Abstract

Deformable mirror (DM) used for intracavity compensation in high-power lasers should be able to withstand very high laser intensity. This paper proposes a water-cooled unimorph DM which can withstand the laser power up to 10 kW in thermal simulation. The proposed DM consists of an annular PZT layer and a circular Si layer which are glued together with edge clamped. All the 32 piezoelectric actuators are distributed around the correction area and on the front side of the DM. The cooling water flows through the back side of the DM and cools the mirror directly. This design realizes the physical separation of the actuators and the coolant. The experimental results of a fabricated DM prototype show that the DM can reproduce typical low-order aberrations accurately with relatively large amplitude. The wavefront PV amplitudes of the reproduced tip/tilt, astigmatism, defocus, trefoil and coma shapes for 15 mm aperture are about 40 μm, 24 μm, 18.7 μm, 10 μm and 6 μm, respectively.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Unimorph deformable mirror for space telescopes: environmental testing

Peter Rausch, Sven Verpoort, and Ulrich Wittrock
Opt. Express 24(2) 1528-1542 (2016)

Double drive modes unimorph deformable mirror for low-cost adaptive optics

Jianqiang Ma, Ying Liu, Ting He, Baoqing Li, and Jiaru Chu
Appl. Opt. 50(29) 5647-5654 (2011)

Unimorph mirror for adaptive optics in space telescopes

David Alaluf, Renaud Bastaits, Kainan Wang, Mihaita Horodinca, Grégory Martic, Bilal Mokrani, and André Preumont
Appl. Opt. 57(14) 3629-3638 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-state Laser Engineering (Springer, 2013).
  2. T. Y. Cherezova, S. S. Chesnokov, L. N. Kaptsov, V. V. Samarkin, and A. V. Kudryashov, “Active laser resonator performance: formation of a specified intensity output,” Appl. Opt. 40(33), 6026–6033 (2001).
    [PubMed]
  3. W. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D Appl. Phys. 34(16), 2381–2395 (2001).
  4. E. Wyss, M. Roth, T. Graf, and H. P. Weber, “Thermooptical compensation methods for high-power lasers,” IEEE J. Quantum Electron. 38(12), 1620–1628 (2002).
  5. S. Makki and J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35(7), 1075–1085 (1999).
  6. R. R. Stephens and R. C. Lind, “Experimental study of an adaptive-laser resonator,” Opt. Lett. 3(3), 79–81 (1978).
    [PubMed]
  7. J. M. Spinhirne, D. Anafi, R. H. Freeman, and H. R. Garcia, “Intracavity adaptive optics. 1: Astigmatism correction performance,” Appl. Opt. 20(6), 976–984 (1981).
    [PubMed]
  8. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16(15), 10943–10955 (2008).
    [PubMed]
  9. S. Piehler, T. Dietrich, P. Wittmüss, O. Sawodny, M. A. Ahmed, and T. Graf, “Deformable mirrors for intra-cavity use in high-power thin-disk lasers,” Opt. Express 25(4), 4254–4267 (2017).
    [PubMed]
  10. P. Yang, Y. Ning, X. Lei, B. Xu, X. Li, L. Dong, H. Yan, W. Liu, W. Jiang, L. Liu, C. Wang, X. Liang, and X. Tang, “Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror,” Opt. Express 18(7), 7121–7130 (2010).
    [PubMed]
  11. S. Kokorowski, “Analysis of adaptive optical elements made from piezolectric bimorphs,” J. Opt. Soc. Am. 69(1), 181–187 (1979).
  12. E. Steinhaus and S. Lipson, “Bimorph piezoelectric flexible mirror,” J. Opt. Soc. Am. 69(3), 478–481 (1979).
  13. P. Hyunkyu and D. A. Horsley, “Single-crystal PMN-PT MEMS Deformable Mirrors,” J. Microelectromech. 20(6), 1473–1482 (2011).
  14. P. Rausch, S. Verpoort, and U. Wittrock, “Unimorph deformable mirror for space telescopes: environmental testing,” Opt. Express 24(2), 1528–1542 (2016).
    [PubMed]
  15. C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolith. MEMS MOEMS 12(1), 013016 (2013).
  16. S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
  17. M. Gerber, T. Graf, and A. Kudryashov, “Generation of custom modes in a Nd: YAG laser with a semipassive bimorph adaptive mirror,” Appl. Phys. B 83, 43–50 (2006).
  18. V. Samarkin, A. Aleksandrov, V. Dubikovsky, and A. Kudryashov, “Water-cooled bimorph correctors,” Proc. SPIE 6018, 60180Z (2005).
  19. J.-H. Lee, Y.-C. Lee, and E.-C. Kang, “A cooled deformable bimorph mirror for a high power laser,” J. Opt. Soc. Korea 10(2), 57–62 (2006).
  20. A. V. Kudryashov and V. V. Samarkin, “Control of high power CO2 laser beam by adaptive optical elements,” Opt. Commun. 118, 317–322 (1995).
  21. L. N. Kaptsov, A. V. Kudryashov, V. V. Samarkin, and A. Seliverstov, “Control of parameters of solid-state industrial YAG: Nd3+ laser radiation using methods of adaptive optics. II. Spherical adaptive mirror,” Sov. J. Quantum Electron. 22(6), 533–534 (1992).
  22. C. Zhou, Y. Li, A. Wang, and T. Xing, “Concept and Modeling Analysis of a High Fidelity Multimode Deformable Mirror,” Appl. Opt. 54(17), 5436–5443 (2015).
    [PubMed]
  23. R. Bastaits, D. Alaluf, M. Horodinca, I. Romanescu, I. Burda, G. Martic, G. Rodrigues, and A. Preumont, “Segmented bimorph mirrors for adaptive optics: segment design and experiment,” Appl. Opt. 53(29), 6635–6642 (2014).
    [PubMed]
  24. G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278–284 (2007).
  25. G. Vdovin, O. Soloviev, A. Samokhin, and M. Loktev, “Correction of low order aberrations using continuous deformable mirrors,” Opt. Express 16(5), 2859–2866 (2008).
    [PubMed]
  26. J. Ma, Y. Liu, T. He, B. Li, and J. Chu, “Double Drive Modes Unimorph Deformable Mirror for Low-Cost Adaptive Optics,” Appl. Opt. 50(29), 5647–5654 (2011).
    [PubMed]
  27. L. B. Freund and S. Suresh, Thin film materials: stress, defect formation and surface evolution (Cambridge University, 2004).
  28. J. Ma, K. Chen, J. Chen, B. Li, and J. Chu, “Closed-loop correction and ocular wavefronts compensation of a 62-element silicon unimorph deformable mirror,” Chin. Opt. Lett. 13(4), 042201 (2015).

2017 (1)

2016 (1)

2015 (2)

2014 (1)

2013 (1)

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolith. MEMS MOEMS 12(1), 013016 (2013).

2012 (1)

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).

2011 (2)

P. Hyunkyu and D. A. Horsley, “Single-crystal PMN-PT MEMS Deformable Mirrors,” J. Microelectromech. 20(6), 1473–1482 (2011).

J. Ma, Y. Liu, T. He, B. Li, and J. Chu, “Double Drive Modes Unimorph Deformable Mirror for Low-Cost Adaptive Optics,” Appl. Opt. 50(29), 5647–5654 (2011).
[PubMed]

2010 (1)

2008 (2)

2007 (1)

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278–284 (2007).

2006 (2)

J.-H. Lee, Y.-C. Lee, and E.-C. Kang, “A cooled deformable bimorph mirror for a high power laser,” J. Opt. Soc. Korea 10(2), 57–62 (2006).

M. Gerber, T. Graf, and A. Kudryashov, “Generation of custom modes in a Nd: YAG laser with a semipassive bimorph adaptive mirror,” Appl. Phys. B 83, 43–50 (2006).

2005 (1)

V. Samarkin, A. Aleksandrov, V. Dubikovsky, and A. Kudryashov, “Water-cooled bimorph correctors,” Proc. SPIE 6018, 60180Z (2005).

2002 (1)

E. Wyss, M. Roth, T. Graf, and H. P. Weber, “Thermooptical compensation methods for high-power lasers,” IEEE J. Quantum Electron. 38(12), 1620–1628 (2002).

2001 (2)

1999 (1)

S. Makki and J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35(7), 1075–1085 (1999).

1995 (1)

A. V. Kudryashov and V. V. Samarkin, “Control of high power CO2 laser beam by adaptive optical elements,” Opt. Commun. 118, 317–322 (1995).

1992 (1)

L. N. Kaptsov, A. V. Kudryashov, V. V. Samarkin, and A. Seliverstov, “Control of parameters of solid-state industrial YAG: Nd3+ laser radiation using methods of adaptive optics. II. Spherical adaptive mirror,” Sov. J. Quantum Electron. 22(6), 533–534 (1992).

1981 (1)

1979 (2)

1978 (1)

Ahmed, M. A.

Alaluf, D.

Aleksandrov, A.

V. Samarkin, A. Aleksandrov, V. Dubikovsky, and A. Kudryashov, “Water-cooled bimorph correctors,” Proc. SPIE 6018, 60180Z (2005).

Anafi, D.

Appelfelder, M.

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolith. MEMS MOEMS 12(1), 013016 (2013).

Bastaits, R.

Beckert, E.

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolith. MEMS MOEMS 12(1), 013016 (2013).

Burda, I.

Burns, D.

Chen, J.

Chen, K.

Cherezova, T. Y.

Chesnokov, S. S.

Chu, J.

Clarkson, W.

W. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D Appl. Phys. 34(16), 2381–2395 (2001).

Dietrich, T.

Dong, L.

Dubikovsky, V.

V. Samarkin, A. Aleksandrov, V. Dubikovsky, and A. Kudryashov, “Water-cooled bimorph correctors,” Proc. SPIE 6018, 60180Z (2005).

Eberhardt, R.

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolith. MEMS MOEMS 12(1), 013016 (2013).

Freeman, R. H.

Garcia, H. R.

Gebhardt, S.

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolith. MEMS MOEMS 12(1), 013016 (2013).

Gerber, M.

M. Gerber, T. Graf, and A. Kudryashov, “Generation of custom modes in a Nd: YAG laser with a semipassive bimorph adaptive mirror,” Appl. Phys. B 83, 43–50 (2006).

Graf, T.

S. Piehler, T. Dietrich, P. Wittmüss, O. Sawodny, M. A. Ahmed, and T. Graf, “Deformable mirrors for intra-cavity use in high-power thin-disk lasers,” Opt. Express 25(4), 4254–4267 (2017).
[PubMed]

M. Gerber, T. Graf, and A. Kudryashov, “Generation of custom modes in a Nd: YAG laser with a semipassive bimorph adaptive mirror,” Appl. Phys. B 83, 43–50 (2006).

E. Wyss, M. Roth, T. Graf, and H. P. Weber, “Thermooptical compensation methods for high-power lasers,” IEEE J. Quantum Electron. 38(12), 1620–1628 (2002).

He, T.

Horodinca, M.

Horsley, D. A.

P. Hyunkyu and D. A. Horsley, “Single-crystal PMN-PT MEMS Deformable Mirrors,” J. Microelectromech. 20(6), 1473–1482 (2011).

Hyunkyu, P.

P. Hyunkyu and D. A. Horsley, “Single-crystal PMN-PT MEMS Deformable Mirrors,” J. Microelectromech. 20(6), 1473–1482 (2011).

Jiang, W.

Kang, E.-C.

Kaptsov, L. N.

T. Y. Cherezova, S. S. Chesnokov, L. N. Kaptsov, V. V. Samarkin, and A. V. Kudryashov, “Active laser resonator performance: formation of a specified intensity output,” Appl. Opt. 40(33), 6026–6033 (2001).
[PubMed]

L. N. Kaptsov, A. V. Kudryashov, V. V. Samarkin, and A. Seliverstov, “Control of parameters of solid-state industrial YAG: Nd3+ laser radiation using methods of adaptive optics. II. Spherical adaptive mirror,” Sov. J. Quantum Electron. 22(6), 533–534 (1992).

Kennedy, G. T.

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278–284 (2007).

Kokorowski, S.

Kudryashov, A.

M. Gerber, T. Graf, and A. Kudryashov, “Generation of custom modes in a Nd: YAG laser with a semipassive bimorph adaptive mirror,” Appl. Phys. B 83, 43–50 (2006).

V. Samarkin, A. Aleksandrov, V. Dubikovsky, and A. Kudryashov, “Water-cooled bimorph correctors,” Proc. SPIE 6018, 60180Z (2005).

Kudryashov, A. V.

T. Y. Cherezova, S. S. Chesnokov, L. N. Kaptsov, V. V. Samarkin, and A. V. Kudryashov, “Active laser resonator performance: formation of a specified intensity output,” Appl. Opt. 40(33), 6026–6033 (2001).
[PubMed]

A. V. Kudryashov and V. V. Samarkin, “Control of high power CO2 laser beam by adaptive optical elements,” Opt. Commun. 118, 317–322 (1995).

L. N. Kaptsov, A. V. Kudryashov, V. V. Samarkin, and A. Seliverstov, “Control of parameters of solid-state industrial YAG: Nd3+ laser radiation using methods of adaptive optics. II. Spherical adaptive mirror,” Sov. J. Quantum Electron. 22(6), 533–534 (1992).

Lee, J.-H.

Lee, Y.-C.

Leger, J.

S. Makki and J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35(7), 1075–1085 (1999).

Lei, X.

Li, B.

Li, X.

Li, Y.

Liang, X.

Lind, R. C.

Lipson, S.

Liu, L.

Liu, W.

Liu, Y.

Loktev, M.

Lubeigt, W.

Ma, J.

Makki, S.

S. Makki and J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35(7), 1075–1085 (1999).

Martic, G.

Ning, Y.

Paterson, C.

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278–284 (2007).

Piehler, S.

Preumont, A.

Rausch, P.

P. Rausch, S. Verpoort, and U. Wittrock, “Unimorph deformable mirror for space telescopes: environmental testing,” Opt. Express 24(2), 1528–1542 (2016).
[PubMed]

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).

Reinlein, C.

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolith. MEMS MOEMS 12(1), 013016 (2013).

Rodrigues, G.

Romanescu, I.

Roth, M.

E. Wyss, M. Roth, T. Graf, and H. P. Weber, “Thermooptical compensation methods for high-power lasers,” IEEE J. Quantum Electron. 38(12), 1620–1628 (2002).

Samarkin, V.

V. Samarkin, A. Aleksandrov, V. Dubikovsky, and A. Kudryashov, “Water-cooled bimorph correctors,” Proc. SPIE 6018, 60180Z (2005).

Samarkin, V. V.

T. Y. Cherezova, S. S. Chesnokov, L. N. Kaptsov, V. V. Samarkin, and A. V. Kudryashov, “Active laser resonator performance: formation of a specified intensity output,” Appl. Opt. 40(33), 6026–6033 (2001).
[PubMed]

A. V. Kudryashov and V. V. Samarkin, “Control of high power CO2 laser beam by adaptive optical elements,” Opt. Commun. 118, 317–322 (1995).

L. N. Kaptsov, A. V. Kudryashov, V. V. Samarkin, and A. Seliverstov, “Control of parameters of solid-state industrial YAG: Nd3+ laser radiation using methods of adaptive optics. II. Spherical adaptive mirror,” Sov. J. Quantum Electron. 22(6), 533–534 (1992).

Samokhin, A.

Sawodny, O.

Seliverstov, A.

L. N. Kaptsov, A. V. Kudryashov, V. V. Samarkin, and A. Seliverstov, “Control of parameters of solid-state industrial YAG: Nd3+ laser radiation using methods of adaptive optics. II. Spherical adaptive mirror,” Sov. J. Quantum Electron. 22(6), 533–534 (1992).

Soloviev, O.

Spinhirne, J. M.

Steinhaus, E.

Stephens, R. R.

Tang, X.

Tünnermann, A.

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolith. MEMS MOEMS 12(1), 013016 (2013).

Valentine, G.

Vdovin, G.

Verpoort, S.

P. Rausch, S. Verpoort, and U. Wittrock, “Unimorph deformable mirror for space telescopes: environmental testing,” Opt. Express 24(2), 1528–1542 (2016).
[PubMed]

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).

Wang, A.

Wang, C.

Weber, H. P.

E. Wyss, M. Roth, T. Graf, and H. P. Weber, “Thermooptical compensation methods for high-power lasers,” IEEE J. Quantum Electron. 38(12), 1620–1628 (2002).

Wittmüss, P.

Wittrock, U.

P. Rausch, S. Verpoort, and U. Wittrock, “Unimorph deformable mirror for space telescopes: environmental testing,” Opt. Express 24(2), 1528–1542 (2016).
[PubMed]

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).

Wyss, E.

E. Wyss, M. Roth, T. Graf, and H. P. Weber, “Thermooptical compensation methods for high-power lasers,” IEEE J. Quantum Electron. 38(12), 1620–1628 (2002).

Xing, T.

Xu, B.

Yan, H.

Yang, P.

Zhou, C.

Appl. Opt. (5)

Appl. Phys. B (1)

M. Gerber, T. Graf, and A. Kudryashov, “Generation of custom modes in a Nd: YAG laser with a semipassive bimorph adaptive mirror,” Appl. Phys. B 83, 43–50 (2006).

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (2)

E. Wyss, M. Roth, T. Graf, and H. P. Weber, “Thermooptical compensation methods for high-power lasers,” IEEE J. Quantum Electron. 38(12), 1620–1628 (2002).

S. Makki and J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35(7), 1075–1085 (1999).

J. Micro/Nanolith. MEMS MOEMS (1)

C. Reinlein, M. Appelfelder, S. Gebhardt, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermomechanical design, hybrid fabrication, and testing of a MOEMS deformable mirror,” J. Micro/Nanolith. MEMS MOEMS 12(1), 013016 (2013).

J. Microelectromech. (1)

P. Hyunkyu and D. A. Horsley, “Single-crystal PMN-PT MEMS Deformable Mirrors,” J. Microelectromech. 20(6), 1473–1482 (2011).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Korea (1)

J. Phys. D Appl. Phys. (1)

W. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D Appl. Phys. 34(16), 2381–2395 (2001).

Opt. Commun. (2)

A. V. Kudryashov and V. V. Samarkin, “Control of high power CO2 laser beam by adaptive optical elements,” Opt. Commun. 118, 317–322 (1995).

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278–284 (2007).

Opt. Express (5)

Opt. Lett. (1)

Proc. SPIE (2)

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).

V. Samarkin, A. Aleksandrov, V. Dubikovsky, and A. Kudryashov, “Water-cooled bimorph correctors,” Proc. SPIE 6018, 60180Z (2005).

Sov. J. Quantum Electron. (1)

L. N. Kaptsov, A. V. Kudryashov, V. V. Samarkin, and A. Seliverstov, “Control of parameters of solid-state industrial YAG: Nd3+ laser radiation using methods of adaptive optics. II. Spherical adaptive mirror,” Sov. J. Quantum Electron. 22(6), 533–534 (1992).

Other (2)

L. B. Freund and S. Suresh, Thin film materials: stress, defect formation and surface evolution (Cambridge University, 2004).

W. Koechner, Solid-state Laser Engineering (Springer, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Cross-sectional view of the water-cooled unimorph DM.
Fig. 2
Fig. 2 Finite element model of the unimorph DM: (a) mesh of the model and (b) mirror deformation under activation of Act1.
Fig. 3
Fig. 3 Simulated wavefront profiles of the DM driven by Act1 and Act2.
Fig. 4
Fig. 4 Simulated reconstruction of astigmatism Z3 and coma Z7.
Fig. 5
Fig. 5 Simulation reproduction of the first 14 term Zernike modes: (a) RMS wavefront and (b) normalized residual wavefront error.
Fig. 6
Fig. 6 Thermal effect of the DM under laser radiation with and without cooling: (a) Thermal response curve and (b) temperature profiles of DM along the radial direction at 10 seconds.
Fig. 7
Fig. 7 Thermal wavefront deformation at 10 seconds.
Fig. 8
Fig. 8 Photographs of the fabricated water-cooled DM: (a) unimorph DM and (b) packaged DM with cooling cavity.
Fig. 9
Fig. 9 Comparison of simulated and measured wavefront deformation of actuator at the aperture of 20 mm.
Fig. 10
Fig. 10 Wavefront surface of the DM at 15 mm aperture before and after filling the cooling cavity with water.
Fig. 11
Fig. 11 Experimental reproduction of the first 14 Zernike mode shapes using closed-loop control method. The wavefront PV value and RMS value are indicated for each mode.
Fig. 12
Fig. 12 Experimental reproduction of the first 14 term Zernike mode shapes at different apertures: (a) wavefront RMS and (b) normalized residual wavefront error.

Tables (2)

Tables Icon

Table 1 Material properties of the DM used in the simulation

Tables Icon

Table 2 Wavefront strokes of Act1 and Act2 at different apertures

Metrics