]
  42. H. Lan and Y. Ding, Nanoimprint Lithography (INTECH, 2010).
  43. E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
  44. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [PubMed]
  45. F. I. Baida, A. Belkhir, O. Arar, E. H. Barakat, J. Dahdah, C. Chemrouk, D. Van Labeke, C. Diebold, N. Perry, and M.-P. Bernal, “Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation,” Micron 41(7), 742–745 (2010).
    [PubMed]
  46. A. Roszkiewicz and W. Nasalski, “Optical beam interactions with a periodic array of Fresnel zone plates,” J. Phys. At. Mol. Opt. Phys. 47, 165401 (2014).

2017 (4)

R. S. Rodrigues Ribeiro, P. Dahal, A. Guerreiro, P. A. S. Jorge, and J. Viegas, “Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells,” Sci. Rep. 7(1), 4485 (2017).
[PubMed]

H. Kim, H. An, J. Kim, S. Lee, K. Park, S. Lee, S. Hong, L. A. Vazquez-Zuniga, S. Y. Lee, B. Lee, and Y. Jeong, “Corrugation-assisted metal-coated angled fiber facet for wavelength-dependent off-axis directional beaming,” Opt. Express 25(7), 8366–8385 (2017).
[PubMed]

V. V. Kotlyar, S. S. Stafeev, A. G. Nalimov, M. V. Kotlyar, L. O’Faolain, and E. S. Kozlova, “Tight focusing of laser light using a chromium Fresnel zone plate,” Opt. Express 25(17), 19662–19671 (2017).
[PubMed]

E. Afsharipour, P. Glowacki, and C. Shafai, “A MEMS-controllable Fresnel zone plate for miniaturized UV spectrometer,” Proceedings 1, 563 (2017).

2016 (2)

J. Hu, C.-H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
[PubMed]

Y. Kwon, L. A. Vazquez-Zuniga, K. Park, S. Lee, H. Chang, and Y. Jeong, “Combinatorial study of supercontinuum generation dynamics in photonic crystal fiber pumped by ultrafast fiber lasers,” IEEE J. Quantum Electron. 52, 6400311 (2016).

2014 (5)

2013 (4)

L. A. Vazquez-Zuniga, H. S. Kim, Y. Kwon, and Y. Jeong, “Adaptive broadband continuum source at 1200-1400 nm based on an all-fiber dual-wavelength master-oscillator power amplifier and a high-birefringence fiber,” Opt. Express 21(6), 7712–7725 (2013).
[PubMed]

E. Wang, L. Li, W. Yu, T. Wang, J. Gao, Y. Fu, and Y. Liu, “The focusing property of immersed plasmonic nanolenses under radially polarized illumination,” IEEE Photonics J. 5, 4500207 (2013).

W. Wan, C. Ma, and Z. Liu, “Control the dispersive properties of compound plasmonic lenses,” Opt. Commun. 291, 390–394 (2013).

J. Kim, W. Ha, J. Park, J. K. Kim, I.-B. Sohn, W. Shin, and K. Oh, “Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed laser,” IEEE Photonics Technol. Lett. 25, 761–763 (2013).

2011 (2)

V. M. Sundaram and S. B. Wen, “Fabrication of micro-optical devices at the end of a multimode optical fiber with negative tone lift-off EBL,” J. Micromech. Microeng. 21, 065021 (2011).

W. B. Chen, W. Han, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13, 015003 (2011).

2010 (3)

D. Choi, Y. Lim, S. Roh, I.-M. Lee, J. Jung, and B. Lee, “Optical beam focusing with a metal slit array arranged along a semicircular surface and its optimization with a genetic algorithm,” Appl. Opt. 49(7), A30–A35 (2010).
[PubMed]

Y. Fu and X. Zhou, “Plasmonic Lenses: A Review,” Plasmonics 5, 287 (2010).

F. I. Baida, A. Belkhir, O. Arar, E. H. Barakat, J. Dahdah, C. Chemrouk, D. Van Labeke, C. Diebold, N. Perry, and M.-P. Bernal, “Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation,” Micron 41(7), 742–745 (2010).
[PubMed]

2009 (3)

2008 (3)

H. C. Kim, H. Ko, and M. Cheng, “Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer,” J. Vac. Sci. Technol. B 26, 2197–2203 (2008).

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).

2007 (1)

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).

2006 (1)

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603 (2006).

2004 (3)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[PubMed]

2000 (3)

1998 (1)

1973 (1)

1972 (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

M. Young, “Zone plate and their aberrations,” J. Opt. Soc. Am. 62, 972–976 (1972).

1965 (1)

Abeysinghe, D. C.

W. B. Chen, W. Han, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13, 015003 (2011).

Afsharipour, E.

E. Afsharipour, P. Glowacki, and C. Shafai, “A MEMS-controllable Fresnel zone plate for miniaturized UV spectrometer,” Proceedings 1, 563 (2017).

An, H.

Antosiewicz, T. J.

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102(18), 183902 (2009).
[PubMed]

Arar, O.

F. I. Baida, A. Belkhir, O. Arar, E. H. Barakat, J. Dahdah, C. Chemrouk, D. Van Labeke, C. Diebold, N. Perry, and M.-P. Bernal, “Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation,” Micron 41(7), 742–745 (2010).
[PubMed]

Atwater, H. A.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).

Baida, F. I.

F. I. Baida, A. Belkhir, O. Arar, E. H. Barakat, J. Dahdah, C. Chemrouk, D. Van Labeke, C. Diebold, N. Perry, and M.-P. Bernal, “Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation,” Micron 41(7), 742–745 (2010).
[PubMed]

Barakat, E. H.

F. I. Baida, A. Belkhir, O. Arar, E. H. Barakat, J. Dahdah, C. Chemrouk, D. Van Labeke, C. Diebold, N. Perry, and M.-P. Bernal, “Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation,” Micron 41(7), 742–745 (2010).
[PubMed]

Barrett, H. H.

Belkhir, A.

F. I. Baida, A. Belkhir, O. Arar, E. H. Barakat, J. Dahdah, C. Chemrouk, D. Van Labeke, C. Diebold, N. Perry, and M.-P. Bernal, “Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation,” Micron 41(7), 742–745 (2010).
[PubMed]

Bernal, M.-P.

F. I. Baida, A. Belkhir, O. Arar, E. H. Barakat, J. Dahdah, C. Chemrouk, D. Van Labeke, C. Diebold, N. Perry, and M.-P. Bernal, “Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation,” Micron 41(7), 742–745 (2010).
[PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[PubMed]

Brambilla, G.

Brown, T.

Bu, J.

Chang, H.

Y. Kwon, L. A. Vazquez-Zuniga, K. Park, S. Lee, H. Chang, and Y. Jeong, “Combinatorial study of supercontinuum generation dynamics in photonic crystal fiber pumped by ultrafast fiber lasers,” IEEE J. Quantum Electron. 52, 6400311 (2016).

Chemrouk, C.

F. I. Baida, A. Belkhir, O. Arar, E. H. Barakat, J. Dahdah, C. Chemrouk, D. Van Labeke, C. Diebold, N. Perry, and M.-P. Bernal, “Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation,” Micron 41(7), 742–745 (2010).
[PubMed]

Chen, W. B.

W. B. Chen, W. Han, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13, 015003 (2011).

Cheng, M.

H. C. Kim, H. Ko, and M. Cheng, “Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer,” J. Vac. Sci. Technol. B 26, 2197–2203 (2008).

Choi, D.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Dahal, P.

R. S. Rodrigues Ribeiro, P. Dahal, A. Guerreiro, P. A. S. Jorge, and J. Viegas, “Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells,” Sci. Rep. 7(1), 4485 (2017).
[PubMed]

Dahdah, J.

F. I. Baida, A. Belkhir, O. Arar, E. H. Barakat, J. Dahdah, C. Chemrouk, D. Van Labeke, C. Diebold, N. Perry, and M.-P. Bernal, “Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation,” Micron 41(7), 742–745 (2010).
[PubMed]

de Waele, R.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).

Dholakia, K.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).

Diebold, C.

F. I. Baida, A. Belkhir, O. Arar, E. H. Barakat, J. Dahdah, C. Chemrouk, D. Van Labeke, C. Diebold, N. Perry, and M.-P. Bernal, “Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation,” Micron 41(7), 742–745 (2010).
[PubMed]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).

Ding, M.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).

Du, C. L.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).

Fermann, M. E.

Fu, Y.

E. Wang, L. Li, W. Yu, T. Wang, J. Gao, Y. Fu, and Y. Liu, “The focusing property of immersed plasmonic nanolenses under radially polarized illumination,” IEEE Photonics J. 5, 4500207 (2013).

Y. Fu and X. Zhou, “Plasmonic Lenses: A Review,” Plasmonics 5, 287 (2010).

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).

Gao, B. Z.

Gao, J.

E. Wang, L. Li, W. Yu, T. Wang, J. Gao, Y. Fu, and Y. Liu, “The focusing property of immersed plasmonic nanolenses under radially polarized illumination,” IEEE Photonics J. 5, 4500207 (2013).

García de Abajo, F. J.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).

Glowacki, P.

E. Afsharipour, P. Glowacki, and C. Shafai, “A MEMS-controllable Fresnel zone plate for miniaturized UV spectrometer,” Proceedings 1, 563 (2017).

Guan, C.

Guerreiro, A.

R. S. Rodrigues Ribeiro, P. Dahal, A. Guerreiro, P. A. S. Jorge, and J. Viegas, “Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells,” Sci. Rep. 7(1), 4485 (2017).
[PubMed]

Ha, W.

J. Kim, W. Ha, J. Park, J. K. Kim, I.-B. Sohn, W. Shin, and K. Oh, “Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed laser,” IEEE Photonics Technol. Lett. 25, 761–763 (2013).

Ham, Y.

Han, W.

W. B. Chen, W. Han, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13, 015003 (2011).

Hong, S.

Horrigan, F. A.

Hu, J.

J. Hu, C.-H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
[PubMed]

Hua, P.

Jeong, Y.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Jorge, P. A. S.

R. S. Rodrigues Ribeiro, P. Dahal, A. Guerreiro, P. A. S. Jorge, and J. Viegas, “Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells,” Sci. Rep. 7(1), 4485 (2017).
[PubMed]

Jung, J.

Jung, Y. J.

Kim, H.

Kim, H. C.

H. C. Kim, H. Ko, and M. Cheng, “Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer,” J. Vac. Sci. Technol. B 26, 2197–2203 (2008).

Kim, H. S.

Kim, J.

Kim, J. K.

J. Kim, W. Ha, J. Park, J. K. Kim, I.-B. Sohn, W. Shin, and K. Oh, “Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed laser,” IEEE Photonics Technol. Lett. 25, 761–763 (2013).

Ko, H.

H. C. Kim, H. Ko, and M. Cheng, “Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer,” J. Vac. Sci. Technol. B 26, 2197–2203 (2008).

Koo, S.

Kostovski, G.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[PubMed]

Kotlyar, M. V.

Kotlyar, V. V.

Kozlova, E. S.

Kwon, Y.

Lauhon, L. J.

J. Hu, C.-H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
[PubMed]

Lee, B.

Lee, D.

Lee, I.-M.

Lee, S.

Lee, S. Y.

Lee, S.-Y.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).

Lezec, H. J.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).

Li, L.

E. Wang, L. Li, W. Yu, T. Wang, J. Gao, Y. Fu, and Y. Liu, “The focusing property of immersed plasmonic nanolenses under radially polarized illumination,” IEEE Photonics J. 5, 4500207 (2013).

Lim, L. E. N.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).

Lim, Y.

Liu, C.-H.

J. Hu, C.-H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
[PubMed]

Liu, Y.

E. Wang, L. Li, W. Yu, T. Wang, J. Gao, Y. Fu, and Y. Liu, “The focusing property of immersed plasmonic nanolenses under radially polarized illumination,” IEEE Photonics J. 5, 4500207 (2013).

Liu, Z.

W. Wan, C. Ma, and Z. Liu, “Control the dispersive properties of compound plasmonic lenses,” Opt. Commun. 291, 390–394 (2013).

Luo, X. G.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).

Ma, C.

W. Wan, C. Ma, and Z. Liu, “Control the dispersive properties of compound plasmonic lenses,” Opt. Commun. 291, 390–394 (2013).

Malitson, I. H.

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).

Mitchell, A.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[PubMed]

Moh, K. J.

Nalimov, A. G.

Nasalski, W.

A. Roszkiewicz and W. Nasalski, “Optical beam interactions with a periodic array of Fresnel zone plates,” J. Phys. At. Mol. Opt. Phys. 47, 165401 (2014).

Nelson, R. L.

W. B. Chen, W. Han, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13, 015003 (2011).

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[PubMed]

Nilsson, J.

O’Faolain, L.

Odom, T. W.

J. Hu, C.-H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
[PubMed]

Oh, K.

J. Kim, W. Ha, J. Park, J. K. Kim, I.-B. Sohn, W. Shin, and K. Oh, “Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed laser,” IEEE Photonics Technol. Lett. 25, 761–763 (2013).

Park, D.

Park, J.

J. Kim, W. Ha, J. Park, J. K. Kim, I.-B. Sohn, W. Shin, and K. Oh, “Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed laser,” IEEE Photonics Technol. Lett. 25, 761–763 (2013).

Park, K.

Park, N.

Park, W.

Payne, D.

Perry, N.

F. I. Baida, A. Belkhir, O. Arar, E. H. Barakat, J. Dahdah, C. Chemrouk, D. Van Labeke, C. Diebold, N. Perry, and M.-P. Bernal, “Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation,” Micron 41(7), 742–745 (2010).
[PubMed]

Pniewski, J.

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102(18), 183902 (2009).
[PubMed]

Polman, A.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).

Ranka, J. K.

Ren, X.

J. Hu, C.-H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
[PubMed]

Rodrigues Ribeiro, R. S.

R. S. Rodrigues Ribeiro, P. Dahal, A. Guerreiro, P. A. S. Jorge, and J. Viegas, “Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells,” Sci. Rep. 7(1), 4485 (2017).
[PubMed]

Roh, S.

Roszkiewicz, A.

A. Roszkiewicz and W. Nasalski, “Optical beam interactions with a periodic array of Fresnel zone plates,” J. Phys. At. Mol. Opt. Phys. 47, 165401 (2014).

Sahu, J.

Shafai, C.

E. Afsharipour, P. Glowacki, and C. Shafai, “A MEMS-controllable Fresnel zone plate for miniaturized UV spectrometer,” Proceedings 1, 563 (2017).

Shi, J.

Shin, W.

J. Kim, W. Ha, J. Park, J. K. Kim, I.-B. Sohn, W. Shin, and K. Oh, “Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed laser,” IEEE Photonics Technol. Lett. 25, 761–763 (2013).

Sohn, I.-B.

J. Kim, W. Ha, J. Park, J. K. Kim, I.-B. Sohn, W. Shin, and K. Oh, “Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed laser,” IEEE Photonics Technol. Lett. 25, 761–763 (2013).

Song, S.

Stafeev, S. S.

Stentz, A. J.

Stoddart, P. R.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[PubMed]

Sundaram, V. M.

V. M. Sundaram and S. B. Wen, “Fabrication of micro-optical devices at the end of a multimode optical fiber with negative tone lift-off EBL,” J. Micromech. Microeng. 21, 065021 (2011).

Szoplik, T.

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102(18), 183902 (2009).
[PubMed]

Tan, B.

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603 (2006).

Van Labeke, D.

F. I. Baida, A. Belkhir, O. Arar, E. H. Barakat, J. Dahdah, C. Chemrouk, D. Van Labeke, C. Diebold, N. Perry, and M.-P. Bernal, “Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation,” Micron 41(7), 742–745 (2010).
[PubMed]

Vazquez-Zuniga, L. A.

Venkatakrishnan, K.

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603 (2006).

Vesseur, E. J. R.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).

Viegas, J.

R. S. Rodrigues Ribeiro, P. Dahal, A. Guerreiro, P. A. S. Jorge, and J. Viegas, “Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells,” Sci. Rep. 7(1), 4485 (2017).
[PubMed]

Wan, W.

W. Wan, C. Ma, and Z. Liu, “Control the dispersive properties of compound plasmonic lenses,” Opt. Commun. 291, 390–394 (2013).

Wang, E.

E. Wang, L. Li, W. Yu, T. Wang, J. Gao, Y. Fu, and Y. Liu, “The focusing property of immersed plasmonic nanolenses under radially polarized illumination,” IEEE Photonics J. 5, 4500207 (2013).

Wang, P.

Wang, T.

E. Wang, L. Li, W. Yu, T. Wang, J. Gao, Y. Fu, and Y. Liu, “The focusing property of immersed plasmonic nanolenses under radially polarized illumination,” IEEE Photonics J. 5, 4500207 (2013).

Wen, S. B.

V. M. Sundaram and S. B. Wen, “Fabrication of micro-optical devices at the end of a multimode optical fiber with negative tone lift-off EBL,” J. Micromech. Microeng. 21, 065021 (2011).

Windeler, R. S.

Wróbel, P.

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102(18), 183902 (2009).
[PubMed]

Yang, J.

Young, M.

Youngworth, K.

Yu, S.

Yu, W.

E. Wang, L. Li, W. Yu, T. Wang, J. Gao, Y. Fu, and Y. Liu, “The focusing property of immersed plasmonic nanolenses under radially polarized illumination,” IEEE Photonics J. 5, 4500207 (2013).

Yuan, L.

Yuan, X.-C.

Zhan, Q.

W. B. Chen, W. Han, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13, 015003 (2011).

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[PubMed]

Zhou, W.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).

Zhou, X.

Y. Fu and X. Zhou, “Plasmonic Lenses: A Review,” Plasmonics 5, 287 (2010).

Zhu, S. W.

ACS Nano (1)

J. Hu, C.-H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
[PubMed]

Adv. Mater. (1)

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).

IEEE J. Quantum Electron. (1)

Y. Kwon, L. A. Vazquez-Zuniga, K. Park, S. Lee, H. Chang, and Y. Jeong, “Combinatorial study of supercontinuum generation dynamics in photonic crystal fiber pumped by ultrafast fiber lasers,” IEEE J. Quantum Electron. 52, 6400311 (2016).

IEEE Photonics J. (1)

E. Wang, L. Li, W. Yu, T. Wang, J. Gao, Y. Fu, and Y. Liu, “The focusing property of immersed plasmonic nanolenses under radially polarized illumination,” IEEE Photonics J. 5, 4500207 (2013).

IEEE Photonics Technol. Lett. (1)

J. Kim, W. Ha, J. Park, J. K. Kim, I.-B. Sohn, W. Shin, and K. Oh, “Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed laser,” IEEE Photonics Technol. Lett. 25, 761–763 (2013).

J. Micromech. Microeng. (2)

V. M. Sundaram and S. B. Wen, “Fabrication of micro-optical devices at the end of a multimode optical fiber with negative tone lift-off EBL,” J. Micromech. Microeng. 21, 065021 (2011).

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603 (2006).

J. Nanophotonics (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).

J. Opt. (1)

W. B. Chen, W. Han, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers,” J. Opt. 13, 015003 (2011).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Korea (1)

J. Phys. At. Mol. Opt. Phys. (1)

A. Roszkiewicz and W. Nasalski, “Optical beam interactions with a periodic array of Fresnel zone plates,” J. Phys. At. Mol. Opt. Phys. 47, 165401 (2014).

J. Vac. Sci. Technol. B (1)

H. C. Kim, H. Ko, and M. Cheng, “Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer,” J. Vac. Sci. Technol. B 26, 2197–2203 (2008).

Micron (1)

F. I. Baida, A. Belkhir, O. Arar, E. H. Barakat, J. Dahdah, C. Chemrouk, D. Van Labeke, C. Diebold, N. Perry, and M.-P. Bernal, “Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation,” Micron 41(7), 742–745 (2010).
[PubMed]

Opt. Commun. (2)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).

W. Wan, C. Ma, and Z. Liu, “Control the dispersive properties of compound plasmonic lenses,” Opt. Commun. 291, 390–394 (2013).

Opt. Express (9)

V. V. Kotlyar, S. S. Stafeev, A. G. Nalimov, M. V. Kotlyar, L. O’Faolain, and E. S. Kozlova, “Tight focusing of laser light using a chromium Fresnel zone plate,” Opt. Express 25(17), 19662–19671 (2017).
[PubMed]

Y. J. Jung, D. Park, S. Koo, S. Yu, and N. Park, “Metal slit array Fresnel lens for wavelength-scale optical coupling to nanophotonic waveguides,” Opt. Express 17(21), 18852–18857 (2009).
[PubMed]

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[PubMed]

L. A. Vazquez-Zuniga, H. S. Kim, Y. Kwon, and Y. Jeong, “Adaptive broadband continuum source at 1200-1400 nm based on an all-fiber dual-wavelength master-oscillator power amplifier and a high-birefringence fiber,” Opt. Express 21(6), 7712–7725 (2013).
[PubMed]

H. Kim, H. An, J. Kim, S. Lee, K. Park, S. Lee, S. Hong, L. A. Vazquez-Zuniga, S. Y. Lee, B. Lee, and Y. Jeong, “Corrugation-assisted metal-coated angled fiber facet for wavelength-dependent off-axis directional beaming,” Opt. Express 25(7), 8366–8385 (2017).
[PubMed]

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
[PubMed]

C. Guan, M. Ding, J. Shi, P. Hua, P. Wang, L. Yuan, and G. Brambilla, “Experimental observation and analysis of all-fiber plasmonic double Airy beams,” Opt. Express 22(15), 18365–18371 (2014).
[PubMed]

H. Kim, S.-Y. Lee, S. Koo, J. Kim, K. Park, D. Lee, L. A. Vazquez-Zuniga, N. Park, B. Lee, and Y. Jeong, “Theoretical study on the generation of a low-noise plasmonic hotspot by means of a trench-assisted circular nano-slit,” Opt. Express 22(22), 26844–26853 (2014).
[PubMed]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[PubMed]

Opt. Lett. (3)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Phys. Rev. Lett. (2)

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102(18), 183902 (2009).
[PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[PubMed]

Plasmonics (1)

Y. Fu and X. Zhou, “Plasmonic Lenses: A Review,” Plasmonics 5, 287 (2010).

Proceedings (1)

E. Afsharipour, P. Glowacki, and C. Shafai, “A MEMS-controllable Fresnel zone plate for miniaturized UV spectrometer,” Proceedings 1, 563 (2017).

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[PubMed]

Sci. Rep. (1)

R. S. Rodrigues Ribeiro, P. Dahal, A. Guerreiro, P. A. S. Jorge, and J. Viegas, “Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells,” Sci. Rep. 7(1), 4485 (2017).
[PubMed]

Other (6)

H. Kim, L. A. Vazquez-Zuniga, J. Kim, K. Park, D. Lee, S. Hong, and Y. Jeong, “Fiberized plasmonic Fresnel zone plate for wavelength dependent position tunable optical trapping,” in 2015 Conference on Lasers and Electro-Optics Pacific Rim, (Optical Society of America, 2015), paper 28E2_1.

H. Kim, H. An, Y. Lee, G. Lee, J. Kim, K. Park, H. S. Kim, L. A. Vasquez-Zuniga, B. Lee, and Y. Jeong, “Fiberized plasmonic Fresnel-zone plate for radially polarized focused light generation with focal-length tunability,” in Advanced Solid State Lasers (Optical Society of America, 2016), paper AM5A.3.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1988).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2006).

H. Lan and Y. Ding, Nanoimprint Lithography (INTECH, 2010).

Supplementary Material (1)

NameDescription
» Visualization 1       Dark-field optical microscope images of the transmitted light at different image planes and for different incident polarization states.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Principle of the focal-point shift of an FZP with respect to the incident wavelength.

Fig. 2
Fig. 2

Schematic of an MFZP-OFF: (a) Perspective view and (b) cross-sectional view of an MFZP-OFF together with the illustration of its operational principle.

Fig. 3
Fig. 3

Numerical results on the characteristics of the MFZP-OFF: (a) Normalized field-intensity patterns formed above the MFZP-OFF for incident wavelengths of 473, 527 and 612 nm, respectively. (b) Field intensity along the z-axis with respect to the incident wavelength along with the analytical estimation of the locus of the beam waist (dashed line). (c) Beam radius and depth of focus of the fundamental focal spot with respect to the incident wavelength.

Fig. 4
Fig. 4

Characterization of the fabricated MFZP-OFF: (a) SEM image of the fabricated MFZP-OFF. (b) Schematic of a microscope system to characterize the super-variable focusing functionality of the fabricated MFZP-OFF.

Fig. 5
Fig. 5

Experimental results on the super-variable focusing functionality of the fabricated MFZP-OFF: (a) Microscope images of the optical radiations at various incidence and distance conditions. (b) The corresponding field-intensity distributions along the transverse directions, i.e., along the x and y axes, at different longitudinal locations.

Fig. 6
Fig. 6

Comparison between the numerical results and experimental measurements: (a) Numerical results on the normalized field intensity distributions along the z-axis with respect to the incident wavelength along with the corresponding experimental data points (the dots with error bars). (b) Numerical results on the normalized field-intensity distributions for incident wavelengths of 612, 527 and 473 nm, respectively, along with the corresponding experimental data points (the dots with error bars).

Fig. 7
Fig. 7

Transmission of radially and azimuthally polarized light through a single annular slit with respect to its relative slit width.

Fig. 8
Fig. 8

Numerical results on the characteristics of the proposed all-sub-wavelength-scaled SPP-MFZP: (a) Schematic of the SPP-MFZP. Normalized field-intensity patterns formed above the SPP-MFZP for incident light at 660 nm for different polarization states: (b) Radially polarized light and (c) azimuthally polarized light.

Fig. 9
Fig. 9

Characterization of the fabricated SPP-MFZP: (a) SEM image of the SPP-MFZP fabricated on a gold-coated fused-silica substrate. (b) Dark-field optical microscope images of the transmitted light at different image planes and for different incident polarization states. Left: for x-polarized incident light. Right: for y-polarized incident light.

Tables (1)

Tables Icon

Table 1 Design Parameters Of An MFZP-OFF

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f= R 1 R 2 R 2 R 1 1 n lens 1 ,
r m = (m+α) λ 0 f 0 + (m+α) 2 λ 0 2 4 (m=1,2,...,2N),
f λ λ 0 f 0 λ r m 2 mλ .
r e 2 1 kNA λ f λ 2πR ,
DOF λ N A 2 λ f 2 R 2 = ( λf R ) 2 1 λ .

Metrics