Abstract

We use the spiral multi-pinhole plate to generate ultrashort vortex pulses and study their spatiotemporal evolutions involving intensity, phase, orbital angular momentum, and energy current. In the experiment, a Mach–Zehnder-type interferometer is employed to perform the investigation of ultrashort vortices. Combining the experimental results and the theoretical analyses, we discuss the spatiotemporal evolutions of ultrashort vortex pulses in femtosecond regime. The results show that the distribution of orbital angular momentum in the cross-section of the vortex pulse is maintained almost invariable in the pulse duration, while both the intensity and the energy current obey a Gaussian-like distribution. With time evolution, the phase contour lines of such vortex pulses rotate around the propagation axis.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fractional vortex ultrashort pulsed beams with modulating vortex strength

Mengdi Luo and Zhaoying Wang
Opt. Express 27(25) 36259-36268 (2019)

Generation of high-order optical vortices with asymmetrical pinhole plates under plane wave illumination

Zhenhua Li, Meina Zhang, Guotao Liang, Xing Li, Xiaoyi Chen, and Chuanfu Cheng
Opt. Express 21(13) 15755-15764 (2013)

Spectral anomalies and Gouy rotation around the singularity of ultrashort vortex pulses

M. Liebmann, A. Treffer, M. Bock, T. Elsaesser, and R. Grunwald
Opt. Express 25(21) 26076-26088 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42(4), 219–276 (2001).
  2. P. Vaity and R. P. Singh, “Topological charge dependent propagation of optical vortices under quadratic phase transformation,” Opt. Lett. 37(8), 1301–1303 (2012).
    [PubMed]
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [PubMed]
  4. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
  5. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
  6. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
  7. M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
  8. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [PubMed]
  9. A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
    [PubMed]
  10. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [PubMed]
  11. J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007).
    [PubMed]
  12. J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics Publishing, 1999).
  13. L. Allen, S. M. Barnett, and M. J. Padgett, Orbital Angular Momentum (Institute of Physics Publishing, 2003).
  14. M. J. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
  15. Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express 17(26), 24198–24207 (2009).
    [PubMed]
  16. A. Matos-Abiague and J. Berakdar, “Photoinduced charge currents in mesoscopic rings,” Phys. Rev. Lett. 94(16), 166801 (2005).
    [PubMed]
  17. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
  18. J. Courtial and M. J. Padgett, “Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes,” Opt. Commun. 159(1), 13–18 (1999).
  19. Z. Qiao, L. Kong, G. Xie, Z. Qin, P. Yuan, L. Qian, X. Xu, J. Xu, and D. Fan, “Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser,” Opt. Lett. 42(13), 2547–2550 (2017).
    [PubMed]
  20. K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L.-S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006).
  21. M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huilier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort optical vortex pulses,” J. Mod. Opt., https://arxiv.org/abs/1505.06081 (2016).
  22. O. Martínez-Matos, J. A. Rodrigo, M. P. Hernández-Garay, J. G. Izquierdo, R. Weigand, M. L. Calvo, P. Cheben, P. Vaveliuk, and L. Bañares, “Generation of femtosecond paraxial beams with arbitrary spatial distribution,” Opt. Lett. 35(5), 652–654 (2010).
    [PubMed]
  23. J. Atencia, M.-V. Collados, M. Quintanilla, J. Marín-Sáez, and I. J. Sola, “Holographic optical element to generate achromatic vortices,” Opt. Express 21(18), 21056–21061 (2013).
    [PubMed]
  24. G. C. G. Berkhout and M. W. Beijersbergen, “Measuring optical vortices in a speckle pattern using a multi-pinhole interferometer,” Opt. Express 18(13), 13836–13841 (2010).
    [PubMed]
  25. Z. Li and C. Cheng, “Generation of second-order vortex arrays with six-pinhole interferometers under plane wave illumination,” Appl. Opt. 53(8), 1629–1635 (2014).
    [PubMed]
  26. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
  27. G. Pariente and F. Quéré, “Spatio-temporal light springs: extended encoding of orbital angular momentum in ultrashort pulses,” Opt. Lett. 40(9), 2037–2040 (2015).
    [PubMed]
  28. M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry,” Opt. Lett. 39(17), 5142–5145 (2014).
    [PubMed]
  29. G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
  30. J. Leach, S. Keen, M. J. Padgett, C. Saunter, and G. D. Love, “Direct measurement of the skew angle of the Poynting vector in a helically phased beam,” Opt. Express 14(25), 11919–11924 (2006).
    [PubMed]
  31. F. Bonaretti, D. Faccio, M. Clerici, J. Biegert, and P. Di Trapani, “Spatiotemporal amplitude and phase retrieval of Bessel-X pulses using a Hartmann-Shack sensor,” Opt. Express 17(12), 9804–9809 (2009).
    [PubMed]
  32. Y. Toda, K. Nagaoka, K. Shimatake, and R. Morita, “Generation and spatiotemporal evolution of optical vortices in femtosecond laser pulses,” Electr. Eng. Jpn. 167(4), 39–46 (2009).
  33. K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16(5), 053020 (2014).
  34. M. Bock, J. Jahns, and R. Grunwald, “Few-cycle high-contrast vortex pulses,” Opt. Lett. 37(18), 3804–3806 (2012).
    [PubMed]
  35. R. Grunwald, T. Elsaesser, and M. Bock, “Spatio-temporal coherence mapping of few-cycle vortex pulses,” Sci. Rep. 4, 7148 (2014).
    [PubMed]
  36. M. Bock, J. Brunne, A. Treffer, S. König, U. Wallrabe, and R. Grunwald, “Sub-3-cycle vortex pulses of tunable topological charge,” Opt. Lett. 38(18), 3642–3645 (2013).
    [PubMed]
  37. Z. Li, M. Zhang, G. Liang, X. Li, X. Chen, and C. Cheng, “Generation of high-order optical vortices with asymmetrical pinhole plates under plane wave illumination,” Opt. Express 21(13), 15755–15764 (2013).
    [PubMed]
  38. M. Lefrançois and S. Pereira, “Time evolution of the diffraction pattern of an ultrashort laser pulse,” Opt. Express 11(10), 1114–1122 (2003).
    [PubMed]
  39. A. Pack, M. Hietschold, and R. Wannemacher, “Propagation of femtosecond light pulses through near-field optical aperture probes,” Ultramicroscopy 92(3-4), 251–264 (2002).
    [PubMed]
  40. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).

2017 (1)

2016 (1)

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).

2015 (2)

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

G. Pariente and F. Quéré, “Spatio-temporal light springs: extended encoding of orbital angular momentum in ultrashort pulses,” Opt. Lett. 40(9), 2037–2040 (2015).
[PubMed]

2014 (4)

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16(5), 053020 (2014).

R. Grunwald, T. Elsaesser, and M. Bock, “Spatio-temporal coherence mapping of few-cycle vortex pulses,” Sci. Rep. 4, 7148 (2014).
[PubMed]

Z. Li and C. Cheng, “Generation of second-order vortex arrays with six-pinhole interferometers under plane wave illumination,” Appl. Opt. 53(8), 1629–1635 (2014).
[PubMed]

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry,” Opt. Lett. 39(17), 5142–5145 (2014).
[PubMed]

2013 (3)

2012 (3)

P. Vaity and R. P. Singh, “Topological charge dependent propagation of optical vortices under quadratic phase transformation,” Opt. Lett. 37(8), 1301–1303 (2012).
[PubMed]

M. Bock, J. Jahns, and R. Grunwald, “Few-cycle high-contrast vortex pulses,” Opt. Lett. 37(18), 3804–3806 (2012).
[PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

2011 (2)

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).

2010 (3)

2009 (4)

2007 (1)

2006 (2)

J. Leach, S. Keen, M. J. Padgett, C. Saunter, and G. D. Love, “Direct measurement of the skew angle of the Poynting vector in a helically phased beam,” Opt. Express 14(25), 11919–11924 (2006).
[PubMed]

K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L.-S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006).

2005 (1)

A. Matos-Abiague and J. Berakdar, “Photoinduced charge currents in mesoscopic rings,” Phys. Rev. Lett. 94(16), 166801 (2005).
[PubMed]

2004 (1)

M. J. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).

2003 (3)

A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
[PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[PubMed]

M. Lefrançois and S. Pereira, “Time evolution of the diffraction pattern of an ultrashort laser pulse,” Opt. Express 11(10), 1114–1122 (2003).
[PubMed]

2002 (1)

A. Pack, M. Hietschold, and R. Wannemacher, “Propagation of femtosecond light pulses through near-field optical aperture probes,” Ultramicroscopy 92(3-4), 251–264 (2002).
[PubMed]

2001 (2)

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42(4), 219–276 (2001).

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

2000 (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).

1999 (1)

J. Courtial and M. J. Padgett, “Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes,” Opt. Commun. 159(1), 13–18 (1999).

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Ahmed, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Akturk, S.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).

Allen, L.

M. J. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Arnold, C. L.

Ashkin, A.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).

Ashrafi, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Ashrafi, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Atencia, J.

Bañares, L.

Bao, C.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Beijersbergen, M. W.

G. C. G. Berkhout and M. W. Beijersbergen, “Measuring optical vortices in a speckle pattern using a multi-pinhole interferometer,” Opt. Express 18(13), 13836–13841 (2010).
[PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Berakdar, J.

A. Matos-Abiague and J. Berakdar, “Photoinduced charge currents in mesoscopic rings,” Phys. Rev. Lett. 94(16), 166801 (2005).
[PubMed]

Berkhout, G. C. G.

Biegert, J.

Bock, M.

Bonaretti, F.

Borot, A.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).

Bowlan, P.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).

Bowman, R.

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

Brunne, J.

Calvo, M. L.

Cao, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Cheben, P.

Chen, X.

Cheng, C.

Cheong, W. C.

K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L.-S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006).

Clerici, M.

Collados, M.-V.

Courtial, J.

M. J. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).

J. Courtial and M. J. Padgett, “Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes,” Opt. Commun. 159(1), 13–18 (1999).

Di Trapani, P.

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Elsaesser, T.

R. Grunwald, T. Elsaesser, and M. Bock, “Spatio-temporal coherence mapping of few-cycle vortex pulses,” Sci. Rep. 4, 7148 (2014).
[PubMed]

Faccio, D.

Fan, D.

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Gallet, V.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).

Gobert, O.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[PubMed]

Grunwald, R.

Gu, X.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).

Guo, C.

Harth, A.

Hell, S. W.

Hernández-Garay, M. P.

Hietschold, M.

A. Pack, M. Hietschold, and R. Wannemacher, “Propagation of femtosecond light pulses through near-field optical aperture probes,” Ultramicroscopy 92(3-4), 251–264 (2002).
[PubMed]

Huang, H.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).

Izquierdo, J. G.

Jahns, J.

Jennewein, T.

A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
[PubMed]

Keen, S.

Keller, J.

Kong, L.

König, S.

Kotur, M.

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).

L’Huillier, A.

Lavery, M. P. J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Leach, J.

Lefrançois, M.

Li, L.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Li, X.

Li, Z.

Liang, G.

Lin, Z. Y.

K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L.-S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006).

Love, G. D.

Low, D. K. Y.

K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L.-S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006).

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

Marín-Sáez, J.

Martínez-Matos, O.

Matos-Abiague, A.

A. Matos-Abiague and J. Berakdar, “Photoinduced charge currents in mesoscopic rings,” Phys. Rev. Lett. 94(16), 166801 (2005).
[PubMed]

Miranda, M.

Moh, K. J.

K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L.-S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006).

Molisch, A. F.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Morita, R.

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16(5), 053020 (2014).

Y. Toda, K. Nagaoka, K. Shimatake, and R. Morita, “Generation and spatiotemporal evolution of optical vortices in femtosecond laser pulses,” Electr. Eng. Jpn. 167(4), 39–46 (2009).

Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express 17(26), 24198–24207 (2009).
[PubMed]

Nagaoka, K.

Y. Toda, K. Nagaoka, K. Shimatake, and R. Morita, “Generation and spatiotemporal evolution of optical vortices in femtosecond laser pulses,” Electr. Eng. Jpn. 167(4), 39–46 (2009).

Niu, H. B.

K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L.-S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006).

Oka, K.

Pack, A.

A. Pack, M. Hietschold, and R. Wannemacher, “Propagation of femtosecond light pulses through near-field optical aperture probes,” Ultramicroscopy 92(3-4), 251–264 (2002).
[PubMed]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

J. Leach, S. Keen, M. J. Padgett, C. Saunter, and G. D. Love, “Direct measurement of the skew angle of the Poynting vector in a helically phased beam,” Opt. Express 14(25), 11919–11924 (2006).
[PubMed]

M. J. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).

J. Courtial and M. J. Padgett, “Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes,” Opt. Commun. 159(1), 13–18 (1999).

Pan, J. W.

A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
[PubMed]

Pariente, G.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).

G. Pariente and F. Quéré, “Spatio-temporal light springs: extended encoding of orbital angular momentum in ultrashort pulses,” Opt. Lett. 40(9), 2037–2040 (2015).
[PubMed]

Peng, X.

K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L.-S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006).

Pereira, S.

Qian, L.

Qiao, Z.

Qin, Z.

Quéré, F.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).

G. Pariente and F. Quéré, “Spatio-temporal light springs: extended encoding of orbital angular momentum in ultrashort pulses,” Opt. Lett. 40(9), 2037–2040 (2015).
[PubMed]

Quintanilla, M.

Ramachandran, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Ren, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Rodrigo, J. A.

Rudawski, P.

Saunter, C.

Schönle, A.

Shimatake, K.

Y. Toda, K. Nagaoka, K. Shimatake, and R. Morita, “Generation and spatiotemporal evolution of optical vortices in femtosecond laser pulses,” Electr. Eng. Jpn. 167(4), 39–46 (2009).

Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express 17(26), 24198–24207 (2009).
[PubMed]

Singh, R. P.

Sola, I. J.

Soskin, M. S.

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42(4), 219–276 (2001).

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Tanda, S.

Tang, D. Y.

K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L.-S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006).

Toda, Y.

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16(5), 053020 (2014).

Y. Toda, K. Nagaoka, K. Shimatake, and R. Morita, “Generation and spatiotemporal evolution of optical vortices in femtosecond laser pulses,” Electr. Eng. Jpn. 167(4), 39–46 (2009).

Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express 17(26), 24198–24207 (2009).
[PubMed]

Tokizane, Y.

Trebino, R.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).

Treffer, A.

Tsubota, M.

Tur, M.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Vaity, P.

Vasnetsov, M. V.

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42(4), 219–276 (2001).

Vaveliuk, P.

Vaziri, A.

A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
[PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

Wallrabe, U.

Wang, J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Wannemacher, R.

A. Pack, M. Hietschold, and R. Wannemacher, “Propagation of femtosecond light pulses through near-field optical aperture probes,” Ultramicroscopy 92(3-4), 251–264 (2002).
[PubMed]

Weigand, R.

Weihs, G.

A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
[PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

Willner, A. E.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Xie, G.

Z. Qiao, L. Kong, G. Xie, Z. Qin, P. Yuan, L. Qian, X. Xu, J. Xu, and D. Fan, “Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser,” Opt. Lett. 42(13), 2547–2550 (2017).
[PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Xu, J.

Xu, X.

Yamane, K.

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16(5), 053020 (2014).

Yan, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Yang, Z.

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16(5), 053020 (2014).

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).

Yuan, P.

Yuan, X. C.

K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L.-S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006).

Yue, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Zeilinger, A.

A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
[PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

Zhang, L.-S.

K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L.-S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006).

Zhang, M.

Zhao, Z.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Adv. Opt. Photonics (2)

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L.-S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006).

Electr. Eng. Jpn. (1)

Y. Toda, K. Nagaoka, K. Shimatake, and R. Morita, “Generation and spatiotemporal evolution of optical vortices in femtosecond laser pulses,” Electr. Eng. Jpn. 167(4), 39–46 (2009).

IEEE J. Sel. Top. Quantum Electron. (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).

J. Opt. (1)

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).

Nat. Photonics (3)

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Nature (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[PubMed]

New J. Phys. (1)

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16(5), 053020 (2014).

Opt. Commun. (1)

J. Courtial and M. J. Padgett, “Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes,” Opt. Commun. 159(1), 13–18 (1999).

Opt. Express (8)

Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express 17(26), 24198–24207 (2009).
[PubMed]

J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007).
[PubMed]

J. Leach, S. Keen, M. J. Padgett, C. Saunter, and G. D. Love, “Direct measurement of the skew angle of the Poynting vector in a helically phased beam,” Opt. Express 14(25), 11919–11924 (2006).
[PubMed]

F. Bonaretti, D. Faccio, M. Clerici, J. Biegert, and P. Di Trapani, “Spatiotemporal amplitude and phase retrieval of Bessel-X pulses using a Hartmann-Shack sensor,” Opt. Express 17(12), 9804–9809 (2009).
[PubMed]

J. Atencia, M.-V. Collados, M. Quintanilla, J. Marín-Sáez, and I. J. Sola, “Holographic optical element to generate achromatic vortices,” Opt. Express 21(18), 21056–21061 (2013).
[PubMed]

G. C. G. Berkhout and M. W. Beijersbergen, “Measuring optical vortices in a speckle pattern using a multi-pinhole interferometer,” Opt. Express 18(13), 13836–13841 (2010).
[PubMed]

Z. Li, M. Zhang, G. Liang, X. Li, X. Chen, and C. Cheng, “Generation of high-order optical vortices with asymmetrical pinhole plates under plane wave illumination,” Opt. Express 21(13), 15755–15764 (2013).
[PubMed]

M. Lefrançois and S. Pereira, “Time evolution of the diffraction pattern of an ultrashort laser pulse,” Opt. Express 11(10), 1114–1122 (2003).
[PubMed]

Opt. Lett. (7)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Phys. Rev. Lett. (2)

A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003).
[PubMed]

A. Matos-Abiague and J. Berakdar, “Photoinduced charge currents in mesoscopic rings,” Phys. Rev. Lett. 94(16), 166801 (2005).
[PubMed]

Phys. Today (1)

M. J. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).

Prog. Opt. (1)

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42(4), 219–276 (2001).

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).

Sci. Rep. (1)

R. Grunwald, T. Elsaesser, and M. Bock, “Spatio-temporal coherence mapping of few-cycle vortex pulses,” Sci. Rep. 4, 7148 (2014).
[PubMed]

Ultramicroscopy (1)

A. Pack, M. Hietschold, and R. Wannemacher, “Propagation of femtosecond light pulses through near-field optical aperture probes,” Ultramicroscopy 92(3-4), 251–264 (2002).
[PubMed]

Other (3)

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huilier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort optical vortex pulses,” J. Mod. Opt., https://arxiv.org/abs/1505.06081 (2016).

J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics Publishing, 1999).

L. Allen, S. M. Barnett, and M. J. Padgett, Orbital Angular Momentum (Institute of Physics Publishing, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup. M1–2 are reflecting mirrors, BS1–3 are beam splitters, and the time delay device is composed of piezoelectric stage and mirrors. The multi-pinhole plate consists of N = 36 pinholes with pinhole radius of approximately ρ 0 =26 μm, radius of first pinhole to the plane origin of ρ 1 =0.5 cm, and the designed propagation distance is z = 50 cm. The light waves are measured and recorded by SPIDER and CCD, respectively.
Fig. 2
Fig. 2 (a) Information of the reference pulse contains the intensity and phase distributions along wavelength, and the inset shows the pulse width; (b) and (c) are the experimental results of the vortex intensity pattern and the interferogram at the observation plane, respectively.
Fig. 3
Fig. 3 Sketch of ultrashort vortex pulse propagation. An ultrashort pulse impinges normally on the multi-pinhole plate P(ρ). When arriving at the observation plane P(r) at z point, the vortex pulse can be theoretically decomposed as time independent parts.
Fig. 4
Fig. 4 Evolutions of the intensity and phase distributions of the ultrashort vortex pulses over time. Time scale varies from −24 fs to 24 fs with a step of 6 fs. The patterns above the time axis are the simulated results, and the corresponding experimental results are displayed below.
Fig. 5
Fig. 5 (a) and (c) are the in-plane OAM distributions at t = 0fs in simulation and experiment, respectively. (b) and (d) are the corresponding evolutions of OAM distributions over time at the points (r = 80 μm, θ = 0, π/2, π, 3π/2) marked by the white circles and colored shapes in (a) and (c), respectively.
Fig. 6
Fig. 6 (a) and (c) are the in-plane energy current distributions at t = 0 fs in the simulation and experiment, respectively. (b) and (d) are the corresponding evolutions of energy current distributions over time at the points (r = 80 μm, θ = 0, π/2, π, 3π/2) marked by the black circles and colored shapes in (a) and (c), respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

U 0 (t)=exp[-(t/τ ) 2 ]exp(i ω 0 t),
U 0 (ω)=τ π exp[ τ 2 (ω ω 0 ) 2 /4].
U 1 (ω)=τ π exp[ τ 2 (ω ω 0 ) 2 /4] U s (ω,ρ),
U s ( ω 0 ,ρ)= n=1 N δ(ρ ρ n ) A n exp{i ϕ n } ,
U 1 ( ω 0 )= m,n=1 N P mn (r) A m A n exp[i( ϕ m ϕ n )] =T( ω 0 )exp[ilα],
l(ω)= l 0 + Δl Δω (ω ω 0 ),
U(t,r)= τ π iλz exp[ τ 2 (ω ω 0 ) 2 /4] U s (ω,ρ)×exp[iω(tL/c)]dρdω T(t,r)exp[iφ(t,r)] ,
L z (r)= r c ×p(r) r c ×φ(r),
J(r)=I(r)φ(r),

Metrics