Abstract

We report the development of a widely tunable all-fiber mid-infrared laser system based on a mechanically robust fiber Bragg grating (FBG) which was inscribed through the polymer coating of a Ho3+-Pr3+ co-doped double clad ZBLAN fluoride fiber by focusing femtosecond laser pulses into the core of the fiber without the use of a phase mask. By applying mechanical tension and compression to the FBG while pumping the fiber with an 1150 nm laser diode, a continuous wave (CW) all-fiber laser with a tuning range of 37 nm, centered at 2870 nm, was demonstrated with up to 0.29 W output power. These results pave the way for the realization of compact and robust mid-infrared fiber laser systems for real-world applications in spectroscopy and medicine.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang
Opt. Express 26(2) 2013-2022 (2018)

Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings

Sergei Antipov, Martin Ams, Robert J. Williams, Eric Magi, Michael J. Withford, and Alexander Fuerbach
Opt. Express 24(1) 30-40 (2016)

Plane-by-plane femtosecond laser inscription of first-order fiber Bragg gratings in fluoride glass fiber for in situ monitoring of lasing evolution

Kenji Goya, Hiraku Matsukuma, Hiyori Uehara, Satoshi Hattori, Christian Schäfer, Daisuke Konishi, Masanao Murakami, and Shigeki Tokita
Opt. Express 26(25) 33305-33313 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nature Photon. 6, 440–449 (2012).
    [Crossref]
  2. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers and Optics 81, 1015–1047 (2005).
    [Crossref]
  3. O. G. Okhotnikov, Fiber Lasers, (Wiley-VCH, 2012).
    [Crossref]
  4. X. Zhu and R. Jain, “Compact 2 W wavelength-tunable Er: ZBLAN mid-infrared fiber laser,” Opt. Lett. 32, 2381–2383 (2007).
    [Crossref] [PubMed]
  5. S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3 μ m fiber laser for the measurement of optical fiber loss,” IEEE Photon. J. 7, 23379 (2015).
    [Crossref]
  6. J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q -switched Ho 3+ -doped fluoride fiber laser,” Laser Phys. Lett. 10, 045107 (2013).
    [Crossref]
  7. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729 (1996).
    [Crossref] [PubMed]
  8. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
    [Crossref] [PubMed]
  9. M. Bernier, D. Faucher, N. Caron, and R. Vallée, “Highly stable and efficient erbium-doped 2.8 μm all fiber laser,” Opt. Express 17, 16941–16946 (2009).
    [Crossref] [PubMed]
  10. V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett. 40, 2882–2885 (2015).
    [Crossref] [PubMed]
  11. S. J Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43, 114 (2007).
    [Crossref]
  12. M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “Efficient writing of Bragg gratings through the coating of various optical fibers,” in Advanced Photonics (Optical Society of America, 2014).
  13. J. Y. Lee and S. N. Hwang, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 8359 (2004).
  14. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31, 1603 (2006).
    [Crossref] [PubMed]
  15. S. Gross, M. Dubov, and M. J. Withford, “On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express 23, 7767 (2015).
    [Crossref] [PubMed]
  16. D. D. Hudson, R. J. Williams, M. J. Withford, and S. D. Jackson, “Single frequency fiber laser operating at 2.9 μ m,” Opt. Lett. 38, 2388–2390 (2013).
    [Crossref] [PubMed]
  17. R. J. Williams, R. G. Krämer, S. Nolte, and M. J. Withford, “Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique,” Opt. Lett. 38, 1918–1920 (2013).
    [Crossref] [PubMed]
  18. S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24, 30 (2016).
    [Crossref] [PubMed]
  19. J. Colaizzi and M. J. Matthewson, “Mechanical Durability of ZBLAN and Aluminum Fluoride-Based Optical Fiber,” J. Lightwave Technol. 12, 1317–1324 (1994).
    [Crossref]
  20. G. A. Ball and W. W. Morey, “Compression-tuned single-frequency Bragg grating fiber laser,” Opt. Lett. 19, 1979–1981 (1994).
    [Crossref] [PubMed]
  21. M.R. Mokhtar, C.S. Goh, S.A. Butler, S.Y. Set, K. Kikuchi, D.J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
    [Crossref]
  22. E. Bélanger, B. Déry, M. Bernier, J.-p. Bérubé, and R. Vallée, “Long-term stable device for tuning fiber Bragg gratings,” Appl. Opt. 46, 3189–3195 (2007).
    [Crossref] [PubMed]
  23. K.O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [Crossref]
  24. S. Gross, M. Ams, G. Palmer, C.T. Miese, R.J. Williams, G.D. Marshall, and A. Fuerbach, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Applied Glass Science 3, 332–348 (2012).
    [Crossref]

2016 (1)

2015 (3)

2013 (3)

2012 (2)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nature Photon. 6, 440–449 (2012).
[Crossref]

S. Gross, M. Ams, G. Palmer, C.T. Miese, R.J. Williams, G.D. Marshall, and A. Fuerbach, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Applied Glass Science 3, 332–348 (2012).
[Crossref]

2009 (1)

2007 (3)

2006 (1)

2005 (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers and Optics 81, 1015–1047 (2005).
[Crossref]

2004 (1)

J. Y. Lee and S. N. Hwang, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 8359 (2004).

2003 (2)

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[Crossref] [PubMed]

M.R. Mokhtar, C.S. Goh, S.A. Butler, S.Y. Set, K. Kikuchi, D.J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[Crossref]

1997 (1)

K.O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

1996 (1)

1994 (2)

J. Colaizzi and M. J. Matthewson, “Mechanical Durability of ZBLAN and Aluminum Fluoride-Based Optical Fiber,” J. Lightwave Technol. 12, 1317–1324 (1994).
[Crossref]

G. A. Ball and W. W. Morey, “Compression-tuned single-frequency Bragg grating fiber laser,” Opt. Lett. 19, 1979–1981 (1994).
[Crossref] [PubMed]

Ams, M.

S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24, 30 (2016).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C.T. Miese, R.J. Williams, G.D. Marshall, and A. Fuerbach, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Applied Glass Science 3, 332–348 (2012).
[Crossref]

Antipov, S.

Bah, S. T.

Ball, G. A.

Bélanger, E.

Bennion, I.

Bernier, M.

Bérubé, J.-p.

Butler, S.A.

M.R. Mokhtar, C.S. Goh, S.A. Butler, S.Y. Set, K. Kikuchi, D.J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[Crossref]

Caron, N.

Carrier, J.

M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “Efficient writing of Bragg gratings through the coating of various optical fibers,” in Advanced Photonics (Optical Society of America, 2014).

Colaizzi, J.

J. Colaizzi and M. J. Matthewson, “Mechanical Durability of ZBLAN and Aluminum Fluoride-Based Optical Fiber,” J. Lightwave Technol. 12, 1317–1324 (1994).
[Crossref]

Crawford, S.

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3 μ m fiber laser for the measurement of optical fiber loss,” IEEE Photon. J. 7, 23379 (2015).
[Crossref]

Davis, K. M.

Déry, B.

Ding, H.

Dubov, M.

Faucher, D.

Fortin, V.

Fuerbach, A.

S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24, 30 (2016).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C.T. Miese, R.J. Williams, G.D. Marshall, and A. Fuerbach, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Applied Glass Science 3, 332–348 (2012).
[Crossref]

Goh, C.S.

M.R. Mokhtar, C.S. Goh, S.A. Butler, S.Y. Set, K. Kikuchi, D.J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[Crossref]

Grobnic, D.

S. J Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43, 114 (2007).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[Crossref] [PubMed]

Gross, S.

S. Gross, M. Dubov, and M. J. Withford, “On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express 23, 7767 (2015).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C.T. Miese, R.J. Williams, G.D. Marshall, and A. Fuerbach, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Applied Glass Science 3, 332–348 (2012).
[Crossref]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nature Photon. 6, 440–449 (2012).
[Crossref]

Henderson, G.

Hill, K.O.

K.O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

Hirao, K.

Hudson, D. D.

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3 μ m fiber laser for the measurement of optical fiber loss,” IEEE Photon. J. 7, 23379 (2015).
[Crossref]

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q -switched Ho 3+ -doped fluoride fiber laser,” Laser Phys. Lett. 10, 045107 (2013).
[Crossref]

D. D. Hudson, R. J. Williams, M. J. Withford, and S. D. Jackson, “Single frequency fiber laser operating at 2.9 μ m,” Opt. Lett. 38, 2388–2390 (2013).
[Crossref] [PubMed]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers and Optics 81, 1015–1047 (2005).
[Crossref]

Hwang, S. N.

J. Y. Lee and S. N. Hwang, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 8359 (2004).

Ibsen, M.

M.R. Mokhtar, C.S. Goh, S.A. Butler, S.Y. Set, K. Kikuchi, D.J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[Crossref]

Jackson, S. D.

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3 μ m fiber laser for the measurement of optical fiber loss,” IEEE Photon. J. 7, 23379 (2015).
[Crossref]

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q -switched Ho 3+ -doped fluoride fiber laser,” Laser Phys. Lett. 10, 045107 (2013).
[Crossref]

D. D. Hudson, R. J. Williams, M. J. Withford, and S. D. Jackson, “Single frequency fiber laser operating at 2.9 μ m,” Opt. Lett. 38, 2388–2390 (2013).
[Crossref] [PubMed]

Jain, R.

Khrushchev, I. Y.

Kikuchi, K.

M.R. Mokhtar, C.S. Goh, S.A. Butler, S.Y. Set, K. Kikuchi, D.J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[Crossref]

Krämer, R. G.

Lee, J. Y.

J. Y. Lee and S. N. Hwang, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 8359 (2004).

Li, J.

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q -switched Ho 3+ -doped fluoride fiber laser,” Laser Phys. Lett. 10, 045107 (2013).
[Crossref]

Liu, Y.

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q -switched Ho 3+ -doped fluoride fiber laser,” Laser Phys. Lett. 10, 045107 (2013).
[Crossref]

Lu, P.

Magi, E.

Marshall, G.D.

S. Gross, M. Ams, G. Palmer, C.T. Miese, R.J. Williams, G.D. Marshall, and A. Fuerbach, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Applied Glass Science 3, 332–348 (2012).
[Crossref]

Martinez, A.

Matthewson, M. J.

J. Colaizzi and M. J. Matthewson, “Mechanical Durability of ZBLAN and Aluminum Fluoride-Based Optical Fiber,” J. Lightwave Technol. 12, 1317–1324 (1994).
[Crossref]

Meltz, G.

K.O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

Miese, C.T.

S. Gross, M. Ams, G. Palmer, C.T. Miese, R.J. Williams, G.D. Marshall, and A. Fuerbach, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Applied Glass Science 3, 332–348 (2012).
[Crossref]

Mihailov, S. J

S. J Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43, 114 (2007).
[Crossref]

Mihailov, S. J.

Miura, K.

Mokhtar, M.R.

M.R. Mokhtar, C.S. Goh, S.A. Butler, S.Y. Set, K. Kikuchi, D.J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[Crossref]

Morey, W. W.

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers and Optics 81, 1015–1047 (2005).
[Crossref]

Nolte, S.

Okhotnikov, O. G.

O. G. Okhotnikov, Fiber Lasers, (Wiley-VCH, 2012).
[Crossref]

Palmer, G.

S. Gross, M. Ams, G. Palmer, C.T. Miese, R.J. Williams, G.D. Marshall, and A. Fuerbach, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Applied Glass Science 3, 332–348 (2012).
[Crossref]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers and Optics 81, 1015–1047 (2005).
[Crossref]

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nature Photon. 6, 440–449 (2012).
[Crossref]

Richardson, D.J.

M.R. Mokhtar, C.S. Goh, S.A. Butler, S.Y. Set, K. Kikuchi, D.J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nature Photon. 6, 440–449 (2012).
[Crossref]

Set, S.Y.

M.R. Mokhtar, C.S. Goh, S.A. Butler, S.Y. Set, K. Kikuchi, D.J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[Crossref]

Smelser, C. W.

S. J Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43, 114 (2007).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[Crossref] [PubMed]

Sugimoto, N.

Trépanier, F.

M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “Efficient writing of Bragg gratings through the coating of various optical fibers,” in Advanced Photonics (Optical Society of America, 2014).

Unruh, J.

Vallée, R.

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers and Optics 81, 1015–1047 (2005).
[Crossref]

Walker, R. B.

Williams, R. J.

Williams, R.J.

S. Gross, M. Ams, G. Palmer, C.T. Miese, R.J. Williams, G.D. Marshall, and A. Fuerbach, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Applied Glass Science 3, 332–348 (2012).
[Crossref]

Withford, M. J.

Yang, Y.

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q -switched Ho 3+ -doped fluoride fiber laser,” Laser Phys. Lett. 10, 045107 (2013).
[Crossref]

Zhu, X.

Appl. Opt. (1)

Appl. Phys. B: Lasers and Optics (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B: Lasers and Optics 81, 1015–1047 (2005).
[Crossref]

Electron. Lett. (3)

S. J Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43, 114 (2007).
[Crossref]

J. Y. Lee and S. N. Hwang, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 8359 (2004).

M.R. Mokhtar, C.S. Goh, S.A. Butler, S.Y. Set, K. Kikuchi, D.J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003).
[Crossref]

IEEE Photon. J. (1)

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3 μ m fiber laser for the measurement of optical fiber loss,” IEEE Photon. J. 7, 23379 (2015).
[Crossref]

Int. J. Applied Glass Science (1)

S. Gross, M. Ams, G. Palmer, C.T. Miese, R.J. Williams, G.D. Marshall, and A. Fuerbach, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Applied Glass Science 3, 332–348 (2012).
[Crossref]

J. Lightwave Technol. (2)

K.O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

J. Colaizzi and M. J. Matthewson, “Mechanical Durability of ZBLAN and Aluminum Fluoride-Based Optical Fiber,” J. Lightwave Technol. 12, 1317–1324 (1994).
[Crossref]

Laser Phys. Lett. (1)

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q -switched Ho 3+ -doped fluoride fiber laser,” Laser Phys. Lett. 10, 045107 (2013).
[Crossref]

Nature Photon. (1)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nature Photon. 6, 440–449 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (8)

Other (2)

O. G. Okhotnikov, Fiber Lasers, (Wiley-VCH, 2012).
[Crossref]

M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “Efficient writing of Bragg gratings through the coating of various optical fibers,” in Advanced Photonics (Optical Society of America, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Cross-sectional view of the active fiber and schematic representation of the process of focusing the inscription laser into its core (b) Femtosecond laser direct write setup and (c) a microscopic image of the uniform FBG (top-view).
Fig. 2
Fig. 2 Experimental setup for the tension and compression tuning of the FBG.
Fig. 3
Fig. 3 Laser output power with respect to absorbed pump power. The inset shows the laser beam profile with an MFD of 17.8 μm.
Fig. 4
Fig. 4 Combined spectra of the shifted laser output peaks.
Fig. 5
Fig. 5 Measured tuning range of the laser source.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ z L = [ 1 s i n ( θ / 2 ) ( θ / 2 ) ] .
ϵ = θ D L .

Metrics