Abstract

We propose and demonstrate a highly sensitive refractive index (RI) sensor based on a novel fiber-optic multi-mode interferometer (MMI), which is formed with a femtosecond-laser-induced in-core negative refractive index modified line in a standard single mode fiber. The proposed MMI structure is directly written with femtosecond laser in one step, which removes the splicing process needed in conventional MMI fabrication and also significantly improves the robustness. This device exhibits a high sensitivity to surrounding refractive index, with a maximum sensitivity up to 10675.9 nm/RIU at the RI range of 1.4484-1.4513. The distinct advantages of high sensitivity, compact, robust and assembly-free all-fiber structure make it attractive for real physical, chemical and biological sensing.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity

Ying Wang, Minwei Yang, D. N. Wang, Shujing Liu, and Peixiang Lu
J. Opt. Soc. Am. B 27(3) 370-374 (2010)

Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors

Huazhuo Dong, Liheng Chen, Junjie Zhou, Jianhui Yu, Heyuan Guan, Wentao Qiu, Jiangli Dong, Huihui Lu, Jieyuan Tang, Wenguo Zhu, Zhigang Cai, Yi Xiao, Jun Zhang, and Zhe Chen
Opt. Express 25(5) 5352-5365 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
  2. N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
  3. S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
    [PubMed]
  4. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [PubMed]
  5. S. Xuewen, Z. Lin, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
  6. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
  7. F. De-Jun, Z. Mao-Sen, G. Liu, L. Xi-Lu, and J. Dong-Fang, “D-Shaped Plastic Optical Fiber Sensor for Testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
  8. H. H. Qazi, A. B. b. Mohammad, H. Ahmad, M. Z. Zulkifli, and S. W. Harun, “Single-mode D-shaped optical fiber sensor for the refractive index monitoring of liquid,” J. Mod. Opt. 63(8), 750–755 (2015).
  9. C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
    [PubMed]
  10. C. H. Chen, J. L. Tang, and W. Wu, “Novel Multi-D-Shape Fiber Optic Biosensor,” in Proceedings of the 5th International Symposium on Machinery and Mechatronics for Agriculture and Biosystems Engineering,Fukuoka, Japan, 2010, 25–28.
  11. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
    [PubMed]
  12. P. Bhatia and B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt. 50(14), 2032–2036 (2011).
    [PubMed]
  13. L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20(10), 11109–11120 (2012).
    [PubMed]
  14. M. Han, F. Guo, and Y. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
    [PubMed]
  15. K. Mileńko, D. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, and W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37(8), 1373–1375 (2012).
    [PubMed]
  16. Z. Tian, S. S. H. Yam, and H.-P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
    [PubMed]
  17. R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett. 36(23), 4482–4484 (2011).
    [PubMed]
  18. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31(3), 317–319 (2006).
    [PubMed]
  19. Z. B. Liu, Z. Tan, B. Yin, Y. Bai, and S. Jian, “Refractive index sensing characterization of a singlemode-claddingless-singlemode fiber structure based fiber ring cavity laser,” Opt. Express 22(5), 5037–5042 (2014).
    [PubMed]
  20. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
    [PubMed]
  21. R. Jha, J. Villatoro, and G. a. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
  22. L. Xu, Y. Li, and B. Li, “Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing,” Appl. Phys. Lett. 101(15), 153510 (2012).
  23. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
  24. W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
  25. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
    [PubMed]
  26. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
    [PubMed]
  27. W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett. 28(24), 2491–2493 (2003).
    [PubMed]
  28. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
    [PubMed]
  29. J. W. Silverstone, S. McFarlane, C. P. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express 20(8), 8284–8295 (2012).
    [PubMed]

2015 (1)

H. H. Qazi, A. B. b. Mohammad, H. Ahmad, M. Z. Zulkifli, and S. W. Harun, “Single-mode D-shaped optical fiber sensor for the refractive index monitoring of liquid,” J. Mod. Opt. 63(8), 750–755 (2015).

2014 (3)

2012 (5)

2011 (4)

2010 (2)

M. Han, F. Guo, and Y. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
[PubMed]

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[PubMed]

2009 (2)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[PubMed]

2008 (2)

R. Jha, J. Villatoro, and G. a. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).

Z. Tian, S. S. H. Yam, and H.-P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
[PubMed]

2007 (1)

2006 (2)

Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31(3), 317–319 (2006).
[PubMed]

N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).

2005 (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).

2004 (1)

2003 (2)

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett. 28(24), 2491–2493 (2003).
[PubMed]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).

2002 (1)

1996 (1)

Ahmad, H.

H. H. Qazi, A. B. b. Mohammad, H. Ahmad, M. Z. Zulkifli, and S. W. Harun, “Single-mode D-shaped optical fiber sensor for the refractive index monitoring of liquid,” J. Mod. Opt. 63(8), 750–755 (2015).

Albert, J.

Asano, T.

Badenes, G.

Badenes, G. a.

R. Jha, J. Villatoro, and G. a. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).

Bai, Y.

Bennion, I.

Bhatia, P.

Bhatia, V.

Brambilla, G.

Bricchi, E.

Chen, C.

Chen, C. H.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[PubMed]

C. H. Chen, J. L. Tang, and W. Wu, “Novel Multi-D-Shape Fiber Optic Biosensor,” in Proceedings of the 5th International Symposium on Machinery and Mechatronics for Agriculture and Biosystems Engineering,Fukuoka, Japan, 2010, 25–28.

Chen, N.

N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).

Chen, Q. D.

Chow, K. K.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).

Cui, Y.

N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).

De-Jun, F.

F. De-Jun, Z. Mao-Sen, G. Liu, L. Xi-Lu, and J. Dong-Fang, “D-Shaped Plastic Optical Fiber Sensor for Testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).

Ding, M.

Dong-Fang, J.

F. De-Jun, Z. Mao-Sen, G. Liu, L. Xi-Lu, and J. Dong-Fang, “D-Shaped Plastic Optical Fiber Sensor for Testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).

Farrell, G.

Guo, F.

Gupta, B. D.

Han, M.

Harun, S. W.

H. H. Qazi, A. B. b. Mohammad, H. Ahmad, M. Z. Zulkifli, and S. W. Harun, “Single-mode D-shaped optical fiber sensor for the refractive index monitoring of liquid,” J. Mod. Opt. 63(8), 750–755 (2015).

Hu, D. J.

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).

Itoh, K.

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).

Jha, R.

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[PubMed]

R. Jha, J. Villatoro, and G. a. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).

Ji, W. B.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).

Jian, S.

Kazansky, P. G.

Klappauf, B. G.

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).

Li, B.

L. Xu, Y. Li, and B. Li, “Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing,” Appl. Phys. Lett. 101(15), 153510 (2012).

Li, L.

Li, Y.

L. Xu, Y. Li, and B. Li, “Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing,” Appl. Phys. Lett. 101(15), 153510 (2012).

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).

Lim, A.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).

Lim, J. L.

Lin, Z.

Liu, D.

Liu, G.

F. De-Jun, Z. Mao-Sen, G. Liu, L. Xi-Lu, and J. Dong-Fang, “D-Shaped Plastic Optical Fiber Sensor for Testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).

Liu, H. H.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).

Liu, Z. B.

Loock, H.-P.

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).

Lu, Y.

Manchee, C. P.

Mao-Sen, Z.

F. De-Jun, Z. Mao-Sen, G. Liu, L. Xi-Lu, and J. Dong-Fang, “D-Shaped Plastic Optical Fiber Sensor for Testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).

McFarlane, S.

Meldrum, A.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).

Milenko, K.

Mohammad, A. B. b.

H. H. Qazi, A. B. b. Mohammad, H. Ahmad, M. Z. Zulkifli, and S. W. Harun, “Single-mode D-shaped optical fiber sensor for the refractive index monitoring of liquid,” J. Mod. Opt. 63(8), 750–755 (2015).

Monro, T. M.

Nishii, J.

Pruneri, V.

Qazi, H. H.

H. H. Qazi, A. B. b. Mohammad, H. Ahmad, M. Z. Zulkifli, and S. W. Harun, “Single-mode D-shaped optical fiber sensor for the refractive index monitoring of liquid,” J. Mod. Opt. 63(8), 750–755 (2015).

Semenova, Y.

Shevchenko, Y. Y.

Shum, P. P.

Silverstone, J. W.

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).

Sun, H. B.

Tan, Z.

Tang, J. L.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[PubMed]

C. H. Chen, J. L. Tang, and W. Wu, “Novel Multi-D-Shape Fiber Optic Biosensor,” in Proceedings of the 5th International Symposium on Machinery and Mechatronics for Agriculture and Biosystems Engineering,Fukuoka, Japan, 2010, 25–28.

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).

Tian, Z.

Tjin, S. C.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).

Tong, W.

Tsao, T. C.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[PubMed]

Vengsarkar, A. M.

Villatoro, J.

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[PubMed]

R. Jha, J. Villatoro, and G. a. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).

Wang, P.

Wang, Q.

Wang, Y.

Warren-Smith, S. C.

Watanabe, W.

Wei, H.

Wolinski, T. R.

Wu, Q.

Wu, W.

C. H. Chen, J. L. Tang, and W. Wu, “Novel Multi-D-Shape Fiber Optic Biosensor,” in Proceedings of the 5th International Symposium on Machinery and Mechatronics for Agriculture and Biosystems Engineering,Fukuoka, Japan, 2010, 25–28.

Wu, W. T.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[PubMed]

Xia, L.

Xie, Z.

Xi-Lu, L.

F. De-Jun, Z. Mao-Sen, G. Liu, L. Xi-Lu, and J. Dong-Fang, “D-Shaped Plastic Optical Fiber Sensor for Testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).

Xu, L.

L. Xu, Y. Li, and B. Li, “Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing,” Appl. Phys. Lett. 101(15), 153510 (2012).

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).

Xue, Y.

Xuewen, S.

Yam, S. S. H.

Yamada, K.

Yang, R.

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).

Yin, B.

Yu, Y. S.

Yun, B.

N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).

Zhang, T.

Zulkifli, M. Z.

H. H. Qazi, A. B. b. Mohammad, H. Ahmad, M. Z. Zulkifli, and S. W. Harun, “Single-mode D-shaped optical fiber sensor for the refractive index monitoring of liquid,” J. Mod. Opt. 63(8), 750–755 (2015).

Appl. Opt. (1)

Appl. Phys. Lett. (5)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).

N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).

R. Jha, J. Villatoro, and G. a. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).

L. Xu, Y. Li, and B. Li, “Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing,” Appl. Phys. Lett. 101(15), 153510 (2012).

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).

IEEE Photonics Technol. Lett. (1)

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).

IEEE Sens. J. (1)

F. De-Jun, Z. Mao-Sen, G. Liu, L. Xi-Lu, and J. Dong-Fang, “D-Shaped Plastic Optical Fiber Sensor for Testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

H. H. Qazi, A. B. b. Mohammad, H. Ahmad, M. Z. Zulkifli, and S. W. Harun, “Single-mode D-shaped optical fiber sensor for the refractive index monitoring of liquid,” J. Mod. Opt. 63(8), 750–755 (2015).

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).

Opt. Express (5)

Opt. Lett. (11)

K. Mileńko, D. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, and W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37(8), 1373–1375 (2012).
[PubMed]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
[PubMed]

R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett. 36(23), 4482–4484 (2011).
[PubMed]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[PubMed]

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett. 28(24), 2491–2493 (2003).
[PubMed]

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
[PubMed]

Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31(3), 317–319 (2006).
[PubMed]

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
[PubMed]

Z. Tian, S. S. H. Yam, and H.-P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
[PubMed]

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[PubMed]

M. Han, F. Guo, and Y. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
[PubMed]

Sensors (Basel) (1)

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[PubMed]

Other (1)

C. H. Chen, J. L. Tang, and W. Wu, “Novel Multi-D-Shape Fiber Optic Biosensor,” in Proceedings of the 5th International Symposium on Machinery and Mechatronics for Agriculture and Biosystems Engineering,Fukuoka, Japan, 2010, 25–28.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the assembly-free MMI.

Fig. 2
Fig. 2

Experimental setup for direct femtosecond laser writing NRIML.

Fig. 3
Fig. 3

Microscope image of the in-fiber-core NRIML sample.

Fig. 4
Fig. 4

(a) Measured transmission spectra of the MMIs with different NRIML lengths. (b) The corresponding simulated transmission spectra of the MMIs with different NRIML lengths.

Fig. 5
Fig. 5

Spatial frequency of the MMIs with different lengths.

Fig. 6
Fig. 6

Transmission spectra evolution of the MMI under different surroundings RI.

Fig. 7
Fig. 7

The lower-order (a) and higher-order (b) dominant sinusoidal component of the DFT spectra evolution under different surrounding RI.

Fig. 8
Fig. 8

(a)-(c) Wavelength shift of the Dips A, B and C at different RI solutions (d)-(f) Wavelength shift of Dips A’, B’ and C’ at different RI.

Fig. 9
Fig. 9

(a) and (b) The simulated field distribution of the light propagating along the MMI with 5 mm NRIML length at input wavelength of about 1469nm and 1435nm, respectively. (c) Transmission spectra of the MMI with different surrounding RI calculated by BPM. (d)-(f) Simulated and measured the wavelength shifts of the Dips A, B and C with different RI.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

φ= 2πΔ n eff L λ
λ m = 2πΔ n eff L 2m+1 ,m=1,2,3...
Δλ λ 2 Δ n eff L

Metrics