Abstract

Realizing versatile functionalities in a single photonic device is crucial for photonic integration. We here propose a polarization-switchable and wavelength-controllable multi-functional metasurface. By changing the polarization state of incident light, its functionality can be switched between the flat focusing lens and exciting surface-plasmon-polariton (SPP) wave. Interestingly, by tuning the wavelength of incident light, the generated SPP waves can also be controlled at desired interfaces, traveling along the upper or lower interface of the metasurface, or along both of them, depending on whether the incident light satisfies the first or second Kerker condition. This polarization-switchable and wavelength-controllable multifunctional metasurface may provide flexibility in designing tunable or multifunctional metasurfaces and may find potential applications in highly integrated photonic systems.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Versatile and tunable surface plasmon polariton excitation over a broad bandwidth with a simple metaline by external polarization modulation

Oubo You, Benfeng Bai, Lin Sun, Biyao Shen, and Zhendong Zhu
Opt. Express 24(19) 22061-22073 (2016)

Asymmetric optical transmission based on unidirectional excitation of surface plasmon polaritons in gradient metasurface

Yonghong Ling, Lirong Huang, Wei Hong, Tongjun Liu, Yali Sun, Jing Luan, and Gang Yuan
Opt. Express 25(12) 13648-13658 (2017)

Simultaneous Airy beam generation for both surface plasmon polaritons and transmitted wave based on metasurface

Sen Wang, Xinke Wang, and Yan Zhang
Opt. Express 25(20) 23589-23596 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
  2. M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
  3. Z. Wu, G. Kelp, M. N. Yogeesh, W. Li, K. M. McNicholas, A. Briggs, B. B. Rajeeva, D. Akinwande, S. R. Bank, G. Shvets, and Y. Zheng, “Dual-band moiré metasurface patches for multifunctional biomedical applications,” Nanoscale 8(43), 18461–18468 (2016).
    [PubMed]
  4. N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
  5. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [PubMed]
  6. T. Liu, L. Huang, W. Hong, Y. Ling, J. Luan, Y. Sun, and W. Sun, “Coupling-based Huygens’ meta-atom utilizing bilayer complementary plasmonic structure for light manipulation,” Opt. Express 25(14), 16332–16346 (2017).
    [PubMed]
  7. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [PubMed]
  8. Z. Li, J. Hao, L. Huang, H. Li, H. Xu, Y. Sun, and N. Dai, “Manipulating the wavefront of light by plasmonic metasurfaces operating in high order modes,” Opt. Express 24(8), 8788–8796 (2016).
    [PubMed]
  9. X. Luo, “Subwavelength electromagnetics,” Front. Optoelectron. 9(2), 138–150 (2016).
  10. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [PubMed]
  11. C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “A polarization independent phase gradient metasurface for spoof plasmon polaritons coupling,” J. Opt. 18(2), 025101 (2015).
  12. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
    [PubMed]
  13. H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5, 9605 (2015).
    [PubMed]
  14. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [PubMed]
  15. D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6, 27628 (2016).
    [PubMed]
  16. H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
  17. D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, and E. Y. B. Pun, “Metasurface Device with Helicity-Dependent Functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).
  18. T. Cai, G.-M. Wang, H.-X. Xu, S.-W. Tang, and J.-G. Liang, “Polarization-independent broadband meta-surface for bifunctional antenna,” Opt. Express 24(20), 22606–22615 (2016).
    [PubMed]
  19. T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
  20. H. X. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).
  21. H.-X. Xu, S. Tang, G.-M. Wang, T. Cai, W. Huang, Q. He, S. Sun, and L. Zhou, “Multifunctional microstrip array combining a linear polarizer and focusing metasurface,” IEEE Trans. Antenn. Propag. 64(8), 3676–3682 (2016).
  22. X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5, 10365 (2015).
    [PubMed]
  23. J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [PubMed]
  24. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
  25. Y. Ling, L. Huang, W. Hong, T. Liu, Y. Sun, J. Luan, and G. Yuan, “Asymmetric optical transmission based on unidirectional excitation of surface plasmon polaritons in gradient metasurface,” Opt. Express 25(12), 13648–13658 (2017).
    [PubMed]
  26. J. Wang, “A review of recent progress in plasmon-assisted nanophotonic devices,” Front. Optoelectron. 7(3), 320–337 (2014).
  27. D. Egorov, B. Dennis, G. Blumberg, and M. Haftel, “Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures,” Phys. Rev. B 70(3), 033404 (2004).
  28. X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98(25), 251109 (2011).
  29. A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3(8), e197 (2014).
  30. L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
  31. L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C.-W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
    [PubMed]
  32. C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Trans. Microw. Theory Tech. 61(12), 4407–4417 (2013).
  33. A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
    [PubMed]
  34. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [PubMed]
  35. R. Alaee, M. Albooyeh, S. Tretyakov, and C. Rockstuhl, “Phase-change material-based nanoantennas with tunable radiation patterns,” Opt. Lett. 41(17), 4099–4102 (2016).
    [PubMed]
  36. R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91(11), 115119 (2015).
  37. Y. Sun, S. Kolodny, S. Lepeshov, D. Zuev, L. Huang, P. Belov, and A. Krasnok, “Approach for fine-tuning of hybrid dimer antennas via laser melting at the nanoscale,” Ann. Phys. 529(3), 1600272 (2017).
  38. R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).
  39. X. Chen and W. Fan, “Polarization-insensitive tunable multiple electromagnetically induced transparencies analogue in terahertz graphene metamaterial,” Opt. Mater. Express 6(8), 2607–2615 (2016).
  40. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010).
    [PubMed]

2017 (6)

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).

H. X. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).

Y. Sun, S. Kolodny, S. Lepeshov, D. Zuev, L. Huang, P. Belov, and A. Krasnok, “Approach for fine-tuning of hybrid dimer antennas via laser melting at the nanoscale,” Ann. Phys. 529(3), 1600272 (2017).

Y. Ling, L. Huang, W. Hong, T. Liu, Y. Sun, J. Luan, and G. Yuan, “Asymmetric optical transmission based on unidirectional excitation of surface plasmon polaritons in gradient metasurface,” Opt. Express 25(12), 13648–13658 (2017).
[PubMed]

T. Liu, L. Huang, W. Hong, Y. Ling, J. Luan, Y. Sun, and W. Sun, “Coupling-based Huygens’ meta-atom utilizing bilayer complementary plasmonic structure for light manipulation,” Opt. Express 25(14), 16332–16346 (2017).
[PubMed]

2016 (9)

Z. Li, J. Hao, L. Huang, H. Li, H. Xu, Y. Sun, and N. Dai, “Manipulating the wavefront of light by plasmonic metasurfaces operating in high order modes,” Opt. Express 24(8), 8788–8796 (2016).
[PubMed]

X. Chen and W. Fan, “Polarization-insensitive tunable multiple electromagnetically induced transparencies analogue in terahertz graphene metamaterial,” Opt. Mater. Express 6(8), 2607–2615 (2016).

R. Alaee, M. Albooyeh, S. Tretyakov, and C. Rockstuhl, “Phase-change material-based nanoantennas with tunable radiation patterns,” Opt. Lett. 41(17), 4099–4102 (2016).
[PubMed]

T. Cai, G.-M. Wang, H.-X. Xu, S.-W. Tang, and J.-G. Liang, “Polarization-independent broadband meta-surface for bifunctional antenna,” Opt. Express 24(20), 22606–22615 (2016).
[PubMed]

H.-X. Xu, S. Tang, G.-M. Wang, T. Cai, W. Huang, Q. He, S. Sun, and L. Zhou, “Multifunctional microstrip array combining a linear polarizer and focusing metasurface,” IEEE Trans. Antenn. Propag. 64(8), 3676–3682 (2016).

D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6, 27628 (2016).
[PubMed]

Z. Wu, G. Kelp, M. N. Yogeesh, W. Li, K. M. McNicholas, A. Briggs, B. B. Rajeeva, D. Akinwande, S. R. Bank, G. Shvets, and Y. Zheng, “Dual-band moiré metasurface patches for multifunctional biomedical applications,” Nanoscale 8(43), 18461–18468 (2016).
[PubMed]

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, and E. Y. B. Pun, “Metasurface Device with Helicity-Dependent Functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).

X. Luo, “Subwavelength electromagnetics,” Front. Optoelectron. 9(2), 138–150 (2016).

2015 (4)

C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “A polarization independent phase gradient metasurface for spoof plasmon polaritons coupling,” J. Opt. 18(2), 025101 (2015).

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5, 9605 (2015).
[PubMed]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5, 10365 (2015).
[PubMed]

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91(11), 115119 (2015).

2014 (5)

J. Wang, “A review of recent progress in plasmon-assisted nanophotonic devices,” Front. Optoelectron. 7(3), 320–337 (2014).

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[PubMed]

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3(8), e197 (2014).

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C.-W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[PubMed]

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).

2013 (7)

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Trans. Microw. Theory Tech. 61(12), 4407–4417 (2013).

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[PubMed]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[PubMed]

R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).

2012 (3)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

2011 (1)

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98(25), 251109 (2011).

2010 (2)

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010).
[PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

2009 (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).

2005 (1)

2004 (1)

D. Egorov, B. Dennis, G. Blumberg, and M. Haftel, “Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures,” Phys. Rev. B 70(3), 033404 (2004).

Aieta, F.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

Akinwande, D.

Z. Wu, G. Kelp, M. N. Yogeesh, W. Li, K. M. McNicholas, A. Briggs, B. B. Rajeeva, D. Akinwande, S. R. Bank, G. Shvets, and Y. Zheng, “Dual-band moiré metasurface patches for multifunctional biomedical applications,” Nanoscale 8(43), 18461–18468 (2016).
[PubMed]

Alaee, R.

R. Alaee, M. Albooyeh, S. Tretyakov, and C. Rockstuhl, “Phase-change material-based nanoantennas with tunable radiation patterns,” Opt. Lett. 41(17), 4099–4102 (2016).
[PubMed]

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91(11), 115119 (2015).

Albooyeh, M.

R. Alaee, M. Albooyeh, S. Tretyakov, and C. Rockstuhl, “Phase-change material-based nanoantennas with tunable radiation patterns,” Opt. Lett. 41(17), 4099–4102 (2016).
[PubMed]

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91(11), 115119 (2015).

Antoniou, N.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

Aoust, G.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).

Ardron, M.

D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6, 27628 (2016).
[PubMed]

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, and E. Y. B. Pun, “Metasurface Device with Helicity-Dependent Functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).

Avrutsky, I.

Bai, B.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[PubMed]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98(25), 251109 (2011).

Bank, S. R.

Z. Wu, G. Kelp, M. N. Yogeesh, W. Li, K. M. McNicholas, A. Briggs, B. B. Rajeeva, D. Akinwande, S. R. Bank, G. Shvets, and Y. Zheng, “Dual-band moiré metasurface patches for multifunctional biomedical applications,” Nanoscale 8(43), 18461–18468 (2016).
[PubMed]

Belov, P.

Y. Sun, S. Kolodny, S. Lepeshov, D. Zuev, L. Huang, P. Belov, and A. Krasnok, “Approach for fine-tuning of hybrid dimer antennas via laser melting at the nanoscale,” Ann. Phys. 529(3), 1600272 (2017).

Berini, P.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).

Bernardin, T.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3(8), e197 (2014).

Blanchard, R.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).

Blumberg, G.

D. Egorov, B. Dennis, G. Blumberg, and M. Haftel, “Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures,” Phys. Rev. B 70(3), 033404 (2004).

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[PubMed]

Bozhevolnyi, S. I.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3(8), e197 (2014).

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

Briggs, A.

Z. Wu, G. Kelp, M. N. Yogeesh, W. Li, K. M. McNicholas, A. Briggs, B. B. Rajeeva, D. Akinwande, S. R. Bank, G. Shvets, and Y. Zheng, “Dual-band moiré metasurface patches for multifunctional biomedical applications,” Nanoscale 8(43), 18461–18468 (2016).
[PubMed]

Buchwald, W.

Cai, T.

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).

H.-X. Xu, S. Tang, G.-M. Wang, T. Cai, W. Huang, Q. He, S. Sun, and L. Zhou, “Multifunctional microstrip array combining a linear polarizer and focusing metasurface,” IEEE Trans. Antenn. Propag. 64(8), 3676–3682 (2016).

T. Cai, G.-M. Wang, H.-X. Xu, S.-W. Tang, and J.-G. Liang, “Polarization-independent broadband meta-surface for bifunctional antenna,” Opt. Express 24(20), 22606–22615 (2016).
[PubMed]

Cai, W.

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[PubMed]

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

Castaldi, G.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).

Chan, K.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, and E. Y. B. Pun, “Metasurface Device with Helicity-Dependent Functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).

Cheah, K. W.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, and E. Y. B. Pun, “Metasurface Device with Helicity-Dependent Functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).

Chen, M.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, and E. Y. B. Pun, “Metasurface Device with Helicity-Dependent Functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).

Chen, S.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, and E. Y. B. Pun, “Metasurface Device with Helicity-Dependent Functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).

Chen, X.

D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6, 27628 (2016).
[PubMed]

X. Chen and W. Fan, “Polarization-insensitive tunable multiple electromagnetically induced transparencies analogue in terahertz graphene metamaterial,” Opt. Mater. Express 6(8), 2607–2615 (2016).

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[PubMed]

Cheng, H.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).

Cheng, Y.

C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “A polarization independent phase gradient metasurface for spoof plasmon polaritons coupling,” J. Opt. 18(2), 025101 (2015).

Chettiar, U. K.

Cui, J.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5, 10365 (2015).
[PubMed]

Cui, T. J.

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5, 9605 (2015).
[PubMed]

Dai, N.

Dennis, B.

D. Egorov, B. Dennis, G. Blumberg, and M. Haftel, “Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures,” Phys. Rev. B 70(3), 033404 (2004).

Drachev, V. P.

Egorov, D.

D. Egorov, B. Dennis, G. Blumberg, and M. Haftel, “Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures,” Phys. Rev. B 70(3), 033404 (2004).

Fan, W.

Gaburro, Z.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

Galdi, V.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).

Genevet, P.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

Giessen, H.

Gong, R.

C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “A polarization independent phase gradient metasurface for spoof plasmon polaritons coupling,” J. Opt. 18(2), 025101 (2015).

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

Grbic, A.

C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Trans. Microw. Theory Tech. 61(12), 4407–4417 (2013).

Haftel, M.

D. Egorov, B. Dennis, G. Blumberg, and M. Haftel, “Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures,” Phys. Rev. B 70(3), 033404 (2004).

Hao, J.

Z. Li, J. Hao, L. Huang, H. Li, H. Xu, Y. Sun, and N. Dai, “Manipulating the wavefront of light by plasmonic metasurfaces operating in high order modes,” Opt. Express 24(8), 8788–8796 (2016).
[PubMed]

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C.-W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[PubMed]

He, B.

C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “A polarization independent phase gradient metasurface for spoof plasmon polaritons coupling,” J. Opt. 18(2), 025101 (2015).

He, Q.

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).

H.-X. Xu, S. Tang, G.-M. Wang, T. Cai, W. Huang, Q. He, S. Sun, and L. Zhou, “Multifunctional microstrip array combining a linear polarizer and focusing metasurface,” IEEE Trans. Antenn. Propag. 64(8), 3676–3682 (2016).

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

Hentschel, M.

Hong, W.

Huang, C.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5, 10365 (2015).
[PubMed]

Huang, L.

Y. Ling, L. Huang, W. Hong, T. Liu, Y. Sun, J. Luan, and G. Yuan, “Asymmetric optical transmission based on unidirectional excitation of surface plasmon polaritons in gradient metasurface,” Opt. Express 25(12), 13648–13658 (2017).
[PubMed]

T. Liu, L. Huang, W. Hong, Y. Ling, J. Luan, Y. Sun, and W. Sun, “Coupling-based Huygens’ meta-atom utilizing bilayer complementary plasmonic structure for light manipulation,” Opt. Express 25(14), 16332–16346 (2017).
[PubMed]

Y. Sun, S. Kolodny, S. Lepeshov, D. Zuev, L. Huang, P. Belov, and A. Krasnok, “Approach for fine-tuning of hybrid dimer antennas via laser melting at the nanoscale,” Ann. Phys. 529(3), 1600272 (2017).

Z. Li, J. Hao, L. Huang, H. Li, H. Xu, Y. Sun, and N. Dai, “Manipulating the wavefront of light by plasmonic metasurfaces operating in high order modes,” Opt. Express 24(8), 8788–8796 (2016).
[PubMed]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[PubMed]

Huang, W.

H.-X. Xu, S. Tang, G.-M. Wang, T. Cai, W. Huang, Q. He, S. Sun, and L. Zhou, “Multifunctional microstrip array combining a linear polarizer and focusing metasurface,” IEEE Trans. Antenn. Propag. 64(8), 3676–3682 (2016).

Jin, G.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[PubMed]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98(25), 251109 (2011).

Kats, M. A.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

Kelp, G.

Z. Wu, G. Kelp, M. N. Yogeesh, W. Li, K. M. McNicholas, A. Briggs, B. B. Rajeeva, D. Akinwande, S. R. Bank, G. Shvets, and Y. Zheng, “Dual-band moiré metasurface patches for multifunctional biomedical applications,” Nanoscale 8(43), 18461–18468 (2016).
[PubMed]

Kildishev, A. V.

Kolodny, S.

Y. Sun, S. Kolodny, S. Lepeshov, D. Zuev, L. Huang, P. Belov, and A. Krasnok, “Approach for fine-tuning of hybrid dimer antennas via laser melting at the nanoscale,” Ann. Phys. 529(3), 1600272 (2017).

Komjani, N.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91(11), 115119 (2015).

Kong, G. S.

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5, 9605 (2015).
[PubMed]

Krasnok, A.

Y. Sun, S. Kolodny, S. Lepeshov, D. Zuev, L. Huang, P. Belov, and A. Krasnok, “Approach for fine-tuning of hybrid dimer antennas via laser melting at the nanoscale,” Ann. Phys. 529(3), 1600272 (2017).

Lederer, F.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91(11), 115119 (2015).

Lepeshov, S.

Y. Sun, S. Kolodny, S. Lepeshov, D. Zuev, L. Huang, P. Belov, and A. Krasnok, “Approach for fine-tuning of hybrid dimer antennas via laser melting at the nanoscale,” Ann. Phys. 529(3), 1600272 (2017).

Li, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[PubMed]

Li, H.

Li, J.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).

Li, K. F.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, and E. Y. B. Pun, “Metasurface Device with Helicity-Dependent Functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).

Li, W.

Z. Wu, G. Kelp, M. N. Yogeesh, W. Li, K. M. McNicholas, A. Briggs, B. B. Rajeeva, D. Akinwande, S. R. Bank, G. Shvets, and Y. Zheng, “Dual-band moiré metasurface patches for multifunctional biomedical applications,” Nanoscale 8(43), 18461–18468 (2016).
[PubMed]

Li, X.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5, 10365 (2015).
[PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98(25), 251109 (2011).

Li, Z.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).

Z. Li, J. Hao, L. Huang, H. Li, H. Xu, Y. Sun, and N. Dai, “Manipulating the wavefront of light by plasmonic metasurfaces operating in high order modes,” Opt. Express 24(8), 8788–8796 (2016).
[PubMed]

Liang, J.-G.

Lin, J.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

Ling, X.

H. X. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).

Ling, Y.

Liu, T.

Liu, Z.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).

Luan, J.

Luo, W.

H. X. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).

Luo, X.

X. Luo, “Subwavelength electromagnetics,” Front. Optoelectron. 9(2), 138–150 (2016).

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5, 10365 (2015).
[PubMed]

Ma, H. F.

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5, 9605 (2015).
[PubMed]

Ma, X.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5, 10365 (2015).
[PubMed]

McNicholas, K. M.

Z. Wu, G. Kelp, M. N. Yogeesh, W. Li, K. M. McNicholas, A. Briggs, B. B. Rajeeva, D. Akinwande, S. R. Bank, G. Shvets, and Y. Zheng, “Dual-band moiré metasurface patches for multifunctional biomedical applications,” Nanoscale 8(43), 18461–18468 (2016).
[PubMed]

Moccia, M.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).

Mueller, J. B.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

Mühlenbernd, H.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[PubMed]

Nielsen, M. G.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3(8), e197 (2014).

Pan, W.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5, 10365 (2015).
[PubMed]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Trans. Microw. Theory Tech. 61(12), 4407–4417 (2013).

Pors, A.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3(8), e197 (2014).

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[PubMed]

Pu, M.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5, 10365 (2015).
[PubMed]

Pun, E. Y. B.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, and E. Y. B. Pun, “Metasurface Device with Helicity-Dependent Functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).

Qiu, C.-W.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C.-W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[PubMed]

Qiu, M.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C.-W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[PubMed]

Rajeeva, B. B.

Z. Wu, G. Kelp, M. N. Yogeesh, W. Li, K. M. McNicholas, A. Briggs, B. B. Rajeeva, D. Akinwande, S. R. Bank, G. Shvets, and Y. Zheng, “Dual-band moiré metasurface patches for multifunctional biomedical applications,” Nanoscale 8(43), 18461–18468 (2016).
[PubMed]

Rockstuhl, C.

R. Alaee, M. Albooyeh, S. Tretyakov, and C. Rockstuhl, “Phase-change material-based nanoantennas with tunable radiation patterns,” Opt. Lett. 41(17), 4099–4102 (2016).
[PubMed]

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91(11), 115119 (2015).

Sarychev, A. K.

Sato, Y.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).

Savo, S.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).

Shalaev, V. M.

Shvets, G.

Z. Wu, G. Kelp, M. N. Yogeesh, W. Li, K. M. McNicholas, A. Briggs, B. B. Rajeeva, D. Akinwande, S. R. Bank, G. Shvets, and Y. Zheng, “Dual-band moiré metasurface patches for multifunctional biomedical applications,” Nanoscale 8(43), 18461–18468 (2016).
[PubMed]

Simovski, C.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91(11), 115119 (2015).

Soref, R.

Sun, S.

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).

H.-X. Xu, S. Tang, G.-M. Wang, T. Cai, W. Huang, Q. He, S. Sun, and L. Zhou, “Multifunctional microstrip array combining a linear polarizer and focusing metasurface,” IEEE Trans. Antenn. Propag. 64(8), 3676–3682 (2016).

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

Sun, W.

Sun, Y.

Tan, Q.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[PubMed]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98(25), 251109 (2011).

Tang, S.

H. X. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).

H.-X. Xu, S. Tang, G.-M. Wang, T. Cai, W. Huang, Q. He, S. Sun, and L. Zhou, “Multifunctional microstrip array combining a linear polarizer and focusing metasurface,” IEEE Trans. Antenn. Propag. 64(8), 3676–3682 (2016).

Tang, S.-W.

Taubert, R.

Tetienne, J.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).

Tian, J.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).

Tretyakov, S.

Wang, C.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5, 10365 (2015).
[PubMed]

Wang, G.

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).

Wang, G. Z.

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5, 9605 (2015).
[PubMed]

Wang, G.-M.

H.-X. Xu, S. Tang, G.-M. Wang, T. Cai, W. Huang, Q. He, S. Sun, and L. Zhou, “Multifunctional microstrip array combining a linear polarizer and focusing metasurface,” IEEE Trans. Antenn. Propag. 64(8), 3676–3682 (2016).

T. Cai, G.-M. Wang, H.-X. Xu, S.-W. Tang, and J.-G. Liang, “Polarization-independent broadband meta-surface for bifunctional antenna,” Opt. Express 24(20), 22606–22615 (2016).
[PubMed]

Wang, J.

J. Wang, “A review of recent progress in plasmon-assisted nanophotonic devices,” Front. Optoelectron. 7(3), 320–337 (2014).

Wang, Q.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

Wang, W.

C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “A polarization independent phase gradient metasurface for spoof plasmon polaritons coupling,” J. Opt. 18(2), 025101 (2015).

Wang, Y.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5, 10365 (2015).
[PubMed]

Weeber, J.-C.

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3(8), e197 (2014).

Wei, X.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).

Wen, D.

D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6, 27628 (2016).
[PubMed]

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, and E. Y. B. Pun, “Metasurface Device with Helicity-Dependent Functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).

Wong, P. W. H.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, and E. Y. B. Pun, “Metasurface Device with Helicity-Dependent Functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).

Wu, C.

C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “A polarization independent phase gradient metasurface for spoof plasmon polaritons coupling,” J. Opt. 18(2), 025101 (2015).

Wu, Z.

Z. Wu, G. Kelp, M. N. Yogeesh, W. Li, K. M. McNicholas, A. Briggs, B. B. Rajeeva, D. Akinwande, S. R. Bank, G. Shvets, and Y. Zheng, “Dual-band moiré metasurface patches for multifunctional biomedical applications,” Nanoscale 8(43), 18461–18468 (2016).
[PubMed]

Xiao, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

Xu, H.

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).

Z. Li, J. Hao, L. Huang, H. Li, H. Xu, Y. Sun, and N. Dai, “Manipulating the wavefront of light by plasmonic metasurfaces operating in high order modes,” Opt. Express 24(8), 8788–8796 (2016).
[PubMed]

Xu, H. X.

H. X. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).

Xu, H.-X.

H.-X. Xu, S. Tang, G.-M. Wang, T. Cai, W. Huang, Q. He, S. Sun, and L. Zhou, “Multifunctional microstrip array combining a linear polarizer and focusing metasurface,” IEEE Trans. Antenn. Propag. 64(8), 3676–3682 (2016).

T. Cai, G.-M. Wang, H.-X. Xu, S.-W. Tang, and J.-G. Liang, “Polarization-independent broadband meta-surface for bifunctional antenna,” Opt. Express 24(20), 22606–22615 (2016).
[PubMed]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

Yang, J. K. W.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C.-W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[PubMed]

Yazdi, M.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91(11), 115119 (2015).

Yogeesh, M. N.

Z. Wu, G. Kelp, M. N. Yogeesh, W. Li, K. M. McNicholas, A. Briggs, B. B. Rajeeva, D. Akinwande, S. R. Bank, G. Shvets, and Y. Zheng, “Dual-band moiré metasurface patches for multifunctional biomedical applications,” Nanoscale 8(43), 18461–18468 (2016).
[PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[PubMed]

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

Yu, P.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).

Yuan, G.

Y. Ling, L. Huang, W. Hong, T. Liu, Y. Sun, J. Luan, and G. Yuan, “Asymmetric optical transmission based on unidirectional excitation of surface plasmon polaritons in gradient metasurface,” Opt. Express 25(12), 13648–13658 (2017).
[PubMed]

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

Yuan, H.-K.

Yuan, X.-C.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

Yue, F.

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, and E. Y. B. Pun, “Metasurface Device with Helicity-Dependent Functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).

D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6, 27628 (2016).
[PubMed]

Zentgraf, T.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[PubMed]

Zhang, L.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C.-W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[PubMed]

Zhang, S.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[PubMed]

Zhao, B.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5, 10365 (2015).
[PubMed]

Zhao, Z.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5, 10365 (2015).
[PubMed]

Zheng, Y.

Z. Wu, G. Kelp, M. N. Yogeesh, W. Li, K. M. McNicholas, A. Briggs, B. B. Rajeeva, D. Akinwande, S. R. Bank, G. Shvets, and Y. Zheng, “Dual-band moiré metasurface patches for multifunctional biomedical applications,” Nanoscale 8(43), 18461–18468 (2016).
[PubMed]

Zhou, L.

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).

H. X. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).

H.-X. Xu, S. Tang, G.-M. Wang, T. Cai, W. Huang, Q. He, S. Sun, and L. Zhou, “Multifunctional microstrip array combining a linear polarizer and focusing metasurface,” IEEE Trans. Antenn. Propag. 64(8), 3676–3682 (2016).

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

Zouhdi, S.

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C.-W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[PubMed]

Zuev, D.

Y. Sun, S. Kolodny, S. Lepeshov, D. Zuev, L. Huang, P. Belov, and A. Krasnok, “Approach for fine-tuning of hybrid dimer antennas via laser melting at the nanoscale,” Ann. Phys. 529(3), 1600272 (2017).

Adv. Opt. Mater. (2)

D. Wen, S. Chen, F. Yue, K. Chan, M. Chen, M. Ardron, K. F. Li, P. W. H. Wong, K. W. Cheah, and E. Y. B. Pun, “Metasurface Device with Helicity-Dependent Functionality,” Adv. Opt. Mater. 4(2), 321–327 (2016).

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).

Ann. Phys. (2)

Y. Sun, S. Kolodny, S. Lepeshov, D. Zuev, L. Huang, P. Belov, and A. Krasnok, “Approach for fine-tuning of hybrid dimer antennas via laser melting at the nanoscale,” Ann. Phys. 529(3), 1600272 (2017).

H. X. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).

Appl. Phys. Lett. (2)

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98(25), 251109 (2011).

Front. Optoelectron. (2)

J. Wang, “A review of recent progress in plasmon-assisted nanophotonic devices,” Front. Optoelectron. 7(3), 320–337 (2014).

X. Luo, “Subwavelength electromagnetics,” Front. Optoelectron. 9(2), 138–150 (2016).

IEEE J. Sel. Top. Quantum Electron. (1)

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).

IEEE Trans. Antenn. Propag. (1)

H.-X. Xu, S. Tang, G.-M. Wang, T. Cai, W. Huang, Q. He, S. Sun, and L. Zhou, “Multifunctional microstrip array combining a linear polarizer and focusing metasurface,” IEEE Trans. Antenn. Propag. 64(8), 3676–3682 (2016).

IEEE Trans. Microw. Theory Tech. (1)

C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Trans. Microw. Theory Tech. 61(12), 4407–4417 (2013).

J. Opt. (1)

C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “A polarization independent phase gradient metasurface for spoof plasmon polaritons coupling,” J. Opt. 18(2), 025101 (2015).

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (2)

A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, “Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons,” Light Sci. Appl. 3(8), e197 (2014).

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).

Nano Lett. (1)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[PubMed]

Nanoscale (2)

Z. Wu, G. Kelp, M. N. Yogeesh, W. Li, K. M. McNicholas, A. Briggs, B. B. Rajeeva, D. Akinwande, S. R. Bank, G. Shvets, and Y. Zheng, “Dual-band moiré metasurface patches for multifunctional biomedical applications,” Nanoscale 8(43), 18461–18468 (2016).
[PubMed]

L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. W. Yang, and C.-W. Qiu, “Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,” Nanoscale 6(21), 12303–12309 (2014).
[PubMed]

Nat. Commun. (1)

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[PubMed]

Nat. Mater. (2)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (2)

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications,” Phys. Rev. B 91(11), 115119 (2015).

D. Egorov, B. Dennis, G. Blumberg, and M. Haftel, “Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures,” Phys. Rev. B 70(3), 033404 (2004).

Phys. Rev. X (1)

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).

Sci. Rep. (3)

D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6, 27628 (2016).
[PubMed]

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5, 9605 (2015).
[PubMed]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5, 10365 (2015).
[PubMed]

Science (2)

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic and working principle for manipulating propagative SPPs. By properly adjusting working wavelength, the generated SPPs can propagate along the upper interface at wavelength λa, or lower interface at wavelength λb, or along both of them at wavelength λc. (b) Schematic of dipole p and image diploe p' in a structural unit of the metasurface.

Fig. 2
Fig. 2

Schematic of the designed transmissive metasurface, the inset shows a symmetric structural unit.

Fig. 3
Fig. 3

The transmittance and transmission phase of (a) X-polarized and (b) Y-polarized EM waves as a function of Lx at wavelength λ0 = 1265 nm.

Fig. 4
Fig. 4

Simulated reflectance (R), transmittance (T) and absorbance (A) of the transmissive metasurface under the illumination of a normally incident X-polarized light. Points ‘a’, ‘b’ and ‘c’ correspond to the three wavelengths discussed.

Fig. 5
Fig. 5

(a)-(c) Ez field amplitude distributions on the x-z plane under the illumination of the X-polarization light at λa = 1247 nm, λb = 1265 nm and λc = 1278 nm, respectively. The white dashed rectangles denote the location of metasurfaces. (d)-(f) Corresponding normalized Ez field distributions along the z-direction at x = 2.1 µm, where metasurfaces with thickness 180 nm are represented by light blue areas.

Fig. 6
Fig. 6

Intensity distributions of electric field in the x-z plane under the illumination of the Y-polarization light at wavelengths (a) λa = 1247 nm, (b) λb = 1265 nm and (c) λc = 1278 nm, where the white dashed rectangles denote the location of the metasurface.

Fig. 7
Fig. 7

Cross-section of intensity profile at x = 0 µm under the illumination of the Y-polarization light at wavelengths (a) λa = 1247 nm, (b) λb = 1265 nm and (c) λc = 1278 nm

Tables (1)

Tables Icon

Table 1 Focal length, DOF for reflective and transmissive beams.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

{ k x,t = ξ x k y,t =0 k z,t = k 0 2 ξ x 2
  Φ X (x)= ξ x x    and     ξ x k 0        ( for Xpolarized light )
Φ Y (x)= k 0 ( x 2 + f 0 2 f 0 ) ( for Ypolarized light )
Q= k 4 4π ε 2 A| E inc | 2 | p x ± ε r m y c | 2
p x ε r m y c =0
p x + ε r m y c =0