Abstract

In order to obtain more detailed characteristics and information in highly turbulent flames, for a better understanding of the transient behavior of eddies in such flames, a measurement technique with sufficient temporal resolution is requested. However, the probing of species distributions relevant in combustion (e.g. OH, CH2O) with ultra-high-speed laser diagnostics still remains a challenge. Nd:YAG clusters commercially available can generate only 4-8 pulses, although with high laser energy. Systems based on a diode-pumped solid-state Nd:YAG laser combined with a dye laser produce only about 100 μJ pulse energy at ultra-high repetition rates (≥50 kHz). Even more comprehensive information on the flame structure can be gained if simultaneous recording of multi-species is performed. In the present work, the development of the first ultra-high-speed diagnostic technique capable of simultaneous probing of hydroxyl radicals and formaldehyde distributions at a repetition rate of 50 kHz is outlined. This has been achieved by employing a burst laser pumped optical parametric oscillator system for the simultaneous detection of CH2O excited at 355 nm and OH-radicals excited at 283 nm, where the interference of scattering laser light can be avoided. The applicability of the proposed technique was demonstrated in a highly turbulent jet flame. Moreover, the presented improvement in terms of the number of consecutive images recorded with ultra-high-speed planar laser induced fluorescence imaging is significant. Due to the high temporal resolution, the movement of CH2O pocket enclosed by OH at the flame tip can be clearly captured. The transport velocity of the CH2O pocket was calculated and found to be in good agreement with previous LDV results.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Continuous hydroxyl radical planar laser imaging at 50  kHz repetition rate

Stephen Hammack, Campbell Carter, Clemens Wuensche, and Tonghun Lee
Appl. Opt. 53(23) 5246-5251 (2014)

All-diode-pumped quasi-continuous burst-mode laser for extended high-speed planar imaging

Mikhail N. Slipchenko, Joseph D. Miller, Sukesh Roy, James R. Gord, and Terrence R. Meyer
Opt. Express 21(1) 681-689 (2013)

Nitric-oxide planar laser-induced fluorescence at 10 kHz in a seeded flow, a plasma discharge, and a flame

Stephen D. Hammack, Campbell D. Carter, James R. Gord, and Tonghun Lee
Appl. Opt. 51(36) 8817-8824 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Lempert, P. F. Wu, R. Miles, B. Zhang, J. Lowrance, V. Mastrocola, and W. Kosonocky, “Pulse-burst laser system for high-speed flow diagnostics,” in Proceedings of 34th Aerospace Sciences Meeting and Exhibit, AIAA Paper 96–0179 (1996).
  2. W. Lempert, P. F. Wu, and R. Miles, “Filtered rayleigh scattering measurements using a MHz rate pulse-burst laser system,” in Proceedings of 35th Aerospace Sciences Meeting and Exhibit (1997), paper 97–0500 (1997).
  3. P. F. Wu, W. Lempert, and R. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction,” AIAA J. 38(4), 672–679 (2000).
  4. C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68(4), 757–760 (1999).
  5. J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI Engine,” Proc. Combust. Inst. 29, 679–685 (2002).
  6. B. Thurow, N. Jiang, and W. Lempert, “Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements,” Meas. Sci. Technol. 24, 012002 (2013).
  7. K. N. Gabet, R. A. Patton, N. Jiang, W. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106, 569–575 (2012).
  8. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37(8), 1346–1348 (2012).
    [PubMed]
  9. J. B. Michael, P. Venkateswaran, J. D. Miller, M. N. Slipchenko, J. R. Gord, S. Roy, and T. R. Meyer, “100 kHz thousand-frame burst-mode planar imaging in turbulent flames,” Opt. Lett. 39(4), 739–742 (2014).
    [PubMed]
  10. J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34(9), 1309–1311 (2009).
    [PubMed]
  11. I. Boxx, C. M. Arndt, C. D. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).
  12. R. Wellander, M. Richter, and M. Aldén, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55, 1746 (2014).
  13. S. Hammack, C. Carter, C. Wuensche, and T. Lee, “Continuous hydroxyl radical planar laser imaging at 50 kHz repetition rate,” Appl. Opt. 53(23), 5246–5251 (2014).
    [PubMed]
  14. A. A. Konnov, “Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism,” Combust. Flame 156, 2093–2105 (2009).
  15. J. Sjöholm, E. Kristensson, M. Richter, M. Aldén, G. Göritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).
  16. N. Jiang, R. A. Patton, W. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).
  17. B. Zhou, C. Brackmann, Z. Li, M. Aldén, and X.-S. Bai, “Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime,” Proc. Combust. Inst. 35, 1409–1416 (2015).
  18. J. Sjöholm, J. Rosell, B. Li, M. Richter, Z. Li, X.-S. Bai, and M. Aldén, “Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence,” Proc. Combust. Inst. 34, 1475–1482 (2013).
  19. B. Zhou, Q. Li, Y. He, P. Petersson, Z. Li, M. Aldén, and X.-S. Bai, “Visualization of multi-regime turbulent combustion in swirl-stabilized lean premixed flames,” Combust. Flame 162, 2954–2958 (2015).
  20. B. Zhou, Advanced laser-based multi-scalar imaging for flame structure visualization towards a deepened understanding of premixed turbulent combustion (Doctoral Thesis, Lund University 2015).
  21. B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow Turbul. Combus. 86, 313–341 (2011).
  22. Z. Li, J. Rosell, M. Aldén, and M. Richter, “Simultaneous burst imaging of dual species using planar laser-induced fluorescence at 50 kHz in turbulent premixed flames,” Appl. Spectrosc. 71(6), 1363–1367 (2017).
    [PubMed]
  23. B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, and X.-s. Bai, “Distributed reactions in highly turbulent premixed methane/air flames,” Combust. Flame 162, 2937–2953 (2015).
  24. B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, and X.-S. Bai, “Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations,” Combust. Flame 175, 220–236 (2017).
  25. J. Rosell, X.-S. Bai, J. Sjoholm, B. Zhou, Z. Li, Z. Wang, P. Pettersson, Z. Li, M. Richter, and M. Alden, “Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes,” Combust. Flame 182, 324–338 (2017).
  26. J. Luque and D. R. Crosley, “LIFbase: database and spectral simulation (Version 2.0.60, 2008),” Sri. Int. Report MP. 99–009 (2008).
  27. B. Halls, P. Hsu, N. Jiang, E. Legge, J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4, 897–902 (2017).
  28. C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, “Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(14), 3347–3356 (2003).
    [PubMed]
  29. A. D’Anna and A. Violi, “A kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames,” in Proceedings of 27th Symposium on Combustion, 425–433 (1998).

2017 (4)

B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, and X.-S. Bai, “Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations,” Combust. Flame 175, 220–236 (2017).

J. Rosell, X.-S. Bai, J. Sjoholm, B. Zhou, Z. Li, Z. Wang, P. Pettersson, Z. Li, M. Richter, and M. Alden, “Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes,” Combust. Flame 182, 324–338 (2017).

Z. Li, J. Rosell, M. Aldén, and M. Richter, “Simultaneous burst imaging of dual species using planar laser-induced fluorescence at 50 kHz in turbulent premixed flames,” Appl. Spectrosc. 71(6), 1363–1367 (2017).
[PubMed]

B. Halls, P. Hsu, N. Jiang, E. Legge, J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4, 897–902 (2017).

2015 (3)

B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, and X.-s. Bai, “Distributed reactions in highly turbulent premixed methane/air flames,” Combust. Flame 162, 2937–2953 (2015).

B. Zhou, C. Brackmann, Z. Li, M. Aldén, and X.-S. Bai, “Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime,” Proc. Combust. Inst. 35, 1409–1416 (2015).

B. Zhou, Q. Li, Y. He, P. Petersson, Z. Li, M. Aldén, and X.-S. Bai, “Visualization of multi-regime turbulent combustion in swirl-stabilized lean premixed flames,” Combust. Flame 162, 2954–2958 (2015).

2014 (3)

2013 (2)

B. Thurow, N. Jiang, and W. Lempert, “Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements,” Meas. Sci. Technol. 24, 012002 (2013).

J. Sjöholm, J. Rosell, B. Li, M. Richter, Z. Li, X.-S. Bai, and M. Aldén, “Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence,” Proc. Combust. Inst. 34, 1475–1482 (2013).

2012 (3)

K. N. Gabet, R. A. Patton, N. Jiang, W. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106, 569–575 (2012).

I. Boxx, C. M. Arndt, C. D. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37(8), 1346–1348 (2012).
[PubMed]

2011 (2)

N. Jiang, R. A. Patton, W. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow Turbul. Combus. 86, 313–341 (2011).

2009 (3)

A. A. Konnov, “Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism,” Combust. Flame 156, 2093–2105 (2009).

J. Sjöholm, E. Kristensson, M. Richter, M. Aldén, G. Göritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).

J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34(9), 1309–1311 (2009).
[PubMed]

2003 (1)

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, “Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(14), 3347–3356 (2003).
[PubMed]

2002 (1)

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI Engine,” Proc. Combust. Inst. 29, 679–685 (2002).

2000 (1)

P. F. Wu, W. Lempert, and R. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction,” AIAA J. 38(4), 672–679 (2000).

1999 (1)

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68(4), 757–760 (1999).

Alden, M.

J. Rosell, X.-S. Bai, J. Sjoholm, B. Zhou, Z. Li, Z. Wang, P. Pettersson, Z. Li, M. Richter, and M. Alden, “Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes,” Combust. Flame 182, 324–338 (2017).

Aldén, M.

Z. Li, J. Rosell, M. Aldén, and M. Richter, “Simultaneous burst imaging of dual species using planar laser-induced fluorescence at 50 kHz in turbulent premixed flames,” Appl. Spectrosc. 71(6), 1363–1367 (2017).
[PubMed]

B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, and X.-S. Bai, “Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations,” Combust. Flame 175, 220–236 (2017).

B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, and X.-s. Bai, “Distributed reactions in highly turbulent premixed methane/air flames,” Combust. Flame 162, 2937–2953 (2015).

B. Zhou, Q. Li, Y. He, P. Petersson, Z. Li, M. Aldén, and X.-S. Bai, “Visualization of multi-regime turbulent combustion in swirl-stabilized lean premixed flames,” Combust. Flame 162, 2954–2958 (2015).

B. Zhou, C. Brackmann, Z. Li, M. Aldén, and X.-S. Bai, “Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime,” Proc. Combust. Inst. 35, 1409–1416 (2015).

R. Wellander, M. Richter, and M. Aldén, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55, 1746 (2014).

J. Sjöholm, J. Rosell, B. Li, M. Richter, Z. Li, X.-S. Bai, and M. Aldén, “Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence,” Proc. Combust. Inst. 34, 1475–1482 (2013).

J. Sjöholm, E. Kristensson, M. Richter, M. Aldén, G. Göritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, “Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(14), 3347–3356 (2003).
[PubMed]

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI Engine,” Proc. Combust. Inst. 29, 679–685 (2002).

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68(4), 757–760 (1999).

Arndt, C. M.

I. Boxx, C. M. Arndt, C. D. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).

Axelsson, B.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, “Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(14), 3347–3356 (2003).
[PubMed]

Bai, X.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, “Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(14), 3347–3356 (2003).
[PubMed]

Bai, X.-S.

J. Rosell, X.-S. Bai, J. Sjoholm, B. Zhou, Z. Li, Z. Wang, P. Pettersson, Z. Li, M. Richter, and M. Alden, “Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes,” Combust. Flame 182, 324–338 (2017).

B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, and X.-S. Bai, “Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations,” Combust. Flame 175, 220–236 (2017).

B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, and X.-s. Bai, “Distributed reactions in highly turbulent premixed methane/air flames,” Combust. Flame 162, 2937–2953 (2015).

B. Zhou, Q. Li, Y. He, P. Petersson, Z. Li, M. Aldén, and X.-S. Bai, “Visualization of multi-regime turbulent combustion in swirl-stabilized lean premixed flames,” Combust. Flame 162, 2954–2958 (2015).

B. Zhou, C. Brackmann, Z. Li, M. Aldén, and X.-S. Bai, “Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime,” Proc. Combust. Inst. 35, 1409–1416 (2015).

J. Sjöholm, J. Rosell, B. Li, M. Richter, Z. Li, X.-S. Bai, and M. Aldén, “Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence,” Proc. Combust. Inst. 34, 1475–1482 (2013).

Bengtsson, P.-E.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, “Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(14), 3347–3356 (2003).
[PubMed]

Bladh, H.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, “Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(14), 3347–3356 (2003).
[PubMed]

Böhm, B.

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow Turbul. Combus. 86, 313–341 (2011).

Boxx, I.

I. Boxx, C. M. Arndt, C. D. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).

Brackmann, C.

B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, and X.-S. Bai, “Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations,” Combust. Flame 175, 220–236 (2017).

B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, and X.-s. Bai, “Distributed reactions in highly turbulent premixed methane/air flames,” Combust. Flame 162, 2937–2953 (2015).

B. Zhou, C. Brackmann, Z. Li, M. Aldén, and X.-S. Bai, “Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime,” Proc. Combust. Inst. 35, 1409–1416 (2015).

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, “Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(14), 3347–3356 (2003).
[PubMed]

Carter, C.

Carter, C. D.

I. Boxx, C. M. Arndt, C. D. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).

Christensen, M.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI Engine,” Proc. Combust. Inst. 29, 679–685 (2002).

D’Anna, A.

A. D’Anna and A. Violi, “A kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames,” in Proceedings of 27th Symposium on Combustion, 425–433 (1998).

Danczyk, S. A.

Denbratt, I.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, “Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(14), 3347–3356 (2003).
[PubMed]

Dreizler, A.

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow Turbul. Combus. 86, 313–341 (2011).

Felver, J.

Gabet, K. N.

K. N. Gabet, R. A. Patton, N. Jiang, W. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106, 569–575 (2012).

Gord, J. R.

Gordon, R. L.

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow Turbul. Combus. 86, 313–341 (2011).

Göritz, G.

J. Sjöholm, E. Kristensson, M. Richter, M. Aldén, G. Göritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).

Halls, B.

Hammack, S.

He, Y.

B. Zhou, Q. Li, Y. He, P. Petersson, Z. Li, M. Aldén, and X.-S. Bai, “Visualization of multi-regime turbulent combustion in swirl-stabilized lean premixed flames,” Combust. Flame 162, 2954–2958 (2015).

Heeger, C.

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow Turbul. Combus. 86, 313–341 (2011).

Hsu, P.

Hult, J.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI Engine,” Proc. Combust. Inst. 29, 679–685 (2002).

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68(4), 757–760 (1999).

Hultqvist, A.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI Engine,” Proc. Combust. Inst. 29, 679–685 (2002).

Jiang, N.

B. Halls, P. Hsu, N. Jiang, E. Legge, J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4, 897–902 (2017).

B. Thurow, N. Jiang, and W. Lempert, “Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements,” Meas. Sci. Technol. 24, 012002 (2013).

K. N. Gabet, R. A. Patton, N. Jiang, W. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106, 569–575 (2012).

N. Jiang, R. A. Patton, W. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).

J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34(9), 1309–1311 (2009).
[PubMed]

Johansson, B.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI Engine,” Proc. Combust. Inst. 29, 679–685 (2002).

Kaminski, C. F.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68(4), 757–760 (1999).

Knebel, K.

J. Sjöholm, E. Kristensson, M. Richter, M. Aldén, G. Göritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).

Konnov, A. A.

A. A. Konnov, “Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism,” Combust. Flame 156, 2093–2105 (2009).

Koopmans, L.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, “Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(14), 3347–3356 (2003).
[PubMed]

Kristensson, E.

J. Sjöholm, E. Kristensson, M. Richter, M. Aldén, G. Göritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).

Lee, T.

Legge, E.

Lempert, W.

B. Thurow, N. Jiang, and W. Lempert, “Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements,” Meas. Sci. Technol. 24, 012002 (2013).

K. N. Gabet, R. A. Patton, N. Jiang, W. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106, 569–575 (2012).

N. Jiang, R. A. Patton, W. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).

P. F. Wu, W. Lempert, and R. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction,” AIAA J. 38(4), 672–679 (2000).

Lempert, W. R.

Li, B.

J. Sjöholm, J. Rosell, B. Li, M. Richter, Z. Li, X.-S. Bai, and M. Aldén, “Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence,” Proc. Combust. Inst. 34, 1475–1482 (2013).

Li, Q.

B. Zhou, Q. Li, Y. He, P. Petersson, Z. Li, M. Aldén, and X.-S. Bai, “Visualization of multi-regime turbulent combustion in swirl-stabilized lean premixed flames,” Combust. Flame 162, 2954–2958 (2015).

B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, and X.-s. Bai, “Distributed reactions in highly turbulent premixed methane/air flames,” Combust. Flame 162, 2937–2953 (2015).

Li, Z.

B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, and X.-S. Bai, “Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations,” Combust. Flame 175, 220–236 (2017).

Z. Li, J. Rosell, M. Aldén, and M. Richter, “Simultaneous burst imaging of dual species using planar laser-induced fluorescence at 50 kHz in turbulent premixed flames,” Appl. Spectrosc. 71(6), 1363–1367 (2017).
[PubMed]

J. Rosell, X.-S. Bai, J. Sjoholm, B. Zhou, Z. Li, Z. Wang, P. Pettersson, Z. Li, M. Richter, and M. Alden, “Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes,” Combust. Flame 182, 324–338 (2017).

J. Rosell, X.-S. Bai, J. Sjoholm, B. Zhou, Z. Li, Z. Wang, P. Pettersson, Z. Li, M. Richter, and M. Alden, “Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes,” Combust. Flame 182, 324–338 (2017).

B. Zhou, C. Brackmann, Z. Li, M. Aldén, and X.-S. Bai, “Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime,” Proc. Combust. Inst. 35, 1409–1416 (2015).

B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, and X.-s. Bai, “Distributed reactions in highly turbulent premixed methane/air flames,” Combust. Flame 162, 2937–2953 (2015).

B. Zhou, Q. Li, Y. He, P. Petersson, Z. Li, M. Aldén, and X.-S. Bai, “Visualization of multi-regime turbulent combustion in swirl-stabilized lean premixed flames,” Combust. Flame 162, 2954–2958 (2015).

J. Sjöholm, J. Rosell, B. Li, M. Richter, Z. Li, X.-S. Bai, and M. Aldén, “Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence,” Proc. Combust. Inst. 34, 1475–1482 (2013).

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, “Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(14), 3347–3356 (2003).
[PubMed]

Meier, W.

I. Boxx, C. M. Arndt, C. D. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).

Meyer, T. R.

Michael, J. B.

Miles, R.

P. F. Wu, W. Lempert, and R. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction,” AIAA J. 38(4), 672–679 (2000).

Miller, J. D.

Nygren, J.

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, “Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(14), 3347–3356 (2003).
[PubMed]

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI Engine,” Proc. Combust. Inst. 29, 679–685 (2002).

Patton, R. A.

K. N. Gabet, R. A. Patton, N. Jiang, W. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106, 569–575 (2012).

N. Jiang, R. A. Patton, W. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).

Petersson, P.

B. Zhou, Q. Li, Y. He, P. Petersson, Z. Li, M. Aldén, and X.-S. Bai, “Visualization of multi-regime turbulent combustion in swirl-stabilized lean premixed flames,” Combust. Flame 162, 2954–2958 (2015).

B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, and X.-s. Bai, “Distributed reactions in highly turbulent premixed methane/air flames,” Combust. Flame 162, 2937–2953 (2015).

Pettersson, P.

J. Rosell, X.-S. Bai, J. Sjoholm, B. Zhou, Z. Li, Z. Wang, P. Pettersson, Z. Li, M. Richter, and M. Alden, “Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes,” Combust. Flame 182, 324–338 (2017).

Richter, M.

J. Rosell, X.-S. Bai, J. Sjoholm, B. Zhou, Z. Li, Z. Wang, P. Pettersson, Z. Li, M. Richter, and M. Alden, “Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes,” Combust. Flame 182, 324–338 (2017).

B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, and X.-S. Bai, “Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations,” Combust. Flame 175, 220–236 (2017).

Z. Li, J. Rosell, M. Aldén, and M. Richter, “Simultaneous burst imaging of dual species using planar laser-induced fluorescence at 50 kHz in turbulent premixed flames,” Appl. Spectrosc. 71(6), 1363–1367 (2017).
[PubMed]

R. Wellander, M. Richter, and M. Aldén, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55, 1746 (2014).

J. Sjöholm, J. Rosell, B. Li, M. Richter, Z. Li, X.-S. Bai, and M. Aldén, “Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence,” Proc. Combust. Inst. 34, 1475–1482 (2013).

J. Sjöholm, E. Kristensson, M. Richter, M. Aldén, G. Göritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI Engine,” Proc. Combust. Inst. 29, 679–685 (2002).

Rosell, J.

Z. Li, J. Rosell, M. Aldén, and M. Richter, “Simultaneous burst imaging of dual species using planar laser-induced fluorescence at 50 kHz in turbulent premixed flames,” Appl. Spectrosc. 71(6), 1363–1367 (2017).
[PubMed]

J. Rosell, X.-S. Bai, J. Sjoholm, B. Zhou, Z. Li, Z. Wang, P. Pettersson, Z. Li, M. Richter, and M. Alden, “Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes,” Combust. Flame 182, 324–338 (2017).

J. Sjöholm, J. Rosell, B. Li, M. Richter, Z. Li, X.-S. Bai, and M. Aldén, “Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence,” Proc. Combust. Inst. 34, 1475–1482 (2013).

Roy, S.

Sjoholm, J.

J. Rosell, X.-S. Bai, J. Sjoholm, B. Zhou, Z. Li, Z. Wang, P. Pettersson, Z. Li, M. Richter, and M. Alden, “Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes,” Combust. Flame 182, 324–338 (2017).

Sjöholm, J.

J. Sjöholm, J. Rosell, B. Li, M. Richter, Z. Li, X.-S. Bai, and M. Aldén, “Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence,” Proc. Combust. Inst. 34, 1475–1482 (2013).

J. Sjöholm, E. Kristensson, M. Richter, M. Aldén, G. Göritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).

Slipchenko, M.

Slipchenko, M. N.

Sutton, J. A.

K. N. Gabet, R. A. Patton, N. Jiang, W. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106, 569–575 (2012).

N. Jiang, R. A. Patton, W. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).

Thurow, B.

B. Thurow, N. Jiang, and W. Lempert, “Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements,” Meas. Sci. Technol. 24, 012002 (2013).

Venkateswaran, P.

Violi, A.

A. D’Anna and A. Violi, “A kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames,” in Proceedings of 27th Symposium on Combustion, 425–433 (1998).

Wang, Z.

J. Rosell, X.-S. Bai, J. Sjoholm, B. Zhou, Z. Li, Z. Wang, P. Pettersson, Z. Li, M. Richter, and M. Alden, “Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes,” Combust. Flame 182, 324–338 (2017).

B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, and X.-S. Bai, “Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations,” Combust. Flame 175, 220–236 (2017).

B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, and X.-s. Bai, “Distributed reactions in highly turbulent premixed methane/air flames,” Combust. Flame 162, 2937–2953 (2015).

Wellander, R.

R. Wellander, M. Richter, and M. Aldén, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55, 1746 (2014).

Wu, P. F.

P. F. Wu, W. Lempert, and R. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction,” AIAA J. 38(4), 672–679 (2000).

Wuensche, C.

Zhou, B.

B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, and X.-S. Bai, “Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations,” Combust. Flame 175, 220–236 (2017).

J. Rosell, X.-S. Bai, J. Sjoholm, B. Zhou, Z. Li, Z. Wang, P. Pettersson, Z. Li, M. Richter, and M. Alden, “Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes,” Combust. Flame 182, 324–338 (2017).

B. Zhou, C. Brackmann, Z. Li, M. Aldén, and X.-S. Bai, “Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime,” Proc. Combust. Inst. 35, 1409–1416 (2015).

B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, and X.-s. Bai, “Distributed reactions in highly turbulent premixed methane/air flames,” Combust. Flame 162, 2937–2953 (2015).

B. Zhou, Q. Li, Y. He, P. Petersson, Z. Li, M. Aldén, and X.-S. Bai, “Visualization of multi-regime turbulent combustion in swirl-stabilized lean premixed flames,” Combust. Flame 162, 2954–2958 (2015).

AIAA J. (1)

P. F. Wu, W. Lempert, and R. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction,” AIAA J. 38(4), 672–679 (2000).

Appl. Opt. (1)

Appl. Phys. B (2)

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68(4), 757–760 (1999).

K. N. Gabet, R. A. Patton, N. Jiang, W. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106, 569–575 (2012).

Appl. Spectrosc. (1)

Combust. Flame (5)

A. A. Konnov, “Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism,” Combust. Flame 156, 2093–2105 (2009).

B. Zhou, Q. Li, Y. He, P. Petersson, Z. Li, M. Aldén, and X.-S. Bai, “Visualization of multi-regime turbulent combustion in swirl-stabilized lean premixed flames,” Combust. Flame 162, 2954–2958 (2015).

B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, and X.-s. Bai, “Distributed reactions in highly turbulent premixed methane/air flames,” Combust. Flame 162, 2937–2953 (2015).

B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, and X.-S. Bai, “Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations,” Combust. Flame 175, 220–236 (2017).

J. Rosell, X.-S. Bai, J. Sjoholm, B. Zhou, Z. Li, Z. Wang, P. Pettersson, Z. Li, M. Richter, and M. Alden, “Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes,” Combust. Flame 182, 324–338 (2017).

Exp. Fluids (2)

I. Boxx, C. M. Arndt, C. D. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).

R. Wellander, M. Richter, and M. Aldén, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55, 1746 (2014).

Flow Turbul. Combus. (1)

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow Turbul. Combus. 86, 313–341 (2011).

Meas. Sci. Technol. (2)

B. Thurow, N. Jiang, and W. Lempert, “Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements,” Meas. Sci. Technol. 24, 012002 (2013).

J. Sjöholm, E. Kristensson, M. Richter, M. Aldén, G. Göritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009).

Opt. Lett. (3)

Optica (1)

Proc. Combust. Inst. (4)

N. Jiang, R. A. Patton, W. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).

B. Zhou, C. Brackmann, Z. Li, M. Aldén, and X.-S. Bai, “Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime,” Proc. Combust. Inst. 35, 1409–1416 (2015).

J. Sjöholm, J. Rosell, B. Li, M. Richter, Z. Li, X.-S. Bai, and M. Aldén, “Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence,” Proc. Combust. Inst. 34, 1475–1482 (2013).

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI Engine,” Proc. Combust. Inst. 29, 679–685 (2002).

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, and M. Aldén, “Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(14), 3347–3356 (2003).
[PubMed]

Other (5)

A. D’Anna and A. Violi, “A kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames,” in Proceedings of 27th Symposium on Combustion, 425–433 (1998).

W. Lempert, P. F. Wu, R. Miles, B. Zhang, J. Lowrance, V. Mastrocola, and W. Kosonocky, “Pulse-burst laser system for high-speed flow diagnostics,” in Proceedings of 34th Aerospace Sciences Meeting and Exhibit, AIAA Paper 96–0179 (1996).

W. Lempert, P. F. Wu, and R. Miles, “Filtered rayleigh scattering measurements using a MHz rate pulse-burst laser system,” in Proceedings of 35th Aerospace Sciences Meeting and Exhibit (1997), paper 97–0500 (1997).

B. Zhou, Advanced laser-based multi-scalar imaging for flame structure visualization towards a deepened understanding of premixed turbulent combustion (Doctoral Thesis, Lund University 2015).

J. Luque and D. R. Crosley, “LIFbase: database and spectral simulation (Version 2.0.60, 2008),” Sri. Int. Report MP. 99–009 (2008).

Supplementary Material (3)

NameDescription
» Visualization 1       Simultaneous OH and CH2O PLIF imaging at 50kHz for case 1(Ujet=66 m/s, PHIjet=1, Ucoflow=0.3 m/s).
» Visualization 2       Simultaneous OH and CH2O PLIF imaging at 50kHz for case 2 (Ujet=66 m/s, PHIjet=0.3, Ucoflow=0.1 m/s).
» Visualization 3       OH PLIF imaging at 50kHz for case 3 (Ujet=110 m/s, PHIjet=1, Ucoflow=0.3 m/s).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of experimental setup for ultra-high-speed simultaneous OH and CH2O PLIF imaging
Fig. 2
Fig. 2 Excitation scan from 282.3 nm to 284.5 nm covering the major part of the A–X (1–0) transition of the OH molecule.
Fig. 3
Fig. 3 Raw images of OH signal (left) and CH2O (right) without post-processing.
Fig. 4
Fig. 4 (a) OH and (b) CH2O PLIF signal profiles. The locations of the profiles are marked with a solid line and a dashed line on the single shot OH and CH2O PLIF images as shown in Fig. 3, respectively.
Fig. 5
Fig. 5 Simultaneous OH (red), and CH2O (green) PLIF images measured in case 1 (ϕjet = 1, Ucoflow = 0.3 m/s) at 45 mm HAB.
Fig. 6
Fig. 6 Simultaneous OH (red), and CH2O (green) PLIF images measured in case 2 (ϕjet = 0.3, Ucoflow = 0.1 m/s) at 45 mm HAB where quenching of OH occurs.
Fig. 7
Fig. 7 (a). Comparison between LDV data and CH2O pocket imaging velocimetry at case 1 and case 3 conditions; (b) OH PLIF image at case 1 condition.
Fig. 8
Fig. 8 Simultaneous OH (red) and CH2O (green) PLIF images measured in case 1 (part 1).
Fig. 9
Fig. 9 Simultaneous OH (red) and CH2O (green) PLIF images measured in case 1 (part 2).
Fig. 10
Fig. 10 Simultaneous OH (red) and CH2O (green) PLIF images measured in case 2 (part 1).
Fig. 11
Fig. 11 Simultaneous OH (red) and CH2O (green) PLIF images measured in case 2 (part 2).

Tables (3)

Tables Icon

Table 1 Flow conditions

Tables Icon

Table 2 Quantities for the jet flames at 45 mm height above the burner (HAB) [23]

Tables Icon

Table 3 Parameters of the optical setup

Metrics