Abstract

This paper proposes the recycling of poly (methyl methacrylate) plates, formerly used in LCD monitors to produce polymer optical fibers without cladding for sensor systems and a discussion about the fabrication process of the fiber cladding is briefly presented. After disassembling LCD monitors the acrylic plate is cleaned and submitted to an extrusion process. Extrusion temperatures of 220°C, 230°C and 240°C were applied, and the produced polymer fibers were characterized by infrared and visible spectrometry, as well as evaluated for thermal analysis through differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Furthermore, a refractive index sensor was developed with the recycled fibers. Results show that the recycled fiber refractive index sensor is linear (R2 = 0.99) and presents a sensitivity of more than 4 times higher when compared to a sensor using a commercial POF.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-polymer fiber-optic pH sensor

X. Cheng, J. Bonefacino, B. O. Guan, and H. Y. Tam
Opt. Express 26(11) 14610-14616 (2018)

Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

Getinet Woyessa, Andrea Fasano, Alessio Stefani, Christos Markos, Kristian Nielsen, Henrik K. Rasmussen, and Ole Bang
Opt. Express 24(2) 1253-1260 (2016)

Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang
Opt. Express 26(2) 2013-2022 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. R. de Oliveira, A. M. Bernardes, and A. E. Gerbase, “Collection and recycling of electronic scrap: A worldwide overview and comparison with the Brazilian situation,” Waste Manag. 32(8), 1592–1610 (2012).
    [PubMed]
  2. F. O. Ongondo, I. D. Williams, and T. J. Cherrett, “How are WEEE doing? A global review of the management of electrical and electronic wastes,” Waste Manag. 31(4), 714–730 (2011).
    [PubMed]
  3. M. Schluep, C. Hagelueken, R. Kuehr, F. Magalini, C. Maurer, C. Meskers, E. Mueller, and F. Wang, “Recycling – From E- Waste To Resources,” United Nations Environ. Program. United Nations Univ. 120 (2009).
  4. C. Hicks, R. Dietmar, and M. Eugster, “The recycling and disposal of electrical and electronic waste in China - Legislative and market responses,” Environ. Impact Assess. Rev. 25, 459–471 (2005).
  5. A. Kumar, M. Holuszko, and D. C. R. Espinosa, “E-waste: An overview on generation, collection, legislation and recycling practices,” Resour. Conserv. Recycling 122, 32–42 (2017).
  6. S. S. Chung and C. Zhang, “An evaluation of legislative measures on electrical and electronic waste in the People’s Republic of China,” Waste Manag. 31(12), 2638–2646 (2011).
    [PubMed]
  7. R. Widmer, H. Oswald-Krapf, D. Sinha-Khetriwal, M. Schnellmann, and H. Böni, “Global perspectives on e-waste,” Environ. Impact Assess. Rev. 25, 436–458 (2005).
  8. P. Kiddee, R. Naidu, and M. H. Wong, “Electronic waste management approaches: An overview,” Waste Manag. 33(5), 1237–1250 (2013).
    [PubMed]
  9. J. Cui and E. Forssberg, “Mechanical recycling of waste electric and electronic equipment: A review,” J. Hazard. Mater. 99(3), 243–263 (2003).
    [PubMed]
  10. S. Orlins and D. Guan, “China’s toxic informal e-waste recycling: Local approaches to a global environmental problem,” J. Clean. Prod. 114, 71–80 (2016).
  11. T. S. Perry, “Who pays fir E-waste? [electronic waste recycling],” IEEE Spectr. 43(7), 14–15 (2006).
  12. D. V. Thiel, M. Neeli, and S. Raj, “Plastic circuit reliability and design for recycling,” Proc. Electron. Packag. Technol. Conf. EPTC 858–862 (2009).
  13. H. Nishida, “Development of materials and technologies for control of polymer recycling,” Polym. J. 43, 435–447 (2011).
  14. K. Hamad, M. Kaseem, and F. Deri, “Recycling of waste from polymer materials: An overview of the recent works,” Polym. Degrad. Stabil. 98, 2801–2812 (2013).
  15. K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20, 13002 (2010).
  16. W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24, 401–403 (2012).
  17. X. Hu, D. Saez-Rodriguez, C. Marques, O. Bang, D. J. Webb, P. Mégret, and C. Caucheteur, “Polarization effects in polymer FBGs: study and use for transverse force sensing,” Opt. Express 23(4), 4581–4590 (2015).
    [PubMed]
  18. A. G. Leal, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).
  19. L. Bilro, N. J. Alberto, L. M. Sá, J. De Lemos Pinto, and R. Nogueira, “Analytical analysis of side-polished plastic optical fiber as curvature and refractive index sensor,” J. Lightwave Technol. 29, 864–870 (2011).
  20. P. F. C. Antunes, H. Varum, and P. S. Andre, “Intensity-encoded polymer optical fiber accelerometer,” IEEE Sens. J. 13, 1716–1720 (2013).
  21. V. Popescu, C. Vasile, M. Brebu, G. L. Popescu, M. Moldovan, C. Prejmerean, L. Stanulet, C. Trisca-Rusu, and I. Cojocaru, “The characterization of recycled PMMA,” J. Alloys Compd. 483, 432–436 (2009).
  22. B. J. Holland and J. N. Hay, “The kinetics and mechanisms of the thermal degradation of poly (methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy,” Polymer (Guildf.) 42, 4825–4835 (2001).
  23. S. G. Kazarian and K. L. A. Chan, “Micro- and Macro-Attenuated Total Reflection Fourier Transform Infrared Spectroscopic Imaging,” Appl. Spectrosc. 64(5), 135A–152A (2010).
    [PubMed]
  24. Glycerine producer’s association. Physical properties of glycerine and its solutions. (New York: Glycerine producers association, 1963).
  25. F. C. Chiu and S. C. Yeh, “Comparison of PVDF/MWNT, PMMA/MWNT, and PVDF/PMMA/MWNT nanocomposites: MWNT dispersibility and thermal and rheological properties,” Polym. Test. 45, 114–123 (2015).
  26. H. E. Hassan, M. S. Refat, and T. Sharshar, “Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation,” Spectrochim. Acta - Part A Mol. Biomolec. Spectrosc. 159, 238–248 (2016).
  27. L. Zhang, J. Zhu, W. Zhou, J. Wang, and Y. Wang, “Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method,” Thermochim. Acta 524, 128–134 (2011).
  28. Y. Fu, H. Di, and R. Liu, “Light intensity modulation fiber-optic sensor for curvature measurement,” Opt. Laser Technol. 42, 594–599 (2010).

2017 (2)

A. Kumar, M. Holuszko, and D. C. R. Espinosa, “E-waste: An overview on generation, collection, legislation and recycling practices,” Resour. Conserv. Recycling 122, 32–42 (2017).

A. G. Leal, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).

2016 (2)

S. Orlins and D. Guan, “China’s toxic informal e-waste recycling: Local approaches to a global environmental problem,” J. Clean. Prod. 114, 71–80 (2016).

H. E. Hassan, M. S. Refat, and T. Sharshar, “Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation,” Spectrochim. Acta - Part A Mol. Biomolec. Spectrosc. 159, 238–248 (2016).

2015 (2)

X. Hu, D. Saez-Rodriguez, C. Marques, O. Bang, D. J. Webb, P. Mégret, and C. Caucheteur, “Polarization effects in polymer FBGs: study and use for transverse force sensing,” Opt. Express 23(4), 4581–4590 (2015).
[PubMed]

F. C. Chiu and S. C. Yeh, “Comparison of PVDF/MWNT, PMMA/MWNT, and PVDF/PMMA/MWNT nanocomposites: MWNT dispersibility and thermal and rheological properties,” Polym. Test. 45, 114–123 (2015).

2013 (3)

P. Kiddee, R. Naidu, and M. H. Wong, “Electronic waste management approaches: An overview,” Waste Manag. 33(5), 1237–1250 (2013).
[PubMed]

P. F. C. Antunes, H. Varum, and P. S. Andre, “Intensity-encoded polymer optical fiber accelerometer,” IEEE Sens. J. 13, 1716–1720 (2013).

K. Hamad, M. Kaseem, and F. Deri, “Recycling of waste from polymer materials: An overview of the recent works,” Polym. Degrad. Stabil. 98, 2801–2812 (2013).

2012 (2)

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24, 401–403 (2012).

C. R. de Oliveira, A. M. Bernardes, and A. E. Gerbase, “Collection and recycling of electronic scrap: A worldwide overview and comparison with the Brazilian situation,” Waste Manag. 32(8), 1592–1610 (2012).
[PubMed]

2011 (5)

F. O. Ongondo, I. D. Williams, and T. J. Cherrett, “How are WEEE doing? A global review of the management of electrical and electronic wastes,” Waste Manag. 31(4), 714–730 (2011).
[PubMed]

S. S. Chung and C. Zhang, “An evaluation of legislative measures on electrical and electronic waste in the People’s Republic of China,” Waste Manag. 31(12), 2638–2646 (2011).
[PubMed]

H. Nishida, “Development of materials and technologies for control of polymer recycling,” Polym. J. 43, 435–447 (2011).

L. Bilro, N. J. Alberto, L. M. Sá, J. De Lemos Pinto, and R. Nogueira, “Analytical analysis of side-polished plastic optical fiber as curvature and refractive index sensor,” J. Lightwave Technol. 29, 864–870 (2011).

L. Zhang, J. Zhu, W. Zhou, J. Wang, and Y. Wang, “Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method,” Thermochim. Acta 524, 128–134 (2011).

2010 (3)

Y. Fu, H. Di, and R. Liu, “Light intensity modulation fiber-optic sensor for curvature measurement,” Opt. Laser Technol. 42, 594–599 (2010).

S. G. Kazarian and K. L. A. Chan, “Micro- and Macro-Attenuated Total Reflection Fourier Transform Infrared Spectroscopic Imaging,” Appl. Spectrosc. 64(5), 135A–152A (2010).
[PubMed]

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20, 13002 (2010).

2009 (1)

V. Popescu, C. Vasile, M. Brebu, G. L. Popescu, M. Moldovan, C. Prejmerean, L. Stanulet, C. Trisca-Rusu, and I. Cojocaru, “The characterization of recycled PMMA,” J. Alloys Compd. 483, 432–436 (2009).

2006 (1)

T. S. Perry, “Who pays fir E-waste? [electronic waste recycling],” IEEE Spectr. 43(7), 14–15 (2006).

2005 (2)

R. Widmer, H. Oswald-Krapf, D. Sinha-Khetriwal, M. Schnellmann, and H. Böni, “Global perspectives on e-waste,” Environ. Impact Assess. Rev. 25, 436–458 (2005).

C. Hicks, R. Dietmar, and M. Eugster, “The recycling and disposal of electrical and electronic waste in China - Legislative and market responses,” Environ. Impact Assess. Rev. 25, 459–471 (2005).

2003 (1)

J. Cui and E. Forssberg, “Mechanical recycling of waste electric and electronic equipment: A review,” J. Hazard. Mater. 99(3), 243–263 (2003).
[PubMed]

2001 (1)

B. J. Holland and J. N. Hay, “The kinetics and mechanisms of the thermal degradation of poly (methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy,” Polymer (Guildf.) 42, 4825–4835 (2001).

Alberto, N. J.

Andre, P. S.

P. F. C. Antunes, H. Varum, and P. S. Andre, “Intensity-encoded polymer optical fiber accelerometer,” IEEE Sens. J. 13, 1716–1720 (2013).

Antunes, P. F. C.

P. F. C. Antunes, H. Varum, and P. S. Andre, “Intensity-encoded polymer optical fiber accelerometer,” IEEE Sens. J. 13, 1716–1720 (2013).

Bang, O.

X. Hu, D. Saez-Rodriguez, C. Marques, O. Bang, D. J. Webb, P. Mégret, and C. Caucheteur, “Polarization effects in polymer FBGs: study and use for transverse force sensing,” Opt. Express 23(4), 4581–4590 (2015).
[PubMed]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24, 401–403 (2012).

Bernardes, A. M.

C. R. de Oliveira, A. M. Bernardes, and A. E. Gerbase, “Collection and recycling of electronic scrap: A worldwide overview and comparison with the Brazilian situation,” Waste Manag. 32(8), 1592–1610 (2012).
[PubMed]

Bilro, L.

Böni, H.

R. Widmer, H. Oswald-Krapf, D. Sinha-Khetriwal, M. Schnellmann, and H. Böni, “Global perspectives on e-waste,” Environ. Impact Assess. Rev. 25, 436–458 (2005).

Brebu, M.

V. Popescu, C. Vasile, M. Brebu, G. L. Popescu, M. Moldovan, C. Prejmerean, L. Stanulet, C. Trisca-Rusu, and I. Cojocaru, “The characterization of recycled PMMA,” J. Alloys Compd. 483, 432–436 (2009).

Caucheteur, C.

Chan, K. L. A.

Cherrett, T. J.

F. O. Ongondo, I. D. Williams, and T. J. Cherrett, “How are WEEE doing? A global review of the management of electrical and electronic wastes,” Waste Manag. 31(4), 714–730 (2011).
[PubMed]

Chiu, F. C.

F. C. Chiu and S. C. Yeh, “Comparison of PVDF/MWNT, PMMA/MWNT, and PVDF/PMMA/MWNT nanocomposites: MWNT dispersibility and thermal and rheological properties,” Polym. Test. 45, 114–123 (2015).

Chung, S. S.

S. S. Chung and C. Zhang, “An evaluation of legislative measures on electrical and electronic waste in the People’s Republic of China,” Waste Manag. 31(12), 2638–2646 (2011).
[PubMed]

Cojocaru, I.

V. Popescu, C. Vasile, M. Brebu, G. L. Popescu, M. Moldovan, C. Prejmerean, L. Stanulet, C. Trisca-Rusu, and I. Cojocaru, “The characterization of recycled PMMA,” J. Alloys Compd. 483, 432–436 (2009).

Cui, J.

J. Cui and E. Forssberg, “Mechanical recycling of waste electric and electronic equipment: A review,” J. Hazard. Mater. 99(3), 243–263 (2003).
[PubMed]

De Lemos Pinto, J.

de Oliveira, C. R.

C. R. de Oliveira, A. M. Bernardes, and A. E. Gerbase, “Collection and recycling of electronic scrap: A worldwide overview and comparison with the Brazilian situation,” Waste Manag. 32(8), 1592–1610 (2012).
[PubMed]

Deri, F.

K. Hamad, M. Kaseem, and F. Deri, “Recycling of waste from polymer materials: An overview of the recent works,” Polym. Degrad. Stabil. 98, 2801–2812 (2013).

Di, H.

Y. Fu, H. Di, and R. Liu, “Light intensity modulation fiber-optic sensor for curvature measurement,” Opt. Laser Technol. 42, 594–599 (2010).

Dietmar, R.

C. Hicks, R. Dietmar, and M. Eugster, “The recycling and disposal of electrical and electronic waste in China - Legislative and market responses,” Environ. Impact Assess. Rev. 25, 459–471 (2005).

Espinosa, D. C. R.

A. Kumar, M. Holuszko, and D. C. R. Espinosa, “E-waste: An overview on generation, collection, legislation and recycling practices,” Resour. Conserv. Recycling 122, 32–42 (2017).

Eugster, M.

C. Hicks, R. Dietmar, and M. Eugster, “The recycling and disposal of electrical and electronic waste in China - Legislative and market responses,” Environ. Impact Assess. Rev. 25, 459–471 (2005).

Forssberg, E.

J. Cui and E. Forssberg, “Mechanical recycling of waste electric and electronic equipment: A review,” J. Hazard. Mater. 99(3), 243–263 (2003).
[PubMed]

Frizera, A.

A. G. Leal, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).

Fu, Y.

Y. Fu, H. Di, and R. Liu, “Light intensity modulation fiber-optic sensor for curvature measurement,” Opt. Laser Technol. 42, 594–599 (2010).

Gerbase, A. E.

C. R. de Oliveira, A. M. Bernardes, and A. E. Gerbase, “Collection and recycling of electronic scrap: A worldwide overview and comparison with the Brazilian situation,” Waste Manag. 32(8), 1592–1610 (2012).
[PubMed]

Guan, D.

S. Orlins and D. Guan, “China’s toxic informal e-waste recycling: Local approaches to a global environmental problem,” J. Clean. Prod. 114, 71–80 (2016).

Hamad, K.

K. Hamad, M. Kaseem, and F. Deri, “Recycling of waste from polymer materials: An overview of the recent works,” Polym. Degrad. Stabil. 98, 2801–2812 (2013).

Hassan, H. E.

H. E. Hassan, M. S. Refat, and T. Sharshar, “Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation,” Spectrochim. Acta - Part A Mol. Biomolec. Spectrosc. 159, 238–248 (2016).

Hay, J. N.

B. J. Holland and J. N. Hay, “The kinetics and mechanisms of the thermal degradation of poly (methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy,” Polymer (Guildf.) 42, 4825–4835 (2001).

Hicks, C.

C. Hicks, R. Dietmar, and M. Eugster, “The recycling and disposal of electrical and electronic waste in China - Legislative and market responses,” Environ. Impact Assess. Rev. 25, 459–471 (2005).

Holland, B. J.

B. J. Holland and J. N. Hay, “The kinetics and mechanisms of the thermal degradation of poly (methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy,” Polymer (Guildf.) 42, 4825–4835 (2001).

Holuszko, M.

A. Kumar, M. Holuszko, and D. C. R. Espinosa, “E-waste: An overview on generation, collection, legislation and recycling practices,” Resour. Conserv. Recycling 122, 32–42 (2017).

Hu, X.

Kaseem, M.

K. Hamad, M. Kaseem, and F. Deri, “Recycling of waste from polymer materials: An overview of the recent works,” Polym. Degrad. Stabil. 98, 2801–2812 (2013).

Kazarian, S. G.

Kiddee, P.

P. Kiddee, R. Naidu, and M. H. Wong, “Electronic waste management approaches: An overview,” Waste Manag. 33(5), 1237–1250 (2013).
[PubMed]

Kumar, A.

A. Kumar, M. Holuszko, and D. C. R. Espinosa, “E-waste: An overview on generation, collection, legislation and recycling practices,” Resour. Conserv. Recycling 122, 32–42 (2017).

Leal, A. G.

A. G. Leal, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).

Liu, R.

Y. Fu, H. Di, and R. Liu, “Light intensity modulation fiber-optic sensor for curvature measurement,” Opt. Laser Technol. 42, 594–599 (2010).

Marques, C.

Mégret, P.

Moldovan, M.

V. Popescu, C. Vasile, M. Brebu, G. L. Popescu, M. Moldovan, C. Prejmerean, L. Stanulet, C. Trisca-Rusu, and I. Cojocaru, “The characterization of recycled PMMA,” J. Alloys Compd. 483, 432–436 (2009).

Naidu, R.

P. Kiddee, R. Naidu, and M. H. Wong, “Electronic waste management approaches: An overview,” Waste Manag. 33(5), 1237–1250 (2013).
[PubMed]

Nishida, H.

H. Nishida, “Development of materials and technologies for control of polymer recycling,” Polym. J. 43, 435–447 (2011).

Nogueira, R.

Ongondo, F. O.

F. O. Ongondo, I. D. Williams, and T. J. Cherrett, “How are WEEE doing? A global review of the management of electrical and electronic wastes,” Waste Manag. 31(4), 714–730 (2011).
[PubMed]

Orlins, S.

S. Orlins and D. Guan, “China’s toxic informal e-waste recycling: Local approaches to a global environmental problem,” J. Clean. Prod. 114, 71–80 (2016).

Oswald-Krapf, H.

R. Widmer, H. Oswald-Krapf, D. Sinha-Khetriwal, M. Schnellmann, and H. Böni, “Global perspectives on e-waste,” Environ. Impact Assess. Rev. 25, 436–458 (2005).

Perry, T. S.

T. S. Perry, “Who pays fir E-waste? [electronic waste recycling],” IEEE Spectr. 43(7), 14–15 (2006).

Peters, K.

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20, 13002 (2010).

Pontes, M. J.

A. G. Leal, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).

Popescu, G. L.

V. Popescu, C. Vasile, M. Brebu, G. L. Popescu, M. Moldovan, C. Prejmerean, L. Stanulet, C. Trisca-Rusu, and I. Cojocaru, “The characterization of recycled PMMA,” J. Alloys Compd. 483, 432–436 (2009).

Popescu, V.

V. Popescu, C. Vasile, M. Brebu, G. L. Popescu, M. Moldovan, C. Prejmerean, L. Stanulet, C. Trisca-Rusu, and I. Cojocaru, “The characterization of recycled PMMA,” J. Alloys Compd. 483, 432–436 (2009).

Prejmerean, C.

V. Popescu, C. Vasile, M. Brebu, G. L. Popescu, M. Moldovan, C. Prejmerean, L. Stanulet, C. Trisca-Rusu, and I. Cojocaru, “The characterization of recycled PMMA,” J. Alloys Compd. 483, 432–436 (2009).

Refat, M. S.

H. E. Hassan, M. S. Refat, and T. Sharshar, “Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation,” Spectrochim. Acta - Part A Mol. Biomolec. Spectrosc. 159, 238–248 (2016).

Sá, L. M.

Saez-Rodriguez, D.

Schnellmann, M.

R. Widmer, H. Oswald-Krapf, D. Sinha-Khetriwal, M. Schnellmann, and H. Böni, “Global perspectives on e-waste,” Environ. Impact Assess. Rev. 25, 436–458 (2005).

Sharshar, T.

H. E. Hassan, M. S. Refat, and T. Sharshar, “Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation,” Spectrochim. Acta - Part A Mol. Biomolec. Spectrosc. 159, 238–248 (2016).

Sinha-Khetriwal, D.

R. Widmer, H. Oswald-Krapf, D. Sinha-Khetriwal, M. Schnellmann, and H. Böni, “Global perspectives on e-waste,” Environ. Impact Assess. Rev. 25, 436–458 (2005).

Stanulet, L.

V. Popescu, C. Vasile, M. Brebu, G. L. Popescu, M. Moldovan, C. Prejmerean, L. Stanulet, C. Trisca-Rusu, and I. Cojocaru, “The characterization of recycled PMMA,” J. Alloys Compd. 483, 432–436 (2009).

Stefani, A.

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24, 401–403 (2012).

Trisca-Rusu, C.

V. Popescu, C. Vasile, M. Brebu, G. L. Popescu, M. Moldovan, C. Prejmerean, L. Stanulet, C. Trisca-Rusu, and I. Cojocaru, “The characterization of recycled PMMA,” J. Alloys Compd. 483, 432–436 (2009).

Varum, H.

P. F. C. Antunes, H. Varum, and P. S. Andre, “Intensity-encoded polymer optical fiber accelerometer,” IEEE Sens. J. 13, 1716–1720 (2013).

Vasile, C.

V. Popescu, C. Vasile, M. Brebu, G. L. Popescu, M. Moldovan, C. Prejmerean, L. Stanulet, C. Trisca-Rusu, and I. Cojocaru, “The characterization of recycled PMMA,” J. Alloys Compd. 483, 432–436 (2009).

Wang, J.

L. Zhang, J. Zhu, W. Zhou, J. Wang, and Y. Wang, “Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method,” Thermochim. Acta 524, 128–134 (2011).

Wang, Y.

L. Zhang, J. Zhu, W. Zhou, J. Wang, and Y. Wang, “Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method,” Thermochim. Acta 524, 128–134 (2011).

Webb, D. J.

Widmer, R.

R. Widmer, H. Oswald-Krapf, D. Sinha-Khetriwal, M. Schnellmann, and H. Böni, “Global perspectives on e-waste,” Environ. Impact Assess. Rev. 25, 436–458 (2005).

Williams, I. D.

F. O. Ongondo, I. D. Williams, and T. J. Cherrett, “How are WEEE doing? A global review of the management of electrical and electronic wastes,” Waste Manag. 31(4), 714–730 (2011).
[PubMed]

Wong, M. H.

P. Kiddee, R. Naidu, and M. H. Wong, “Electronic waste management approaches: An overview,” Waste Manag. 33(5), 1237–1250 (2013).
[PubMed]

Yeh, S. C.

F. C. Chiu and S. C. Yeh, “Comparison of PVDF/MWNT, PMMA/MWNT, and PVDF/PMMA/MWNT nanocomposites: MWNT dispersibility and thermal and rheological properties,” Polym. Test. 45, 114–123 (2015).

Yuan, W.

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24, 401–403 (2012).

Zhang, C.

S. S. Chung and C. Zhang, “An evaluation of legislative measures on electrical and electronic waste in the People’s Republic of China,” Waste Manag. 31(12), 2638–2646 (2011).
[PubMed]

Zhang, L.

L. Zhang, J. Zhu, W. Zhou, J. Wang, and Y. Wang, “Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method,” Thermochim. Acta 524, 128–134 (2011).

Zhou, W.

L. Zhang, J. Zhu, W. Zhou, J. Wang, and Y. Wang, “Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method,” Thermochim. Acta 524, 128–134 (2011).

Zhu, J.

L. Zhang, J. Zhu, W. Zhou, J. Wang, and Y. Wang, “Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method,” Thermochim. Acta 524, 128–134 (2011).

Appl. Spectrosc. (1)

Environ. Impact Assess. Rev. (2)

C. Hicks, R. Dietmar, and M. Eugster, “The recycling and disposal of electrical and electronic waste in China - Legislative and market responses,” Environ. Impact Assess. Rev. 25, 459–471 (2005).

R. Widmer, H. Oswald-Krapf, D. Sinha-Khetriwal, M. Schnellmann, and H. Böni, “Global perspectives on e-waste,” Environ. Impact Assess. Rev. 25, 436–458 (2005).

IEEE Photonics Technol. Lett. (1)

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24, 401–403 (2012).

IEEE Sens. J. (1)

P. F. C. Antunes, H. Varum, and P. S. Andre, “Intensity-encoded polymer optical fiber accelerometer,” IEEE Sens. J. 13, 1716–1720 (2013).

IEEE Spectr. (1)

T. S. Perry, “Who pays fir E-waste? [electronic waste recycling],” IEEE Spectr. 43(7), 14–15 (2006).

J. Alloys Compd. (1)

V. Popescu, C. Vasile, M. Brebu, G. L. Popescu, M. Moldovan, C. Prejmerean, L. Stanulet, C. Trisca-Rusu, and I. Cojocaru, “The characterization of recycled PMMA,” J. Alloys Compd. 483, 432–436 (2009).

J. Clean. Prod. (1)

S. Orlins and D. Guan, “China’s toxic informal e-waste recycling: Local approaches to a global environmental problem,” J. Clean. Prod. 114, 71–80 (2016).

J. Hazard. Mater. (1)

J. Cui and E. Forssberg, “Mechanical recycling of waste electric and electronic equipment: A review,” J. Hazard. Mater. 99(3), 243–263 (2003).
[PubMed]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Laser Technol. (2)

A. G. Leal, A. Frizera, and M. J. Pontes, “Analytical model for a polymer optical fiber under dynamic bending,” Opt. Laser Technol. 93, 92–98 (2017).

Y. Fu, H. Di, and R. Liu, “Light intensity modulation fiber-optic sensor for curvature measurement,” Opt. Laser Technol. 42, 594–599 (2010).

Polym. Degrad. Stabil. (1)

K. Hamad, M. Kaseem, and F. Deri, “Recycling of waste from polymer materials: An overview of the recent works,” Polym. Degrad. Stabil. 98, 2801–2812 (2013).

Polym. J. (1)

H. Nishida, “Development of materials and technologies for control of polymer recycling,” Polym. J. 43, 435–447 (2011).

Polym. Test. (1)

F. C. Chiu and S. C. Yeh, “Comparison of PVDF/MWNT, PMMA/MWNT, and PVDF/PMMA/MWNT nanocomposites: MWNT dispersibility and thermal and rheological properties,” Polym. Test. 45, 114–123 (2015).

Polymer (Guildf.) (1)

B. J. Holland and J. N. Hay, “The kinetics and mechanisms of the thermal degradation of poly (methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy,” Polymer (Guildf.) 42, 4825–4835 (2001).

Resour. Conserv. Recycling (1)

A. Kumar, M. Holuszko, and D. C. R. Espinosa, “E-waste: An overview on generation, collection, legislation and recycling practices,” Resour. Conserv. Recycling 122, 32–42 (2017).

Smart Mater. Struct. (1)

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20, 13002 (2010).

Spectrochim. Acta - Part A Mol. Biomolec. Spectrosc. (1)

H. E. Hassan, M. S. Refat, and T. Sharshar, “Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation,” Spectrochim. Acta - Part A Mol. Biomolec. Spectrosc. 159, 238–248 (2016).

Thermochim. Acta (1)

L. Zhang, J. Zhu, W. Zhou, J. Wang, and Y. Wang, “Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method,” Thermochim. Acta 524, 128–134 (2011).

Waste Manag. (4)

S. S. Chung and C. Zhang, “An evaluation of legislative measures on electrical and electronic waste in the People’s Republic of China,” Waste Manag. 31(12), 2638–2646 (2011).
[PubMed]

C. R. de Oliveira, A. M. Bernardes, and A. E. Gerbase, “Collection and recycling of electronic scrap: A worldwide overview and comparison with the Brazilian situation,” Waste Manag. 32(8), 1592–1610 (2012).
[PubMed]

F. O. Ongondo, I. D. Williams, and T. J. Cherrett, “How are WEEE doing? A global review of the management of electrical and electronic wastes,” Waste Manag. 31(4), 714–730 (2011).
[PubMed]

P. Kiddee, R. Naidu, and M. H. Wong, “Electronic waste management approaches: An overview,” Waste Manag. 33(5), 1237–1250 (2013).
[PubMed]

Other (3)

M. Schluep, C. Hagelueken, R. Kuehr, F. Magalini, C. Maurer, C. Meskers, E. Mueller, and F. Wang, “Recycling – From E- Waste To Resources,” United Nations Environ. Program. United Nations Univ. 120 (2009).

D. V. Thiel, M. Neeli, and S. Raj, “Plastic circuit reliability and design for recycling,” Proc. Electron. Packag. Technol. Conf. EPTC 858–862 (2009).

Glycerine producer’s association. Physical properties of glycerine and its solutions. (New York: Glycerine producers association, 1963).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Mini-extruder at temperatures of 220 °C, 230 °C and 240 °C, under 60 rpm. Points a and b indicate the position of the extruder heater and output, respectively.
Fig. 2
Fig. 2 (a) Block diagram of the experimental setup employed for the refractive index sensor. (b) Recycled-POF sensor positioned on a water-glycerin solution.
Fig. 3
Fig. 3 TGA and DTA analysis of PMMA before and after the extrusion process at different temperatures.
Fig. 4
Fig. 4 Results of DSC of PMMA before and after the extrusion process at different temperatures.
Fig. 5
Fig. 5 (a) Infrared PMMA before the extrusion process. (b) Infrared PMMA after extrusion at different temperatures.
Fig. 6
Fig. 6 Analysis absorption in the visible PMMA before and after the extrusion process at different temperatures.
Fig. 7
Fig. 7 Results obtained with the proposed refractive index sensor with recycled POF.

Tables (1)

Tables Icon

Table 1 Attribution of the decrease absorbance at each wavelength

Metrics